1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00

0024708: Convertation of the generic classes to the non-generic. Part 2

Generic classes from "AppParCurves" package:
    "AppDef_SmoothCriterion", "AppDef_LinearCriteria" and "AppDef_Variational" moved to the corresponding non-generic classes "AppDef_SmoothCriterion", "AppDef_LinearCriteria" and "AppDef_Variational" to "AppDef" package. Also several "*.cxx" files of "AppDef_Variational" class merged to one ".cxx".
Generic class from "IntImp" package:
    "IntImp_ZerCOnSSParFunc" moved to the corresponding non-generic class "IntPatch_CSFunction" to "IntPatch" package.
Next unused generic classes were removed:

- IntCurveSurface_SurfaceTool
- Intf_InterferencePolygon3d
And some other minor changes.
This commit is contained in:
dln 2014-03-05 18:22:43 +04:00 committed by abv
parent 84c71f29e4
commit f62de37212
37 changed files with 3482 additions and 4806 deletions

View File

@ -33,7 +33,7 @@
#include <StdFail_NotDone.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppDef_Variational.hxx>
static Standard_Boolean scal = 1;
#ifdef DEB
@ -466,7 +466,7 @@ void AppBlend_AppSurf::InternalPerform(const Handle(TheLine)& Lin,
TABofCC->ChangeValue(1).SetConstraint(Cfirst);
TABofCC->ChangeValue(NbPoint).SetConstraint(Clast);
AppDef_TheVariational Variation(multL, 1, NbPoint, TABofCC);
AppDef_Variational Variation(multL, 1, NbPoint, TABofCC);
//===================================
Standard_Integer theMaxSegments = 1000;

View File

@ -37,7 +37,7 @@ package AppDef
-- Note: a CurvaturePoint is also a PassPoint and a TangencyPoint.
-- A TangencyPoint is also a PassPoint.
uses AppParCurves, Approx, gp, TColgp, TCollection, Standard, MMgt
uses AppParCurves, Approx, gp, TColgp, TCollection, Standard, MMgt, math, FEmTool, TColStd, GeomAbs, PLib
is
@ -55,7 +55,13 @@ class MyLineTool;
-- AppParCurves and Approx. For Approx, the tool will not addd points
-- if the algorithms want some.
deferred class SmoothCriterion;
class LinearCriteria;
class Variational;
---Purpose: computes the approximation of a Multiline by
-- Variational optimization.
--- Classes instanciees:
@ -65,9 +71,6 @@ class TheLeastSquares instantiates LeastSquare from AppParCurves
(MultiLine from AppDef,
MyLineTool from AppDef);
class TheVariational instantiates Variational from AppParCurves
(MultiLine from AppDef,
MyLineTool from AppDef);
class TheResol instantiates ResolConstraint from AppParCurves
(MultiLine from AppDef,

View File

@ -14,10 +14,7 @@
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
generic class LinearCriteria from AppParCurves
(MultiLine as any;
ToolLine as any) -- as ToolLine(MultiLine)
inherits SmoothCriterion from AppParCurves
class LinearCriteria from AppDef inherits SmoothCriterion from AppDef
---Purpose: defined an Linear Criteria to used in variational
-- Smoothing of points.
@ -31,7 +28,9 @@ uses
ElementaryCriterion from FEmTool,
HArray2OfInteger from TColStd,
HArray1OfReal from TColStd,
Array1OfReal from TColStd
Array1OfReal from TColStd,
MultiLine from AppDef,
MyLineTool from AppDef
raises
NotImplemented,
@ -40,7 +39,7 @@ raises
is
Create(SSP: MultiLine;
Create(SSP: MultiLine from AppDef;
FirstPoint, LastPoint: Integer) returns LinearCriteria;
SetParameters(me : mutable; Parameters : HArray1OfReal);
@ -114,7 +113,7 @@ is
BuildCache(me: mutable; E : Integer) is private;
fields
mySSP : MultiLine;
mySSP : MultiLine from AppDef;
myParameters : HArray1OfReal;
myCache : HArray1OfReal;
myCriteria : ElementaryCriterion from FEmTool[3];
@ -129,13 +128,3 @@ IF, IL : Integer;
end LinearCriteria;

