mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
Rollback integration OCC22567 Speed up of math_FunctionSetRoot (used in Extrema)
This commit is contained in:
parent
e33e7e78af
commit
fbadd2ccce
@ -49,6 +49,8 @@
|
||||
// On change de direction
|
||||
//============================================================================
|
||||
|
||||
static Standard_Boolean mydebug = Standard_False;
|
||||
|
||||
class MyDirFunction : public math_Function
|
||||
{
|
||||
|
||||
@ -200,6 +202,7 @@ static Standard_Boolean MinimizeDirection(const math_Vector& P0,
|
||||
F.Initialize(P1, Delta);
|
||||
|
||||
// (2) On minimise
|
||||
if (mydebug)cout << " minimisation dans la direction" << endl;
|
||||
ax = -1; bx = 0;
|
||||
cx = (P2-P1).Norm()*invnorme;
|
||||
if (cx < 1.e-2) return Standard_False;
|
||||
@ -240,6 +243,8 @@ static Standard_Boolean MinimizeDirection(const math_Vector& P,
|
||||
|
||||
// (1) On realise une premiere interpolation quadratique
|
||||
Standard_Real ax, bx, cx, df1, df2, Delta, tsol, fsol, tsolbis;
|
||||
if (mydebug) { cout << " essai d interpolation" << endl;}
|
||||
|
||||
df1 = Gradient*Dir;
|
||||
df2 = DGradient*Dir;
|
||||
|
||||
@ -259,7 +264,7 @@ static Standard_Boolean MinimizeDirection(const math_Vector& P,
|
||||
Delta = bx*bx - 4*ax*cx;
|
||||
if (Delta > 1.e-9) {
|
||||
// il y a des racines, on prend la plus proche de 0
|
||||
Delta = sqrt(Delta);
|
||||
Delta = Sqrt(Delta);
|
||||
tsol = -(bx + Delta);
|
||||
tsolbis = (Delta - bx);
|
||||
if (Abs(tsolbis) < Abs(tsol)) tsol = tsolbis;
|
||||
@ -280,6 +285,7 @@ static Standard_Boolean MinimizeDirection(const math_Vector& P,
|
||||
if (fsol<PValue) {
|
||||
good = Standard_True;
|
||||
Result = fsol;
|
||||
if (mydebug) cout << "t= "<<tsol<<" F = " << fsol << " OldF = "<<PValue <<endl;
|
||||
}
|
||||
|
||||
// (2) Si l'on a pas assez progresser on realise une recherche
|
||||
@ -292,11 +298,14 @@ static Standard_Boolean MinimizeDirection(const math_Vector& P,
|
||||
else {
|
||||
ax = 0.0; bx = tsol; cx = 1.0;
|
||||
}
|
||||
if (mydebug) cout << " minimisation dans la direction" << endl;
|
||||
math_BrentMinimum Sol(F, ax, bx, cx, tol1d, 100, tol1d);
|
||||
if(Sol.IsDone()) {
|
||||
if (Sol.Minimum() <= Result) {
|
||||
tsol = Sol.Location();
|
||||
good = Standard_True;
|
||||
tsol = Sol.Location();
|
||||
good = Standard_True;
|
||||
if (mydebug) cout << "t= "<<tsol<<" F ="<< Sol.Minimum()
|
||||
<< " OldF = "<<Result <<endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -327,10 +336,11 @@ static void SearchDirection(const math_Matrix& DF,
|
||||
math_Gauss Solut(DF, 1.e-9);
|
||||
if (Solut.IsDone()) Solut.Solve(Direction);
|
||||
else { // we have to "forget" singular directions.
