1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/Geom/Geom_SphericalSurface.hxx

248 lines
10 KiB
C++

// Created on: 1993-03-10
// Created by: JCV
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom_SphericalSurface_HeaderFile
#define _Geom_SphericalSurface_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <Geom_ElementarySurface.hxx>
#include <Standard_Integer.hxx>
class gp_Ax3;
class gp_Sphere;
class Geom_Curve;
class gp_Pnt;
class gp_Vec;
class gp_Trsf;
class Geom_Geometry;
class Geom_SphericalSurface;
DEFINE_STANDARD_HANDLE(Geom_SphericalSurface, Geom_ElementarySurface)
//! Describes a sphere.
//! A sphere is defined by its radius, and is positioned in
//! space by a coordinate system (a gp_Ax3 object), the
//! origin of which is the center of the sphere.
//! This coordinate system is the "local coordinate
//! system" of the sphere. The following apply:
//! - Rotation around its "main Axis", in the trigonometric
//! sense given by the "X Direction" and the "Y
//! Direction", defines the u parametric direction.
//! - Its "X Axis" gives the origin for the u parameter.
//! - The "reference meridian" of the sphere is a
//! half-circle, of radius equal to the radius of the
//! sphere. It is located in the plane defined by the
//! origin, "X Direction" and "main Direction", centered
//! on the origin, and positioned on the positive side of the "X Axis".
//! - Rotation around the "Y Axis" gives the v parameter
//! on the reference meridian.
//! - The "X Axis" gives the origin of the v parameter on
//! the reference meridian.
//! - The v parametric direction is oriented by the "main
//! Direction", i.e. when v increases, the Z coordinate
//! increases. (This implies that the "Y Direction"
//! orients the reference meridian only when the local
//! coordinate system is indirect.)
//! - The u isoparametric curve is a half-circle obtained
//! by rotating the reference meridian of the sphere
//! through an angle u around the "main Axis", in the
//! trigonometric sense defined by the "X Direction"
//! and the "Y Direction".
//! The parametric equation of the sphere is:
//! P(u,v) = O + R*cos(v)*(cos(u)*XDir + sin(u)*YDir)+R*sin(v)*ZDir
//! where:
//! - O, XDir, YDir and ZDir are respectively the
//! origin, the "X Direction", the "Y Direction" and the "Z
//! Direction" of its local coordinate system, and
//! - R is the radius of the sphere.
//! The parametric range of the two parameters is:
//! - [ 0, 2.*Pi ] for u, and
//! - [ - Pi/2., + Pi/2. ] for v.
class Geom_SphericalSurface : public Geom_ElementarySurface
{
public:
//! A3 is the local coordinate system of the surface.
//! At the creation the parametrization of the surface is defined
//! such as the normal Vector (N = D1U ^ D1V) is directed away from
//! the center of the sphere.
//! The direction of increasing parametric value V is defined by the
//! rotation around the "YDirection" of A2 in the trigonometric sense
//! and the orientation of increasing parametric value U is defined
//! by the rotation around the main direction of A2 in the
//! trigonometric sense.
//! Warnings :
//! It is not forbidden to create a spherical surface with
//! Radius = 0.0
//! Raised if Radius < 0.0.
Standard_EXPORT Geom_SphericalSurface(const gp_Ax3& A3, const Standard_Real Radius);
//! Creates a SphericalSurface from a non persistent Sphere from
//! package gp.
Standard_EXPORT Geom_SphericalSurface(const gp_Sphere& S);
//! Assigns the value R to the radius of this sphere.
//! Exceptions Standard_ConstructionError if R is less than 0.0.
Standard_EXPORT void SetRadius (const Standard_Real R);
//! Converts the gp_Sphere S into this sphere.
Standard_EXPORT void SetSphere (const gp_Sphere& S);
//! Returns a non persistent sphere with the same geometric
//! properties as <me>.
Standard_EXPORT gp_Sphere Sphere() const;
//! Computes the u parameter on the modified
//! surface, when reversing its u parametric
//! direction, for any point of u parameter U on this sphere.
//! In the case of a sphere, these functions returns 2.PI - U.
Standard_EXPORT Standard_Real UReversedParameter (const Standard_Real U) const Standard_OVERRIDE;
//! Computes the v parameter on the modified
//! surface, when reversing its v parametric
//! direction, for any point of v parameter V on this sphere.
//! In the case of a sphere, these functions returns -U.
Standard_EXPORT Standard_Real VReversedParameter (const Standard_Real V) const Standard_OVERRIDE;
//! Computes the aera of the spherical surface.
