1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

9 Commits

Author SHA1 Message Date
oan
9b7f1aea28 0031865: Mesh - triangulation fails with large deflection values due to unhandled Standard_OutOfRange, BRepMesh_PairOfIndex::Append()
Define minimum number of points for specific types of curves like it was done for circular edges.
2022-12-04 13:43:52 +03:00
oan
a939fd40eb 0031853: Mesh - holes in triangulation with large linear deflection
0030442: Mesh - broken triangulation on pipe shape

Scale down min size parameter for NURBS taking into account its U and V resolution in order to prevent comparison of 2d parameters with 3d value involved in filtering process.
2022-09-16 18:35:32 +03:00
oan
c4ea4ca3d1 0032241: Mesh - wrong shading display of thrusections [regression since OCCT 7.4.0]
0032422: Mesh - Weird rendering
0029641: Mesher produce 'bad' result for extruded spline with given deviation coefficient

Added method BRepMesh_NURBSRangeSplitter::getUndefinedInterval() intended to compute checkpoint parameters for those NURBS surfaces which have no intervals at all. In this case number of poles is used to produce artificial regular grid which can be refined further. Add at least one midpoint for surfaces with one interval and only two poles.

Added BRepMesh_ExtrusionRangeSplitter and BRepMesh_UndefinedRangeSplitter derivatives from BRepMesh_NURBSRangeSplitter intended to handle special cases of extrusion surfaces and general surfaces with undefined parameters.
2022-09-16 18:34:44 +03:00
kgv
6387996871 0032243: Tests - unexpected file artifact s.stl at the root of repository
Several test cases have been corrected to avoid creation
of temporary files s.stl, comp_nonmanifold.step, bug31301_1.stp at unexpected location.
2021-03-26 19:48:51 +03:00
msv
7e785937b3 0025748: Parallel version of progress indicator
Progress indication mechanism is refactored to support incrementing progress within multithreaded algorithms.

The class Message_ProgressIndicator is only an interface to the user application.
It accumulates the progress provided by progress scopes.
The counter is protected by mutex for thread-safety.

The new class Message_ProgressScope replacing Message_ProgressSentry should be used to advance the progress.
The scopes are nested to each other to reflect the nested nature of operations.
The new class Message_ProgressRange should be used to pass the progress to sub-scopes.

All OCCT algorithms involving progress indication have been updated to new API.

Improvements in Draw_ProgressIndicator:
- Separate console mode has been added in order to make possible to put the progress into std::cout instead
  or in addition to the draw interpreter, instead of trigger option "-tclOutput".
- Treatment of Ctrl-Break signal has been added.
  Now any operation can be aborted by Ctrl-C or Ctrl-Break keystroke.

Added new test case 'perf fclasses progr_par' for testing of parallel work of the progress.
2020-09-12 20:42:22 +03:00
akaftasev
1fc1a207b0 0031504: Data Exchange - Wrong output of progress indicator when writing to stl
Added new condition for first indicated element at Draw_ProgressIndicator::Show(),
because it’s more logical that at start progress starts at 0
Changed usage of Next() to Next(step) for increment progress to IND_THRESHOLD in RWStl::writeASCII() and RWStl::writeBinary()
Changed condition for continuation of writing and add interrupt to this function
Added possibility to use Progress indicator in writestl
Changed paremeter in constructor Message_ProgressSentry aPS() IND_THRESHOLD to 1
Changed test
2020-06-09 19:53:08 +03:00
oan
7bd071edb1 0026106: BRepMesh - revision of data model
Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements;
Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability;
Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model.

The workflow of updated component can be divided on six parts:
* Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities;
* Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account;
* Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved;
* Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation;
* Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face;
* Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model.

Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units.

<!break>

1. Extend "tricheck" DRAW-command in order to find degenerated triangles.

2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated.

3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals.

4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection.

5. Correction of test scripts:

1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue)
2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant)

Correction in upgrade guide.
2018-11-02 17:06:40 +03:00
kgv
4c4420dfe9 0029868: Draw Harness - help message for readstl command is unclear
readstl syntax has been modified, so that it creates a single-face triangulation by default.
The argument "trinagulation" is no more supported.
The new argument "-brep" has been introduced to generate
a compound of per-triangle faces instead (old default behavior of the command).
2018-07-06 15:53:48 +03:00
aml
1428d37a1a 0028974: Test cases for STL reader/writer
Add new test grid for STL read/write.
2017-08-08 18:10:17 +03:00