mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0025262: Foundation Classes - Poly package improvements
Improvements of functionality of Poly package: * Add function to intersect a triangulation by an axis. * Add function to intersect a triangle by an axis. * Correct the bugs in the methods RemoveDegenerated, RemoveTriangle and ReplaceNodes of the class Poly_CoherentTriangulation.
This commit is contained in:
parent
0c2517292f
commit
f7ad1e7e37
@ -14,11 +14,12 @@
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <Poly.hxx>
|
||||
|
||||
#include <gp_Ax1.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Pnt2d.hxx>
|
||||
#include <gp_XY.hxx>
|
||||
#include <Poly.hxx>
|
||||
#include <Poly_Array1OfTriangle.hxx>
|
||||
#include <Poly_ListOfTriangulation.hxx>
|
||||
#include <Poly_Polygon2D.hxx>
|
||||
@ -562,3 +563,122 @@ Standard_Real Poly::PointOnTriangle (const gp_XY& theP1, const gp_XY& theP2, con
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Intersect
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Poly::Intersect (const Handle(Poly_Triangulation)& theTri,
|
||||
const gp_Ax1& theAxis,
|
||||
const Standard_Boolean theIsClosest,
|
||||
Poly_Triangle& theTriangle,
|
||||
Standard_Real& theDistance)
|
||||
{
|
||||
const Standard_Real aConf = 1E-15;
|
||||
const gp_XYZ& aLoc = theAxis.Location().XYZ();
|
||||
const gp_Dir& aDir = theAxis.Direction();
|
||||
|
||||
Standard_Real aResult = theIsClosest ? RealLast() : 0.0;
|
||||
Standard_Real aParam = 0.0;
|
||||
Standard_Integer aTriNodes[3] = {};
|
||||
for (Standard_Integer aTriIter = 1; aTriIter <= theTri->NbTriangles(); ++aTriIter)
|
||||
{
|
||||
const Poly_Triangle& aTri = theTri->Triangle (aTriIter);
|
||||
aTri.Get (aTriNodes[0], aTriNodes[1], aTriNodes[2]);
|
||||
if (IntersectTriLine (aLoc, aDir,
|
||||
theTri->Node (aTriNodes[0]).XYZ(),
|
||||
theTri->Node (aTriNodes[1]).XYZ(),
|
||||
theTri->Node (aTriNodes[2]).XYZ(),
|
||||
aParam))
|
||||
{
|
||||
if (aParam > aConf)
|
||||
{
|
||||
if (theIsClosest)
|
||||
{
|
||||
if (aParam < aResult)
|
||||
{
|
||||
aResult = aParam;
|
||||
theTriangle = aTri;
|
||||
}
|
||||
}
|
||||
else if (aParam > aResult)
|
||||
{
|
||||
aResult = aParam;
|
||||
theTriangle = aTri;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (aConf < aResult && aResult < RealLast())
|
||||
{
|
||||
theDistance = aResult;
|
||||
return Standard_True;
|
||||
}
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//! Calculate the minor of the given matrix, defined by the columns specified by values c1, c2, c3.
|
||||
static double Determinant (const double a[3][4],
|
||||
const int c1,
|
||||
const int c2,
|
||||
const int c3)
|
||||
{
|
||||
return a[0][c1]*a[1][c2]*a[2][c3] +
|
||||
a[0][c2]*a[1][c3]*a[2][c1] +
|
||||
a[0][c3]*a[1][c1]*a[2][c2] -
|
||||
a[0][c3]*a[1][c2]*a[2][c1] -
|
||||
a[0][c2]*a[1][c1]*a[2][c3] -
|
||||
a[0][c1]*a[1][c3]*a[2][c2];
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IntersectTriLine
|
||||
//purpose : Intersect a triangle with a line
|
||||
//=======================================================================
|
||||
Standard_Integer Poly::IntersectTriLine (const gp_XYZ& theStart,
|
||||
const gp_Dir& theDir,
|
||||
const gp_XYZ& theV0,
|
||||
const gp_XYZ& theV1,
|
||||
const gp_XYZ& theV2,
|
||||
Standard_Real& theParam)
|
||||
{
|
||||
int aRes = 0;
|
||||
const double aConf = 1E-15;
|
||||
|
||||
const double aMat34[3][4] =
|
||||
{
|
||||
{ -theDir.X(),
|
||||
theV1.X() - theV0.X(), theV2.X() - theV0.X(), theStart.X() - theV0.X() },
|
||||
{ -theDir.Y(),
|
||||
theV1.Y() - theV0.Y(), theV2.Y() - theV0.Y(), theStart.Y() - theV0.Y() },
|
||||
{ -theDir.Z(),
|
||||
theV1.Z() - theV0.Z(), theV2.Z() - theV0.Z(), theStart.Z() - theV0.Z() }
|
||||
};
|
||||
|
||||
const double aD = Determinant (aMat34, 0, 1, 2);
|
||||
const double aDt = Determinant (aMat34, 3, 1, 2);
|
||||
if (aD > aConf)
|
||||
{
|
||||
const double aDa = Determinant (aMat34, 0, 3, 2);
|
||||
if (aDa > -aConf)
|
||||
{
|
||||
const double aDb = Determinant (aMat34, 0, 1, 3);
|
||||
aRes = ((aDb > -aConf) && (aDa + aDb <= aD + aConf));
|
||||
}
|
||||
}
|
||||
else if (aD < -aConf)
|
||||
{
|
||||
const double aDa = Determinant (aMat34, 0, 3, 2);
|
||||
if (aDa < aConf)
|
||||
{
|
||||
const double aDb = Determinant (aMat34, 0, 1, 3);
|
||||
aRes = ((aDb < aConf) && (aDa + aDb >= aD - aConf));
|
||||
}
|
||||
}
|
||||
if (aRes != 0)
|
||||
{
|
||||
theParam = aDt / aD;
|
||||
}
|
||||
|
||||
return aRes;
|
||||
}
|
||||
|
@ -125,6 +125,33 @@ public:
|
||||
//! point is inside).