View File

@ -14,6 +14,8 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <AppDef_LinearCriteria.ixx>
#include <PLib_Base.hxx>
#include <PLib_JacobiPolynomial.hxx>
#include <PLib_HermitJacobi.hxx>
@ -28,6 +30,7 @@
#include <gp_Pnt.hxx>
#include <math_Matrix.hxx>
#include <math_Gauss.hxx>
#include <AppDef_MyLineTool.hxx>
static Standard_Integer order(const Handle(PLib_Base)& B)
{
@ -39,7 +42,7 @@ static Standard_Integer order(const Handle(PLib_Base)& B)
//function :
//purpose :
//=======================================================================
AppParCurves_LinearCriteria::AppParCurves_LinearCriteria(const MultiLine& SSP,
AppDef_LinearCriteria::AppDef_LinearCriteria(const AppDef_MultiLine& SSP,
const Standard_Integer FirstPoint,
const Standard_Integer LastPoint):
mySSP(SSP),
@ -55,7 +58,7 @@ AppParCurves_LinearCriteria::AppParCurves_LinearCriteria(const MultiLine& SSP,
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::SetParameters(const Handle(TColStd_HArray1OfReal)& Parameters)
void AppDef_LinearCriteria::SetParameters(const Handle(TColStd_HArray1OfReal)& Parameters)
{
myParameters = Parameters;
myE = 0; // Cache become invalid.
@ -68,7 +71,7 @@ void AppParCurves_LinearCriteria::SetParameters(const Handle(TColStd_HArray1OfRe
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::SetCurve(const Handle(FEmTool_Curve)& C)
void AppDef_LinearCriteria::SetCurve(const Handle(FEmTool_Curve)& C)
{
if(myCurve.IsNull()) {
@ -147,7 +150,7 @@ void AppParCurves_LinearCriteria::SetCurve(const Handle(FEmTool_Curve)& C)
//function : GetCurve
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::GetCurve(Handle(FEmTool_Curve)& C) const
void AppDef_LinearCriteria::GetCurve(Handle(FEmTool_Curve)& C) const
{
C = myCurve;
}
@ -157,7 +160,7 @@ void AppParCurves_LinearCriteria::GetCurve(Handle(FEmTool_Curve)& C) const
//function : SetEstimation
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::SetEstimation(const Standard_Real E1,
void AppDef_LinearCriteria::SetEstimation(const Standard_Real E1,
const Standard_Real E2,
const Standard_Real E3)
{
@ -166,7 +169,7 @@ void AppParCurves_LinearCriteria::SetEstimation(const Standard_Real E1,
myEstimation[2] = E3;
}
Standard_Real& AppParCurves_LinearCriteria::EstLength()
Standard_Real& AppDef_LinearCriteria::EstLength()
{
return myLength;
}
@ -176,7 +179,7 @@ Standard_Real& AppParCurves_LinearCriteria::EstLength()
//function : GetEstimation
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::GetEstimation(Standard_Real& E1,
void AppDef_LinearCriteria::GetEstimation(Standard_Real& E1,
Standard_Real& E2,
Standard_Real& E3) const
{
@ -191,9 +194,9 @@ void AppParCurves_LinearCriteria::GetEstimation(Standard_Real& E1,
//function : AssemblyTable
//purpose :
//=======================================================================
Handle(FEmTool_HAssemblyTable) AppParCurves_LinearCriteria::AssemblyTable() const
Handle(FEmTool_HAssemblyTable) AppDef_LinearCriteria::AssemblyTable() const
{
if(myCurve.IsNull()) Standard_DomainError::Raise("AppParCurves_LinearCriteria::AssemblyTable");
if(myCurve.IsNull()) Standard_DomainError::Raise("AppDef_LinearCriteria::AssemblyTable");
Standard_Integer NbDim = myCurve->Dimension(),
NbElm = myCurve->NbElements(),
@ -266,9 +269,9 @@ Handle(FEmTool_HAssemblyTable) AppParCurves_LinearCriteria::AssemblyTable() cons
//function :
//purpose :
//=======================================================================
Handle(TColStd_HArray2OfInteger) AppParCurves_LinearCriteria::DependenceTable() const
Handle(TColStd_HArray2OfInteger) AppDef_LinearCriteria::DependenceTable() const
{
if(myCurve.IsNull()) Standard_DomainError::Raise("AppParCurves_LinearCriteria::DependenceTable");