|
||||
math_SVD SolvebySVD(DF);
|
||||
if (mydebug) cout << " Matrice singuliere : On prend SVD" << endl;
|
||||
math_SVD SolvebySVD(DF);
|
||||
if (SolvebySVD.IsDone()) SolvebySVD.Solve(-1*FF, Direction);
|
||||
else ChangeDirection = Standard_True;
|
||||
}
|
||||
else ChangeDirection = Standard_True;
|
||||
}
|
||||
}
|
||||
else if (Ninc > Neq) {
|
||||
math_SVD Solut(DF);
|
||||
@ -447,28 +457,22 @@ static void SearchDirection(const math_Matrix& DF,
|
||||
|
||||
|
||||
//====================================================
|
||||
Standard_Boolean Bounds(const math_Vector& InfBound,
|
||||
const math_Vector& SupBound,
|
||||
const math_Vector& Tol,
|
||||
math_Vector& Sol,
|
||||
const math_Vector& SolSave,
|
||||
math_IntegerVector& Constraints,
|
||||
math_Vector& Delta,
|
||||
Standard_Boolean& theIsNewSol)
|
||||
Standard_Boolean Bounds(const math_Vector& InfBound,
|
||||
const math_Vector& SupBound,
|
||||
const math_Vector& Tol,
|
||||
math_Vector& Sol,
|
||||
const math_Vector& SolSave,
|
||||
math_IntegerVector& Constraints,
|
||||
math_Vector& Delta)
|
||||
//
|
||||
// Purpose: Trims an initial solution Sol to be within a domain defined by
|
||||
// InfBound and SupBound. Delta will contain a distance between final Sol and
|
||||
// SolSave.
|
||||
// IsNewSol returns False, if final Sol fully coincides with SolSave, i.e.
|
||||
// if SolSave already lied on a boundary and initial Sol was fully beyond it
|
||||
// Purpose : Troncate un pas d'optimisation pour rester
|
||||
// dans le domaine, Delta donne le pas final
|
||||
//======================================================
|
||||
{
|
||||
Standard_Boolean Out = Standard_False;
|
||||
Standard_Integer i, Ninc = Sol.Length();
|
||||
Standard_Real monratio = 1;
|
||||
|
||||
theIsNewSol = Standard_True;
|
||||
|
||||
// Calcul du ratio de recadrage
|
||||
for (i = 1; i <= Ninc; i++) {
|
||||
Constraints(i) = 0;
|
||||
@ -480,36 +484,28 @@ Standard_Boolean Bounds(const math_Vector& InfBound,
|
||||
else if(Sol(i) < InfBound(i)) {
|
||||
Constraints(i) = 1;
|
||||
Out = Standard_True;
|
||||
// Delta(i) is negative
|
||||
if (-Delta(i) > Tol(i)) // Afin d'eviter des ratio nulles pour rien
|
||||
monratio = Min(monratio, (InfBound(i) - SolSave(i))/Delta(i) );
|
||||
if (Abs(Delta(i)) > Tol(i)) // Afin d'eviter des ratio nulles pour rien
|
||||
monratio = Min(monratio, Abs( (SolSave(i)-InfBound(i))/Delta(i)) );
|
||||
}
|
||||
else if (Sol(i) > SupBound(i)) {
|
||||
Constraints(i) = 1;
|
||||
Out = Standard_True;
|
||||
// Delta(i) is positive
|
||||
if (Delta(i) > Tol(i))
|
||||
monratio = Min(monratio, (SupBound(i) - SolSave(i))/Delta(i) );
|
||||
if (Abs(Delta(i)) > Tol(i))
|
||||
monratio = Min(monratio, Abs( (SolSave(i)-SupBound(i))/Delta(i)) );
|
||||
}
|
||||
}
|
||||
|
||||
if (Out){ // Troncature et derniers recadrage pour blinder (pb numeriques)
|
||||
if (monratio == 0.0) {
|
||||
theIsNewSol = Standard_False;
|
||||
Sol = SolSave;
|
||||
Delta.Init (0.0);
|
||||
} else {
|
||||
Delta *= monratio;
|
||||
Sol = SolSave+Delta;
|
||||
for (i = 1; i <= Ninc; i++) {
|
||||
if(Sol(i) < InfBound(i)) {
|
||||
Sol(i) = InfBound(i);
|
||||
Delta(i) = Sol(i) - SolSave(i);
|
||||
}
|
||||
else if (Sol(i) > SupBound(i)) {
|
||||
Sol(i) = SupBound(i);
|
||||
Delta(i) = Sol(i) - SolSave(i);
|
||||
}
|
||||
Delta *= monratio;
|
||||
Sol = SolSave+Delta;
|
||||
for (i = 1; i <= Ninc; i++) {
|
||||
if(Sol(i) < InfBound(i)) {
|
||||
Sol(i) = InfBound(i);
|
||||
Delta(i) = Sol(i) - SolSave(i);
|
||||
}
|
||||
else if (Sol(i) > SupBound(i)) {
|
||||
Sol(i) = SupBound(i);
|
||||
Delta(i) = Sol(i) - SolSave(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -680,10 +676,10 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
(SupBound.Length() != Ninc)) { Standard_DimensionError:: Raise(); }
|
||||
|
||||
Standard_Integer i;
|
||||
Standard_Boolean ChangeDirection = Standard_False, Sort = Standard_False, isNewSol = Standard_False;
|
||||
Standard_Boolean ChangeDirection = Standard_False, Sort = Standard_False;
|
||||
Standard_Boolean Good, Verif;
|
||||
Standard_Boolean Stop;
|
||||
const Standard_Real EpsSqrt = 1.e-16, Eps = 1.e-32, Eps2 = 1.e-64, Progres = 0.005;
|
||||
Standard_Real Eps = 1.e-32, Progres = 0.005;
|
||||
Standard_Real F2, PreviousMinimum, Dy, OldF;
|
||||
Standard_Real Ambda, Ambda2, Gnr1, Oldgr;
|
||||
math_Vector InvLengthMax(1, Ninc); // Pour bloquer les pas a 1/4 du domaine
|
||||
@ -718,9 +714,14 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
// Le rang 0 de Save ne doit servir q'au test accelarteur en fin de boucle
|
||||
// s'il on est dejas sur la solution, il faut leurer ce test pour eviter
|
||||
// de faire une seconde iteration...
