Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
Add parameter EnableControlSurfaceDeflectionAllSurfaces to IMeshTools_Parameters enabling possibility to optimize mesh even on analytical surfaces;
Add corresponding parameter -surf_def_all to incmesh Draw command.
incmesh - added -prs option to use StdPrs_ToolTriangulatedShape::GetDeflection() as meshing parameters.
vdisplay, XDisplay - added -autoTriangulation option to manage meshing behavior before displaying a shape.
trinfo - added output of meshing parameters.
Fixed broken incmesh syntax usage in several test cases.
- improved incmesh to raise exception on invalid input parameters
- added possibility to operate multiple objects
- added checking for too small values in BrepMesh algorithm
1) Extend Poly_Triangulation by mesh purpose, possibility to be cleared and late-load deferred data interfaces.
2) Update BRep_TFace to store list of triangulations istead of single one. And also active one. Update getter and setter of single triangulation and add new methods to interaction with whole triangulations list.
3) Update BRep_Tool to get single triangulation of face according to the input mesh purpose or whole triangulations list.
4) Update BRep_Builder to make face by not only single triangulation but whole triangulations list with specified active one.
5) Add new methods to BRepTools to interact with shape triangulations (Load/Unload/Activate/LoadAll/UnloadAllTriangulation(s))
6) Add new 'tlateload'command for shape to load/unload/activate triangulations.
7) Update 'trinfo' command by '-lods' options to print detailaed information about LODs of this shape
8) Support empty triangulations by selection. Use bounding box selection in this case.
9) Add new 'outdisplist' option to XDispaly command to print list of displayed objects to output variable but not to theDI
10) Add new '-noecho' option to vdisplay command to skip printing of displayed objects to theDI
11) Create new RWMesh_TriangulationSource as mesh data wrapper for delayed triangulation loading.
12) Create new RWMesh_TriangulationReader as base interface for reading primitive array from the buffer.
13) Cache nodes/triangles number defined in glTF file
14) Use RWMesh_TriangulationSource class as base of RWGltf_GltfLatePrimitiveArray one and RWMesh_TriangulationReader class as base of RWGltf_TriangulationReader one
15) Add possibilty to support of LODs by glTF reader. It is possible to skip data loading and load them later
16) Add new '-skiplateloading' (to skip triangulation loading), '-keeplate' (to keep information about deferred storage to load/unload triangulation later),
'-toprintdebuginfo' (to print additional debug information) options to ReadGltf command
17) Add new test of glTF late loading
Added custom meshing core algorithm to generate base mesh using Delabella library,
which can be enabled via IMeshTools_Parameters::MeshAlgo option or CSF_MeshAlgo environment variable.
Do not fill cirles filter upon explicit initialization.
Call base postProcessMesh functionality after initialization of circles in BRepMesh_CustomDelaunayBaseMeshAlgo.
Added Vsprintf() wrapper for vsprintf() preserving C locale.
Draw_Interpretor, CommandCmd() - catched exceptions and messages put into Tcl string result
before throwing a Tcl exception (return 1) are now print in intense red (using Message::SendFail()).
Duplication of exception message in std::cout and Tcl output has been removed.
Draw Harness plugins have been updated to use either Message::SendFail() or theDI instead of std::cout/std::cerr
for printing colored error message before throwing a Tcl exception.
BRepMesh: Add new mesh parameter *AllowQualityDecrease* which affects the criteria used for checking of the consistency of the existing mesh to new meshing parameters.
So if set to true it will force the meshing of the shape if current deflection strongly vary from the new one, no matter in which side.
BRepTools::Clean: Keep triangulation on non-geometric shapes (faces with no surface or edges with no curves).
BinTools_ShapeSet now defines maps with proper types instead of Standard_Transient.
BinTools_ShapeSet now avoids allocation of temporary arrays while reading
triangulation and polygonal data.
Classes Poly_Triangle, Poly_PolygonOnTriangulation, Poly_Polygon3D and Poly_Polygon2D
have been cleared from .lxx files and extended by new methods for preallocating and filling array,
as alternative to passing arrays by copy.
wavefront command - export "f" instead of obsolete "fo" keys into file.
BinTools - added missing tools for reading/writing short reals.
"endl" manipulator for Message_Messenger is renamed to "Message_EndLine".