if(myCurve.IsNull()) Standard_DomainError::Raise("AppDef_LinearCriteria::DependenceTable");
Standard_Integer Dim = myCurve->Dimension();
@ -286,14 +289,14 @@ Handle(TColStd_HArray2OfInteger) AppParCurves_LinearCriteria::DependenceTable()
//purpose :
//=======================================================================
Standard_Integer AppParCurves_LinearCriteria::QualityValues(const Standard_Real J1min,
Standard_Integer AppDef_LinearCriteria::QualityValues(const Standard_Real J1min,
const Standard_Real J2min,
const Standard_Real J3min,
Standard_Real& J1,
Standard_Real& J2,
Standard_Real& J3)
{
if(myCurve.IsNull()) Standard_DomainError::Raise("AppParCurves_LinearCriteria::QualityValues");
if(myCurve.IsNull()) Standard_DomainError::Raise("AppDef_LinearCriteria::QualityValues");
Standard_Integer NbDim = myCurve->Dimension(),
NbElm = myCurve->NbElements();
@ -399,17 +402,17 @@ Standard_Integer AppParCurves_LinearCriteria::QualityValues(const Standard_Real
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::ErrorValues(Standard_Real& MaxError,
void AppDef_LinearCriteria::ErrorValues(Standard_Real& MaxError,
Standard_Real& QuadraticError,
Standard_Real& AverageError)
{
if(myCurve.IsNull()) Standard_DomainError::Raise("AppParCurves_LinearCriteria::ErrorValues");
if(myCurve.IsNull()) Standard_DomainError::Raise("AppDef_LinearCriteria::ErrorValues");
Standard_Integer NbDim = myCurve->Dimension();
Standard_Integer myNbP2d = ToolLine::NbP2d(mySSP), myNbP3d = ToolLine::NbP3d(mySSP);
Standard_Integer myNbP2d = AppDef_MyLineTool::NbP2d(mySSP), myNbP3d = AppDef_MyLineTool::NbP3d(mySSP);
if(NbDim != (2*myNbP2d + 3*myNbP3d)) Standard_DomainError::Raise("AppParCurves_LinearCriteria::ErrorValues");
if(NbDim != (2*myNbP2d + 3*myNbP3d)) Standard_DomainError::Raise("AppDef_LinearCriteria::ErrorValues");
TColgp_Array1OfPnt TabP3d(1, Max(1,myNbP3d));
TColgp_Array1OfPnt2d TabP2d(1, Max(1,myNbP2d));
@ -428,7 +431,7 @@ void AppParCurves_LinearCriteria::ErrorValues(Standard_Real& MaxError,
c0 = 0;
ToolLine::Value(mySSP, i, TabP3d);
AppDef_MyLineTool::Value(mySSP, i, TabP3d);
for(ipnt = 1; ipnt <= myNbP3d; ipnt++) {
P3d.SetCoord(BasePoint(c0+1), BasePoint(c0+2), BasePoint(c0+3));
SqrDist = P3d.SquareDistance(TabP3d(ipnt)); Dist = Sqrt(SqrDist);
@ -438,8 +441,8 @@ void AppParCurves_LinearCriteria::ErrorValues(Standard_Real& MaxError,
c0 += 3;
}
if(myNbP3d == 0) ToolLine::Value(mySSP, i, TabP2d);
else ToolLine::Value(mySSP, i, TabP3d, TabP2d);
if(myNbP3d == 0) AppDef_MyLineTool::Value(mySSP, i, TabP2d);
else AppDef_MyLineTool::Value(mySSP, i, TabP3d, TabP2d);
for(ipnt = 1; ipnt <= myNbP2d; ipnt++) {
P2d.SetCoord(BasePoint(c0+1), BasePoint(c0+2));
SqrDist = P2d.SquareDistance(TabP2d(ipnt)); Dist = Sqrt(SqrDist);
@ -457,15 +460,15 @@ void AppParCurves_LinearCriteria::ErrorValues(Standard_Real& MaxError,
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::Hessian(const Standard_Integer Element,
void AppDef_LinearCriteria::Hessian(const Standard_Integer Element,
const Standard_Integer Dimension1,
const Standard_Integer Dimension2,
math_Matrix& H)
{
if(myCurve.IsNull()) Standard_DomainError::Raise("AppParCurves_LinearCriteria::Hessian");
if(myCurve.IsNull()) Standard_DomainError::Raise("AppDef_LinearCriteria::Hessian");
if(DependenceTable()->Value(Dimension1, Dimension2) == 0)
Standard_DomainError::Raise("AppParCurves_LinearCriteria::Hessian");
Standard_DomainError::Raise("AppDef_LinearCriteria::Hessian");
Standard_Integer //NbDim = myCurve->Dimension(),
MxDeg = myCurve->Base()->WorkDegree(),
@ -554,17 +557,17 @@ void AppParCurves_LinearCriteria::Hessian(const Standard_Integer Element,
//function : Gradient