|
||||
Save(0) = Max (F2, EpsSqrt);
|
||||
Save(0) = Max (F2, Sqrt(Eps));
|
||||
|
||||
if ((F2 <= Eps) || (Gnr1 <= Eps2)) {
|
||||
if (mydebug) {
|
||||
cout << "=== Mode Debug de Function Set Root"<<endl;
|
||||
cout << " F2 Initial = " << F2 << endl;
|
||||
}
|
||||
|
||||
if ((F2 <= Eps) || (Sqrt(Gnr1) <= Eps)) {
|
||||
Done = Standard_True;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
@ -739,7 +740,7 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
return;
|
||||
}
|
||||
if (ChangeDirection) {
|
||||
Ambda = Ambda2 / sqrt(Abs(Dy));
|
||||
Ambda = Ambda2/Sqrt(Abs(Dy));
|
||||
if (Ambda > 1.0) Ambda = 1.0;
|
||||
}
|
||||
else {
|
||||
@ -751,20 +752,26 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
Sol(i) = Sol(i) + Ambda * DH(i);
|
||||
}
|
||||
Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
Constraints, Delta);
|
||||
|
||||
|
||||
DHSave = GH;
|
||||
if (isNewSol) {
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
|
||||
if ((F2 <= Eps) || (Gnr1 <= Eps2)) {
|
||||
#if DEB
|
||||
if (mydebug) {
|
||||
cout << "Kount = " << Kount << endl;
|
||||
cout << "Le premier F2 = " << F2 << endl;
|
||||
cout << "Direction = " << ChangeDirection << endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((F2 <= Eps) || (Sqrt(Gnr1) <= Eps)) {
|
||||
Done = Standard_True;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
@ -785,14 +792,16 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
while((F2/PreviousMinimum > Progres) && !Stop) {
|
||||
if (F2 < OldF && (Dy < 0.0)) {
|
||||
// On essaye de progresser dans cette direction.
|
||||
if (mydebug) cout << " iteration de descente = " << DescenteIter<<endl;
|
||||
DescenteIter++;
|
||||
SolSave = Sol;
|
||||
OldF = F2;
|
||||
for( i = Sol.Lower(); i <= Sol.Upper(); i++) {
|
||||
Sol(i) = Sol(i) + Ambda * DH(i);
|
||||
}
|
||||
Sol(i) = Sol(i) + Ambda * DH(i);
|
||||
}
|
||||
Stop = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
Constraints, Delta);
|
||||
if (mydebug) { cout << " Augmentation de lambda" << endl;}
|
||||
Ambda *= 1.7;
|
||||
}
|
||||
else {
|
||||
@ -817,23 +826,21 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
F2 = OldF;
|
||||
}
|
||||
else {
|
||||
Sol = SolSave+Delta;
|
||||
Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
Sol = SolSave+Delta;
|
||||
}
|
||||
Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta);
|
||||
Sort = Standard_False; // On a rejete le point sur la frontiere
|
||||
}
|
||||
Stop = Standard_True; // et on sort dans tous les cas...