|
||||
Standard_EXPORT static Standard_Real PointOnTriangle (const gp_XY& P1, const gp_XY& P2, const gp_XY& P3, const gp_XY& P, gp_XY& UV);
|
||||
|
||||
//! Computes the intersection between axis and triangulation.
|
||||
//! @param theTri [in] input triangulation
|
||||
//! @param theAxis [in] intersecting ray
|
||||
//! @param theIsClosest [in] finds the closest intersection when TRUE, finds the farthest otherwise
|
||||
//! @param theTriangle [out] intersected triangle
|
||||
//! @param theDistance [out] distance along ray to intersection point
|
||||
//! @return TRUE if intersection takes place, FALSE otherwise.
|
||||
Standard_EXPORT static Standard_Boolean Intersect (const Handle(Poly_Triangulation)& theTri,
|
||||
const gp_Ax1& theAxis,
|
||||
const Standard_Boolean theIsClosest,
|
||||
Poly_Triangle& theTriangle,
|
||||
Standard_Real& theDistance);
|
||||
|
||||
//! Computes the intersection between a triangle defined by three vertexes and a line.
|
||||
//! @param theStart [in] picking ray origin
|
||||
//! @param theDir [in] picking ray direction
|
||||
//! @param theV0 [in] first triangle node
|
||||
//! @param theV1 [in] second triangle node
|
||||
//! @param theV2 [in] third triangle node
|
||||
//! @param theParam [out] param on line of the intersection point
|
||||
//! @return 1 if intersection was found, 0 otherwise.
|
||||
Standard_EXPORT static Standard_Integer IntersectTriLine (const gp_XYZ& theStart,
|
||||
const gp_Dir& theDir,
|
||||
const gp_XYZ& theV0,
|
||||
const gp_XYZ& theV1,
|
||||
const gp_XYZ& theV2,
|
||||
Standard_Real& theParam);
|
||||
|
||||
//! Returns area and perimeter of 2D-polygon given by its vertices.