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::Gradient(const Standard_Integer Element,
void AppDef_LinearCriteria::Gradient(const Standard_Integer Element,
const Standard_Integer Dimension,
math_Vector& G)
{
if(myCurve.IsNull())
Standard_DomainError::Raise("AppParCurves_LinearCriteria::ErrorValues");
Standard_DomainError::Raise("AppDef_LinearCriteria::ErrorValues");
Standard_Integer myNbP2d = ToolLine::NbP2d(mySSP), myNbP3d = ToolLine::NbP3d(mySSP);
Standard_Integer myNbP2d = AppDef_MyLineTool::NbP2d(mySSP), myNbP3d = AppDef_MyLineTool::NbP3d(mySSP);
if(Dimension > (2*myNbP2d + 3*myNbP3d))
Standard_DomainError::Raise("AppParCurves_LinearCriteria::ErrorValues");
Standard_DomainError::Raise("AppDef_LinearCriteria::ErrorValues");
TColgp_Array1OfPnt TabP3d(1, Max(1,myNbP3d));
TColgp_Array1OfPnt2d TabP2d(1, Max(1,myNbP2d));
@ -611,12 +614,12 @@ void AppParCurves_LinearCriteria::Gradient(const Standard_Integer Element,
for(ii=1,ipnt = IF; ipnt <= IL; ipnt++) {
if(In3d) {
ToolLine::Value(mySSP, ipnt, TabP3d);
AppDef_MyLineTool::Value(mySSP, ipnt, TabP3d);
Pnt = TabP3d(IndPnt).Coord(IndCrd);
}
else {
if(myNbP3d == 0) ToolLine::Value(mySSP, ipnt, TabP2d);
else ToolLine::Value(mySSP, ipnt, TabP3d, TabP2d);
if(myNbP3d == 0) AppDef_MyLineTool::Value(mySSP, ipnt, TabP2d);
else AppDef_MyLineTool::Value(mySSP, ipnt, TabP3d, TabP2d);
Pnt = TabP2d(IndPnt).Coord(IndCrd);
}
@ -640,7 +643,7 @@ void AppParCurves_LinearCriteria::Gradient(const Standard_Integer Element,
//function : InputVector
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::InputVector(const math_Vector& X,
void AppDef_LinearCriteria::InputVector(const math_Vector& X,
const Handle(FEmTool_HAssemblyTable)& AssTable)
{
Standard_Integer NbDim = myCurve->Dimension(),
@ -669,16 +672,16 @@ void AppParCurves_LinearCriteria::InputVector(const math_Vector& X,
//function : SetWeight
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::SetWeight(const Standard_Real QuadraticWeight,
void AppDef_LinearCriteria::SetWeight(const Standard_Real QuadraticWeight,
const Standard_Real QualityWeight,
const Standard_Real percentJ1,
const Standard_Real percentJ2,
const Standard_Real percentJ3)
{
if (QuadraticWeight < 0. || QualityWeight < 0.)
Standard_DomainError::Raise("AppParCurves_LinearCriteria::SetWeight");
Standard_DomainError::Raise("AppDef_LinearCriteria::SetWeight");
if (percentJ1 < 0. || percentJ2 < 0. || percentJ3 < 0.)
Standard_DomainError::Raise("AppParCurves_LinearCriteria::SetWeight");
Standard_DomainError::Raise("AppDef_LinearCriteria::SetWeight");
myQuadraticWeight = QuadraticWeight; myQualityWeight = QualityWeight;
@ -693,7 +696,7 @@ void AppParCurves_LinearCriteria::SetWeight(const Standard_Real QuadraticWeight,
//function : GetWeight
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::GetWeight(Standard_Real& QuadraticWeight,
void AppDef_LinearCriteria::GetWeight(Standard_Real& QuadraticWeight,
Standard_Real& QualityWeight) const
{
@ -705,7 +708,7 @@ void AppParCurves_LinearCriteria::GetWeight(Standard_Real& QuadraticWeight,
//function : SetWeight
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::SetWeight(const TColStd_Array1OfReal& Weight)
void AppDef_LinearCriteria::SetWeight(const TColStd_Array1OfReal& Weight)
{
myPntWeight = Weight;
}
@ -715,7 +718,7 @@ void AppParCurves_LinearCriteria::SetWeight(const TColStd_Array1OfReal& Weight)
//function : BuildCache
//purpose :
//=======================================================================
void AppParCurves_LinearCriteria::BuildCache(const Standard_Integer Element)
void AppDef_LinearCriteria::BuildCache(const Standard_Integer Element)
{
Standard_Real t;
Standard_Real UFirst, ULast;