|
||||
}
|
||||
DHSave = GH;
|
||||
if (isNewSol) {
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
}
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
Dy = GH*DH;
|
||||
if (Abs(Dy) <= Eps) {
|
||||
State = F.GetStateNumber();
|
||||
@ -845,6 +852,10 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
Stop = Standard_True;
|
||||
}
|
||||
}
|
||||
if (mydebug) {
|
||||
cout << "--- Sortie du Traitement Standard"<<endl;
|
||||
cout << " DescenteIter = "<<DescenteIter << " F2 = " << F2 << endl;
|
||||
}
|
||||
}
|
||||
// ------------------------------------
|
||||
// on passe au traitement des bords
|
||||
@ -861,11 +872,12 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
OldF = F2;
|
||||
SearchDirection(DF, GH, FF, Constraints, Sol,
|
||||
ChangeDirection, InvLengthMax, DH, Dy);
|
||||
if (mydebug) { cout << " Conditional Direction = " << ChangeDirection << endl;}
|
||||
if (Dy<-Eps) { //Pour eviter des calculs inutiles et des /0...
|
||||
if (ChangeDirection) {
|
||||
|
||||
// Ambda = Ambda2 / sqrt(Abs(Dy));
|
||||
Ambda = Ambda2 / sqrt(-Dy);
|
||||
// Ambda = Ambda2/Sqrt(Abs(Dy));
|
||||
Ambda = Ambda2/Sqrt(-Dy);
|
||||
if (Ambda > 1.0) Ambda = 1.0;
|
||||
}
|
||||
else {
|
||||
@ -877,18 +889,20 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
Sol(i) = Sol(i) + Ambda * DH(i);
|
||||
}
|
||||
Sortbis = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
Constraints, Delta);
|
||||
|
||||
DHSave = GH;
|
||||
if (isNewSol) {
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
}
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
Ambda2 = Gnr1;
|
||||
if (mydebug) {
|
||||
cout << "--- Iteration au bords : " << DescenteIter << endl;
|
||||
cout << "--- F2 = " << F2 << endl;
|
||||
}
|
||||
}
|
||||
else {
|
||||
Stop = Standard_True;
|
||||
@ -896,6 +910,8 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
|
||||
while((F2/PreviousMinimum > Progres) && (F2<OldF) && (!Stop) ) {
|
||||
DescenteIter++;
|
||||
if (mydebug) cout << "--- Iteration de descente conditionnel = "
|
||||
<< DescenteIter<<endl;
|
||||
if (F2 < OldF && Dy < 0.0) {
|
||||
// On essaye de progresser dans cette direction.
|
||||
SolSave = Sol;
|
||||
@ -904,17 +920,15 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
Sol(i) = Sol(i) + Ambda * DH(i);
|
||||
}
|
||||
Sortbis = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
Constraints, Delta );
|
||||
}
|
||||
DHSave = GH;
|
||||
if (isNewSol) {
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
}
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
Ambda2 = Gnr1;
|
||||
Dy = GH*DH;
|
||||
Stop = ((Dy >=0) || (DescenteIter >= 10) || Sortbis);
|
||||
@ -929,23 +943,24 @@ void math_FunctionSetRoot::Perform(math_FunctionSetWithDerivatives& F,
|
||||
DHSave, GH, Tol, F_Dir);
|
||||
if (!Good) {
|
||||
Sol = SolSave;
|
||||
Sort = Standard_False;
|
||||
}
|
||||
else {
|
||||
Sol = SolSave + Delta;
|
||||
Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta, isNewSol);
|
||||
if (isNewSol) {
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
Sort = Bounds(InfBound, SupBound, Tol, Sol, SolSave,
|
||||
Constraints, Delta);
|
||||
// F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1);
|
||||
if(!F_Dir.Value(Sol, FF, DF, GH, F2, Gnr1)) {
|
||||
Done = Standard_False;
|
||||
State = F.GetStateNumber();
|
||||
return;
|
||||
}
|
||||
Dy = GH*DH;
|
||||
}
|
||||
if (mydebug) {
|
||||
cout << "--- Sortie du Traitement des Bords"<<endl;
|
||||
cout << "--- DescenteIter = "<<DescenteIter << " F2 = " << F2 << endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1063,3 +1078,10 @@ void math_FunctionSetRoot::FunctionSetErrors(math_Vector& Err) const{
|
||||
Standard_DimensionError_Raise_if(Err.Length() != Sol.Length(), " ");
|
||||
Err = Delta;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user