The following entities from std namespace are now used
with std:: explicitly specified (from Standard_Stream.hxx):
std::istream,std::ostream,std::ofstream,std::ifstream,std::fstream,
std::filebuf,std::streambuf,std::streampos,std::ios,std::cout,std::cerr,
std::cin,std::endl,std::ends,std::flush,std::setw,std::setprecision,
std::hex,std::dec.
Added new parameter KeepSmallEdges to IMeshTools_Parameters allowing to compute min size for each edge locally, depending on the length of particular edge.
Parameter -smalledges now available for incmesh command.
1. Test case for the issue has been created. The issue is fixed by the patch #26106.
2. Since now, "tricheck" command uses edge tolerance instead of edge deflection to check cross-face-errors (set of nodes of the edge on 1st face must be equal to set of nodes of the same edge on 2nd face).
In fact, the DRAW-command "mesh" is duplicate of "incmesh".
The difference is that the "mesh" creates DRAW-object MeshTest_DrawableMesh. However, this object is currently not applicable (e.g. we cannot display it).
DRAW-commands "mesh", "addshape", "smooth", "edges", "vertices", "medge", "mvertex", "triangle", "dumpvertex", "dumpedge", "dumptriangle" and "onetriangulation" have been removed.
The class MeshTest_DrawableMesh has been removed as useless.
Testgrids "mesh standard_mesh" and "mesh advanced_mesh" have been removed.
1. Check whether the mesh satisfies the required angular deflection has been amended. Namely normals (to the surface) in the ends of any not "frontier" link are made collinear (with the given angular tolerance).
2. New parameters AngleInterior and DeflectionInterior have been added in IMeshTools_Parameters structure.
3. In case of thin long faces with internal edges, add points of internal edges to control parameters using grabParamsOfInternalEdges() in order to avoid aberrations on its ends. Disable addition of parameters from boundary edges in case of BSpline surface. Deviation can be controlled through the deflection parameter.
4. Grab parameters from edges in case if there is just a single interval on BSpline surface along U and V direction.
Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements;
Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability;
Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model.
The workflow of updated component can be divided on six parts:
* Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities;
* Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account;
* Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved;
* Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation;
* Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face;
* Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model.
Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units.
<!break>
1. Extend "tricheck" DRAW-command in order to find degenerated triangles.
2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated.
3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals.
4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection.
5. Correction of test scripts:
1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue)
2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant)
Correction in upgrade guide.
The macros Status, Convex, Opposite, FillSolid (coming from X11 headers)
are now undefined in place of definition of methods with same name in OCCT headers.
The usage of variables with name Status is now avoided.
GL_GLEXT_LEGACY is now defined only if not already defined.
The macros AddPrinter (coming from WinAPI headers) is now undefined
within Message_Messenger class definition having method with the same name.
CurrentDirectory macro is now undefined in OSD_Process.hxx.
Macro NO_CXX_EXCEPTION was removed from code.
Method Raise() was replaced by explicit throw statement.
Method Standard_Failure::Caught() was replaced by normal C++mechanism of exception transfer.
Method Standard_Failure::Caught() is deprecated now.
Eliminated empty constructors.
Updated samples.
Eliminate empty method ChangeValue from NCollection_Map class.
Removed not operable methods from NCollection classes.
1) BRepMesh_FastDiscretFace.cxx:
- exclude planes from procedure of inserting internal points.
- localize declaration of the container aNewVertices in each method where it is needed.
- correct the logic of the method insertInternalVerticesOther, so that to separate the processes of removing extra points and addition of new points in different cycles, thus making the code more clear and in addition stable.
- insert useful output of intermediate mesh to a file in control() method for debug purposes (with definition DEBUG_MESH).
2) Add global functions MeshTest_DrawTriangles and MeshTest_DrawLinks to draw mesh data in debug session.
3) BRepMesh_FastDiscret:
- in the method Add calculations of deflections have been simplified for non-relative mode.
- replace the attribute MinDist with Deflection in EdgeAttributes structure. Correct its computation so that later to store this value as deflection of the polygon.
4) Make protection against exception in the method BRepMesh_Delaun::addTriangle() when an added triangle creates a third connection of a mesh edge.
5) BRepMesh_EdgeTessellator.cxx, BRepMesh_EdgeTessellationExtractor.cxx: use Geom2dAdaptor_Curve in order to use b-spline cache while computing value on a curve.
6) In BndLib_Box2dCurve::PerformBSpline, avoid creating new b-spline in case of requested parameter range differ from natural bounds insignificantly.