View File

@ -14,7 +14,7 @@
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
deferred class SmoothCriterion from AppParCurves
deferred class SmoothCriterion from AppDef
inherits TShared from MMgt
---Purpose: defined criterion to smooth points in curve
@ -107,13 +107,3 @@ is
end SmoothCriterion;

View File

@ -14,4 +14,4 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <AppParCurves_SmoothCriterion.ixx>
#include <AppDef_SmoothCriterion.ixx>

View File

@ -17,9 +17,7 @@
-- Igor FEOKTISTOV - correction 14/12/98
generic class Variational from AppParCurves
(MultiLine as any;
ToolLine as any) -- as ToolLine(MultiLine)
class Variational from AppDef
---Purpose: This class is used to smooth N points with constraints
@ -35,11 +33,13 @@ uses Matrix from math,
Shape from GeomAbs,
HArray1OfConstraintCouple from AppParCurves,
MultiBSpCurve from AppParCurves,
SmoothCriterion from AppParCurves,
SmoothCriterion from AppDef,
Curve from FEmTool,
Assembly from FEmTool,
Base from PLib,
Constraint from AppParCurves
Constraint from AppParCurves,
MultiLine from AppDef,
MyLineTool from AppDef
raises OutOfRange from Standard,
DimensionError from Standard,
@ -48,12 +48,9 @@ raises OutOfRange from Standard,
NotDone from StdFail,
VectorWithNullMagnitude from gp
class MyCriterion instantiates LinearCriteria from AppParCurves
(MultiLine, ToolLine);
is
Create(SSP: MultiLine;
Create(SSP: MultiLine from AppDef;
FirstPoint, LastPoint: Integer;
TheConstraints: HArray1OfConstraintCouple;
MaxDegree: Integer = 14;
@ -74,10 +71,10 @@ is
-- is negative
-- The problem is over-constrained.
--
-- Limitation : The MultiLine has to be composed by
-- Limitation : The MultiLine from AppDef has to be composed by
-- only one Line ( Dimension 2 or 3).
returns Variational from AppParCurves;
returns Variational from AppDef;
Approximate(me : in out)
@ -110,7 +107,7 @@ is
Value(me)
---Purpose: returns all the BSpline curves approximating the
-- MultiLine SSP after minimization of the parameter.
-- MultiLine from AppDef SSP after minimization of the parameter.
returns MultiBSpCurve from AppParCurves
raises NotDone from StdFail
@ -149,7 +146,7 @@ is
AverageError(me)
---Purpose: returns the average error between
-- the MultiLine and the approximation.
-- the MultiLine from AppDef and the approximation.
returns Real
raises NotDone from StdFail
@ -314,19 +311,19 @@ is
-- ====================== The Private methods ======================
TheMotor(me : in out;
J : in out SmoothCriterion from AppParCurves;
J : in out SmoothCriterion from AppDef;
WQuadratic, WQuality : Real;
TheCurve : in out Curve from FEmTool;
Ecarts : out Array1OfReal from TColStd) is private;
Adjusting(me : in out;
J : in out SmoothCriterion from AppParCurves;
J : in out SmoothCriterion from AppDef;
WQuadratic, WQuality : in out Real;
TheCurve : in out Curve from FEmTool;
Ecarts : out Array1OfReal from TColStd) is private;
Optimization(me;
J : in out SmoothCriterion from AppParCurves;
J : in out SmoothCriterion from AppDef;
A : in out Assembly from FEmTool;
ToAssemble : in Boolean;
EpsDeg : Real;
@ -395,7 +392,7 @@ is
fields
-- Description of the points to smooth and the constraints
mySSP : MultiLine;
mySSP : MultiLine from AppDef;
myNbP3d : Integer;
myNbP2d : Integer;
myDimension : Integer;
@ -426,7 +423,7 @@ myWithMinMax : Boolean;
myWithCutting: Boolean;
myPercent : Real[3];
myCriterium : Real[4];
mySmoothCriterion : SmoothCriterion from AppParCurves;
mySmoothCriterion : SmoothCriterion from AppDef;
-- output
myParameters : HArray1OfReal;