Standard_EXPORT Standard_Real Area() const;
//! Returns the parametric bounds U1, U2, V1 and V2 of this sphere.
//! For a sphere: U1 = 0, U2 = 2*PI, V1 = -PI/2, V2 = PI/2.
Standard_EXPORT void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const Standard_OVERRIDE;
//! Returns the coefficients of the implicit equation of the
//! quadric in the absolute cartesian coordinates system :
//! These coefficients are normalized.
//! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
//! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
Standard_EXPORT void Coefficients (Standard_Real& A1, Standard_Real& A2, Standard_Real& A3, Standard_Real& B1, Standard_Real& B2, Standard_Real& B3, Standard_Real& C1, Standard_Real& C2, Standard_Real& C3, Standard_Real& D) const;
//! Computes the coefficients of the implicit equation of
//! this quadric in the absolute Cartesian coordinate system:
//! A1.X**2 + A2.Y**2 + A3.Z**2 + 2.(B1.X.Y + B2.X.Z + B3.Y.Z) +
//! 2.(C1.X + C2.Y + C3.Z) + D = 0.0
//! An implicit normalization is applied (i.e. A1 = A2 = 1.
//! in the local coordinate system of this sphere).
Standard_EXPORT Standard_Real Radius() const;
//! Computes the volume of the spherical surface.
Standard_EXPORT Standard_Real Volume() const;
//! Returns True.
Standard_EXPORT Standard_Boolean IsUClosed() const Standard_OVERRIDE;
//! Returns False.
Standard_EXPORT Standard_Boolean IsVClosed() const Standard_OVERRIDE;
//! Returns True.
Standard_EXPORT Standard_Boolean IsUPeriodic() const Standard_OVERRIDE;
//! Returns False.
Standard_EXPORT Standard_Boolean IsVPeriodic() const Standard_OVERRIDE;
//! Computes the U isoparametric curve.
//! The U isoparametric curves of the surface are defined by the
//! section of the spherical surface with plane obtained by rotation
//! of the plane (Location, XAxis, ZAxis) around ZAxis. This plane
//! defines the origin of parametrization u.
//! For a SphericalSurface the UIso curve is a Circle.
//! Warnings : The radius of this circle can be zero.
Standard_EXPORT Handle(Geom_Curve) UIso (const Standard_Real U) const Standard_OVERRIDE;
//! Computes the V isoparametric curve.
//! The V isoparametric curves of the surface are defined by
//! the section of the spherical surface with plane parallel to the
//! plane (Location, XAxis, YAxis). This plane defines the origin of
//! parametrization V.
//! Be careful if V is close to PI/2 or 3*PI/2 the radius of the
//! circle becomes tiny. It is not forbidden in this toolkit to
//! create circle with radius = 0.0
//! For a SphericalSurface the VIso curve is a Circle.
//! Warnings : The radius of this circle can be zero.
Standard_EXPORT Handle(Geom_Curve) VIso (const Standard_Real V) const Standard_OVERRIDE;
//! Computes the point P (U, V) on the surface.
//! P (U, V) = Loc + Radius * Sin (V) * Zdir +
//! Radius * Cos (V) * (cos (U) * XDir + sin (U) * YDir)
//! where Loc is the origin of the placement plane (XAxis, YAxis)
//! XDir is the direction of the XAxis and YDir the direction of
//! the YAxis and ZDir the direction of the ZAxis.
Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE;
//! Computes the current point and the first derivatives in the
//! directions U and V.
Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE;
//! Computes the current point, the first and the second derivatives
//! in the directions U and V.
Standard_EXPORT void D2 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV) const Standard_OVERRIDE;
//! Computes the current point, the first,the second and the third
//! derivatives in the directions U and V.
Standard_EXPORT void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const Standard_OVERRIDE;
//! Computes the derivative of order Nu in the direction u
//! and Nv in the direction v.
//! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const Standard_OVERRIDE;
//! Applies the transformation T to this sphere.
Standard_EXPORT void Transform (const gp_Trsf& T) Standard_OVERRIDE;
//! Creates a new object which is a copy of this sphere.
Standard_EXPORT Handle(Geom_Geometry) Copy() const Standard_OVERRIDE;
//! Dumps the content of me into the stream
Standard_EXPORT virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE;
DEFINE_STANDARD_RTTIEXT(Geom_SphericalSurface,Geom_ElementarySurface)
protected:
private:
Standard_Real radius;
};
#endif // _Geom_SphericalSurface_HeaderFile