7) In GeomAdaptor classes, postpone building of cache till the time of its actual usage. So, creation of an adapter to compute intervals of continuity does not lead to creation of internal cache.
8) In the methods BRepAdaptor_Curve::Bezier and BSpline do not call Transformed() if transformation is identity.
9) In the classes Geom_BSplineCurve, Geom_BSplineSurface, Geom_BezierCurve, Geom_BezierSurface, Geom2d_BSplineCurve, Geom2d_BezierCurve change the method Pole() to return the point by const reference.
10) In CPnts_AbscissaPoint.cxx, compute derivative by D1 instead of DN to make use of b-spline cache.
11) Change test cases to actual state:
- Number of triangles/nodes can grow due to more accurate work with deflection of edges. Now the edge is tessellated using its own tolerance instead of maximal tolerance of all shapes in the face.
- Accept new numbers of mesh errors (free links, free nodes) for really bad shapes.
- Correct the test "bugs/mesh/bug25612" to produce stable result.
- Disable redundant checks in test cases bug25378* (lower limit for computation time).
- Speed up iso-lines computation for offset of bspline surfaces. For that use adaptor instead of original surface in evaluator of approximation.
- Add output of polylines for debug of insertInternalVerticesOther().
Reference data in test case bugs\moddata_2\bug453_3 have been changed to be close to expected theoretical values. This makes the test give stable result on different platforms.
Method StlAPI_Writer::Write() is reimplemented to write triangulation directly, without conversion to StlMesh_Mesh.
New DRAW command "tessellate" is added to generate rapidly triangulation of prescribed size (on surface).
Command "tricheck" is protected to deal correctly with triangulation without UV data.
New tests added: perf de bug26338_1 and _2; bugs stlvrml bug26338
Correction of testing environment
Parameter for adaptive computation of minimal 2D meshing precision added in BRepMesh_IncrementalMesh API.
Corresponding option -adaptive added in DRAW command
All meshing parameters are collected in structure, BRepMesh_FastDiscret::Parameters, which is now used to define and manipulate parameters of the algorithm.
1) Macro definition WNT replaced by _WIN32 and _MSC_VER for platform and compiler detection accordingly.
2) Macro definition LIN replaced by __linux__ macro.
3) Macro definition DEB replaced by OCCT_DEBUG macro.
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
Forward declaration of TCollection instances as classes are replaced by inclusion of corresponding header.
Cyclic dependencies between declaration of collection class and its item are resolved by forward declaring a class in collection header.
1. Develop special sewing algorithm.
2. DRAW-command "fastsewing" has been created (see help for detail information).
3. BRepLib::EnsureNormalConsistency() method has been added (see help for detail information).
4. DRAW-command correctnormals has been created (see help for detail information).
Test cases for this issue.
Correction of elapsed time in test-cases
Simple primitives to parallelize loops type "for" and "foreach" were implemented. The primitives encapsulates complete logic for creating and managing parallel context of loops. Moreover the primitives may be a wrapper for some primitives from 3rd-party library - TBB.
To use it is necessary to implement TBB like interface which is based on functors. For example:
Class Functor
{
public:
void operator() ([proccesing instance]) const
{
//...
}
};
In the body of the operator () should be implemented thread-safe logic of computations that can be performed in parallel context. If parallelized loop iterates on the collections with direct access by index (such as Vector, Array), it is more efficient to use the primitive ParallelFor (because it has no critical section).
All parts of OCC code which are using tbb were changed on new primitives.
0024826: Wrapping of parallelisation algorithms
Small fix.
New parameter MinSize has been introduced to BRepMesh and GCPnts_TangentialDeflection;
Check length of remaining part of curve for min size parameter instead of distance between two points to avoid large gaps in case highly distorted BSpline surfaces;
Produce fine mesh for sphere and fix other surface;
Test cases for issue CR25378
Correction of test cases for issue CR25378
Don't create data structures for whole set of faces. Necessary structures are created directly in BRepMesh_FastDiscret.
Don't copy nodes data during scaling, single structure is used.
Remove lines used for debug
Fix sphere: resolve problem came from merging.
Keep code clean - remove unnecessary logic, expected to be used for complicated restoration process.
Test cases for issue CR25364
Macros ending on "DEB" are replaced by OCCT_DEBUG across OCCT code; new macros described in documentation.
Macros starting with DEB are changed to start with "OCCT_DEBUG_".
Some code cleaned.