File diff suppressed because it is too large Load Diff

View File

@ -21,8 +21,7 @@ package AppParCurves
-- described by the tool MLineTool.
-- The result of the approximation will be a MultiCurve.
uses math, FEmTool, gp, TColgp, StdFail, TColStd, TCollection, Standard, MMgt, GeomAbs,
PLib
uses math, FEmTool, gp, TColgp, StdFail, TColStd, TCollection, Standard, MMgt, GeomAbs, PLib
is
@ -83,18 +82,6 @@ is
-- The Result is a Bspline set.
deferred class SmoothCriterion;
generic class LinearCriteria;
class MyCriterion;
---Level: Internal
generic class Variational;
---Purpose: computes the approximation of a Multiline by
-- Variational optimization.
--- instantiate classes:
--
@ -105,7 +92,6 @@ is
(ConstraintCouple,Array1OfConstraintCouple);
class Array1OfMultiPoint instantiates Array1 from TCollection
(MultiPoint);

File diff suppressed because it is too large Load Diff

View File

@ -1,362 +0,0 @@
// Created on: 1997-09-17
// Created by: Philippe MANGIN /Igor Feoktistov (1998)
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <SortTools_StraightInsertionSortOfReal.hxx>
#include <TCollection_CompareOfReal.hxx>
#include <TColStd_HArray2OfInteger.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_Array2OfInteger.hxx>
#include <FEmTool_Assembly.hxx>
#include <FEmTool_AssemblyTable.hxx>
#include <FEmTool_Curve.hxx>
//====================== Private Methodes =============================//
//=======================================================================
//function : TheMotor
//purpose : Smoothing's motor like STRIM routine "MOTLIS"
//=======================================================================
void AppParCurves_Variational::TheMotor(
Handle(AppParCurves_SmoothCriterion)& J,
// const Standard_Real WQuadratic,
const Standard_Real ,
const Standard_Real WQuality,
Handle(FEmTool_Curve)& TheCurve,
TColStd_Array1OfReal& Ecarts)
{
// ...
const Standard_Real BigValue = 1.e37, SmallValue = 1.e-6, SmallestValue = 1.e-9;
// SortTools_StraightInsertionSortOfReal Sort;
TCollection_CompareOfReal CompReal;
Handle(TColStd_HArray1OfReal) CurrentTi, NewTi, OldTi;
Handle(TColStd_HArray2OfInteger) Dependence;
Standard_Boolean lestim, lconst, ToOptim, iscut;
Standard_Boolean isnear = Standard_False, again = Standard_True;
Standard_Integer NbEst, ICDANA, NumPnt, Iter;
Standard_Integer MaxNbEst =5;
Standard_Real VOCRI[3] = {BigValue, BigValue, BigValue}, EROLD = BigValue,
VALCRI[3], ERRMAX = BigValue, ERRMOY, ERRQUA;
Standard_Real CBLONG, LNOLD;
Standard_Integer NbrPnt = myLastPoint - myFirstPoint + 1;
Standard_Integer NbrConstraint = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