|
||||
//! theArea will be negative if the polygon is bypassed clockwise
|
||||
@ -169,18 +196,8 @@ public:
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
|
||||
|
||||
friend class Poly_Triangle;
|
||||
friend class Poly_Triangulation;
|
||||
friend class Poly_Polygon3D;
|
||||
@ -190,10 +207,4 @@ friend class Poly_Connect;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // _Poly_HeaderFile
|
||||
|
@ -222,34 +222,42 @@ Standard_Boolean Poly_CoherentTriangulation::RemoveDegenerated
|
||||
const Standard_Integer ip1(aTri.Node(ind[i+1]));
|
||||
|
||||
// Disconnect from both neighbours
|
||||
Poly_CoherentTriangle * pTriConn[2] = {
|
||||
const_cast<Poly_CoherentTriangle *>(aTri.GetConnectedTri(ind[i-1])),
|
||||
const_cast<Poly_CoherentTriangle *>(aTri.GetConnectedTri(ind[i+1]))
|
||||
};
|
||||
RemoveTriangle(aTri);
|
||||
|
||||
// Reconnect all triangles from Node(ind[i+1]) to Node(ind[i-1])
|
||||
Poly_CoherentTriPtr::Iterator anIterConn =
|
||||
pNode[ind[i+1]]->TriangleIterator();
|
||||
for (; anIterConn.More(); anIterConn.Next()) {
|
||||
for (;;)
|
||||
{
|
||||
Poly_CoherentTriPtr::Iterator anIterConn = pNode[ind[i+1]]->TriangleIterator();
|
||||
if (!anIterConn.More())
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
Poly_CoherentTriangle& aTriConn = anIterConn.ChangeValue();
|
||||
if (&aTriConn != &aTri) {
|
||||
if (aTriConn.Node(0) == ip1)
|
||||
aTriConn.myNodes[0] = im1;
|
||||
else if (aTriConn.Node(1) == ip1)
|
||||
aTriConn.myNodes[1] = im1;
|
||||
else if (aTriConn.Node(2) == ip1)
|
||||
aTriConn.myNodes[2] = im1;
|
||||
pNode[ind[i+1]]->RemoveTriangle(aTriConn, myAlloc);
|
||||
pNode[ind[i-1]]->AddTriangle(aTriConn, myAlloc);
|
||||
Standard_Integer aNewTriConn[] = {aTriConn.Node(0), aTriConn.Node(1), aTriConn.Node(2)};
|
||||
if (&aTriConn != &aTri)
|
||||
{
|
||||
if (aNewTriConn[0] == ip1)
|
||||
aNewTriConn[0] = im1;
|
||||
else if (aNewTriConn[1] == ip1)
|
||||
aNewTriConn[1] = im1;
|
||||
else if (aNewTriConn[2] == ip1)
|
||||
aNewTriConn[2] = im1;
|
||||
|
||||
RemoveTriangle (aTriConn);
|
||||
AddTriangle (aNewTriConn[0], aNewTriConn[1], aNewTriConn[2]);
|
||||
}
|
||||
else
|
||||
{
|
||||
anIterConn.Next();
|
||||
if (!anIterConn.More())
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Set the new mutual connection between the neighbours of the
|
||||
// removed degenerated triangle.
|
||||
if (pTriConn[0] && pTriConn[1]) {
|
||||
pTriConn[0]->SetConnection(* pTriConn[1]);
|
||||
}
|
||||
if (pLstRemovedNode) {
|
||||
if (pLstRemovedNode)
|
||||
{
|
||||
pLstRemovedNode->Append(TwoIntegers(ip1, im1));
|
||||
}
|
||||
aResult = Standard_True;
|
||||
@ -440,10 +448,6 @@ Standard_Boolean Poly_CoherentTriangulation::RemoveTriangle
|
||||
for (Standard_Integer i = 0; i < 3; i++) {
|
||||
if (theTriangle.Node(i) >= 0) {
|
||||
Poly_CoherentNode& aNode = myNodes(theTriangle.Node(i));
|
||||
if (aNode.RemoveTriangle(theTriangle, myAlloc)) {
|
||||
theTriangle.myNodes[i] = -1;
|
||||
aResult = Standard_True;
|
||||
}
|
||||
// If Links exist in this Triangulation, remove or update a Link
|
||||
Poly_CoherentLink * aLink =
|
||||
const_cast<Poly_CoherentLink *>(theTriangle.mypLink[i]);
|
||||
@ -456,10 +460,10 @@ Standard_Boolean Poly_CoherentTriangulation::RemoveTriangle
|
||||
for (Standard_Integer j = 0; j < 3; j++) {
|
||||
if (aLink == pTriOpp->GetLink(j)) {
|
||||
if (aLink->OppositeNode(0) == theTriangle.Node(i)) {
|
||||
aLink->myOppositeNode[0] = 0L;
|
||||
aLink->myOppositeNode[0] = -1;
|
||||
toRemoveLink = Standard_False;
|
||||
} else if (aLink->OppositeNode(1) == theTriangle.Node(i)) {
|
||||
aLink->myOppositeNode[1] = 0L;
|
||||
aLink->myOppositeNode[1] = -1;
|
||||
toRemoveLink = Standard_False;
|
||||
}
|
||||
break;
|
||||
@ -469,6 +473,11 @@ Standard_Boolean Poly_CoherentTriangulation::RemoveTriangle
|
||||
if (toRemoveLink)
|
||||
RemoveLink(* aLink);
|
||||
}
|
||||
if (aNode.RemoveTriangle(theTriangle, myAlloc))
|
||||
{
|
||||
theTriangle.myNodes[i] = -1;
|
||||
aResult = Standard_True;
|
||||
}
|
||||
}
|
||||
theTriangle.RemoveConnection(i);
|
||||
}
|
||||
@ -540,7 +549,6 @@ Standard_Boolean Poly_CoherentTriangulation::ReplaceNodes
|
||||
toAddLink = Standard_False;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user