Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements;
Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability;
Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model.
The workflow of updated component can be divided on six parts:
* Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities;
* Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account;
* Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved;
* Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation;
* Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face;
* Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model.
Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units.
<!break>
1. Extend "tricheck" DRAW-command in order to find degenerated triangles.
2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated.
3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals.
4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection.
5. Correction of test scripts:
1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue)
2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant)
Correction in upgrade guide.
From now on, the panning behavior of V3d_View completely corresponds to equal operations with camera. There is no more confusing "Center" property and "ProjectionShift" which were used to introduce composite panning, while respecting view referential points: At, Eye unchanged. The V3d_View::FitAll approach has been rewritten to do "fit all" geometrically, operating with frustum, to make it working for both orthographic and perspective projections.
1) Getting rid of ProjectionShift and Center property:
- Removed ProjectionShift property of Graphic3d_Camera.
- Removed confusing Center property of V3d_View (related to projection shift).
- Removed redundant code related to the Center property of V3d_View.
- Removed WindowLimit method of Graphic3d_Camera - no more used.
2) Improvements of fit all and selector:
- Improved FitAll operation of V3d_View and reused it in NIS_View - the perspective projection is now handled correctly.
- Revised code of Select3D_Projector class - can be defined with any given projection and model-view matrices.
- Modified StdSelect_ViewerSelector3d and ensured that panning, zooming and going into the view do not lead to unwanted re-projection of sensitives. The handling of perspective selection is revised.
- Take into account graphical boundaries of infinite structure on ZFitAll.
3) Improvements of camera:
- Introduced new z range scale parameter for V3d_View::AutoZFit. See, V3d_View::AutoZFitMode.
- Allow negative ZNear, ZFar for orthographic camera to avoid clipping of viewed model.
- Moved camera ZNear, ZFar validity checks to V3d_View level.
- Use more meaningful Standard_ShortReal relative precision for ZNear, ZFar ranges computed by ZFitAll.
- Use Standard_Real type for camera projection and orientation matrices.
- Extended camera to generate both Standard_Real and Standard_ShortReal transformation matrices using the same matrix evaluation methods and converted input parameters.
Correcting picking tests for perspective view
Modify v3d face test cases for 1px changes in face picking
Modified test cases for new arguments of vviewparams DRAWEXE command