Handle(FEmTool_Curve) CCurrent, COld, CNew;
Standard_Real EpsLength = SmallValue;
Standard_Real EpsDeg;
Standard_Real e1, e2, e3;
Standard_Real J1min, J2min, J3min;
Standard_Integer iprog;
// (0) Init
J->GetEstimation(e1, e2, e3);
J1min = 1.e-8; J2min = J3min = (e1 + 1.e-8) * 1.e-6;
if(e1 < J1min) e1 = J1min;// Like in
if(e2 < J2min) e2 = J2min;// MOTLIS
if(e3 < J3min) e3 = J3min;
J->SetEstimation(e1, e2, e3);
CCurrent = TheCurve;
CurrentTi = new TColStd_HArray1OfReal(1, myParameters->Length());
CurrentTi->ChangeArray1() = myParameters->Array1();
OldTi = new (TColStd_HArray1OfReal) (1, CurrentTi->Length());
OldTi->ChangeArray1() = CurrentTi->Array1();
COld = CCurrent;
LNOLD = CBLONG = J->EstLength();
Dependence = J->DependenceTable();
J->SetCurve(CCurrent);
FEmTool_Assembly * TheAssembly =
new FEmTool_Assembly (Dependence->Array2(), J->AssemblyTable());
//============ Optimization ============================
// Standard_Integer inagain = 0;
while (again) {
// (1) Loop Optimization / Estimation
lestim = Standard_True;
lconst = Standard_True;
NbEst = 0;
J->SetCurve(CCurrent);
while(lestim) {
// (1.1) Curve's Optimization.
EpsLength = SmallValue * CBLONG / NbrPnt;
CNew = new (FEmTool_Curve) (CCurrent->Dimension(),
CCurrent->NbElements(), CCurrent->Base(), EpsLength);
CNew->Knots() = CCurrent->Knots();
J->SetParameters(CurrentTi);
EpsDeg = Min(WQuality * .1, CBLONG * .001);
Optimization(J, *TheAssembly, lconst, EpsDeg, CNew, CurrentTi->Array1());
lconst = Standard_False;
// (1.2) calcul des criteres de qualites et amelioration
// des estimation.
ICDANA = J->QualityValues(J1min, J2min, J3min,
VALCRI[0], VALCRI[1], VALCRI[2]);
if(ICDANA > 0) lconst = Standard_True;
J->ErrorValues(ERRMAX, ERRQUA, ERRMOY);
isnear = ((Sqrt(ERRQUA / NbrPnt) < 2*WQuality) &&
(myNbIterations > 1));
// (1.3) Optimisation des ti par proj orthogonale
// et calcul de l'erreur aux points.
if (isnear) {
NewTi = new (TColStd_HArray1OfReal) (1, CurrentTi->Length());
Project(CNew, CurrentTi->Array1(),
NewTi->ChangeArray1(),
Ecarts, NumPnt,
ERRMAX, ERRQUA, ERRMOY, 2);
}
else NewTi = CurrentTi;
// (1.4) Progression's test
iprog = 0;
if ((EROLD > WQuality) && (ERRMAX < 0.95*EROLD)) iprog++;
if ((EROLD > WQuality) && (ERRMAX < 0.8*EROLD)) iprog++;
if ((EROLD > WQuality) && (ERRMAX < WQuality)) iprog++;
if ((EROLD > WQuality) && (ERRMAX < 0.99*EROLD)
&& (ERRMAX < 1.1*WQuality)) iprog++;
if ( VALCRI[0] < 0.975 * VOCRI[0]) iprog++;
if ( VALCRI[0] < 0.9 * VOCRI[0]) iprog++;
if ( VALCRI[1] < 0.95 * VOCRI[1]) iprog++;
if ( VALCRI[1] < 0.8 * VOCRI[1]) iprog++;
if ( VALCRI[2] < 0.95 * VOCRI[2]) iprog++;
if ( VALCRI[2] < 0.8 * VOCRI[2]) iprog++;
if ((VOCRI[1]>SmallestValue)&&(VOCRI[2]>SmallestValue)) {
if ((VALCRI[1]/VOCRI[1] + 2*VALCRI[2]/VOCRI[2]) < 2.8) iprog++;
}
if (iprog < 2 && NbEst == 0 ) {
// (1.5) Invalidation of new knots.
VALCRI[0] = VOCRI[0];
VALCRI[1] = VOCRI[1];
VALCRI[2] = VOCRI[2];
ERRMAX = EROLD;
CBLONG = LNOLD;
CCurrent = COld;
CurrentTi = OldTi;
goto L8000; // exit
}
VOCRI[0] = VALCRI[0];
VOCRI[1] = VALCRI[1];
VOCRI[2] = VALCRI[2];
LNOLD = CBLONG;
EROLD = ERRMAX;
CCurrent = CNew;
CurrentTi = NewTi;
// (1.6) Test if the Estimations seems OK, else repeat
NbEst++;
lestim = ( (NbEst<MaxNbEst) && (ICDANA == 2)&& (iprog > 0) );
if (lestim && isnear) {
// (1.7) Optimization of ti by ACR.
// Sort.Sort(CurrentTi->ChangeArray1(), CompReal);
SortTools_StraightInsertionSortOfReal::Sort(CurrentTi->ChangeArray1(), CompReal);
Standard_Integer Decima = 4;
CCurrent->Length(0., 1., CBLONG);
J->EstLength() = CBLONG;
ACR(CCurrent, CurrentTi->ChangeArray1(), Decima);
lconst = Standard_True;
}
}
// (2) loop of parametric / geometric optimization
Iter = 1;
ToOptim = ((Iter < myNbIterations) && (isnear));
while(ToOptim) {
Iter++;
// (2.1) Save curent results
VOCRI[0] = VALCRI[0];
VOCRI[1] = VALCRI[1];
VOCRI[2] = VALCRI[2];
EROLD = ERRMAX;
LNOLD = CBLONG;
COld = CCurrent;
OldTi->ChangeArray1() = CurrentTi->Array1();
// (2.2) Optimization des ti by ACR.
// Sort.Sort(CurrentTi->ChangeArray1(), CompReal);
SortTools_StraightInsertionSortOfReal::Sort(CurrentTi->ChangeArray1(), CompReal);
Standard_Integer Decima = 4;
CCurrent->Length(0., 1., CBLONG);
J->EstLength() = CBLONG;
ACR(CCurrent, CurrentTi->ChangeArray1(), Decima);
lconst = Standard_True;
// (2.3) Optimisation des courbes
EpsLength = SmallValue * CBLONG / NbrPnt;
CNew = new (FEmTool_Curve) (CCurrent->Dimension(),
CCurrent->NbElements(), CCurrent->Base(), EpsLength);
CNew->Knots() = CCurrent->Knots();
J->SetParameters(CurrentTi);
EpsDeg = Min(WQuality * .1, CBLONG * .001);
Optimization(J, *TheAssembly, lconst, EpsDeg, CNew, CurrentTi->Array1());
CCurrent = CNew;
// (2.4) calcul des criteres de qualites et amelioration
// des estimation.
ICDANA = J->QualityValues(J1min, J2min, J3min, VALCRI[0], VALCRI[1], VALCRI[2]);
if(ICDANA > 0) lconst = Standard_True;
J->GetEstimation(e1, e2, e3);
// (2.5) Optimisation des ti par proj orthogonale
NewTi = new (TColStd_HArray1OfReal) (1, CurrentTi->Length());
Project(CCurrent, CurrentTi->Array1(),
NewTi->ChangeArray1(),
Ecarts, NumPnt,
ERRMAX, ERRQUA, ERRMOY, 2);
// (2.6) Test de non regression
Standard_Integer iregre = 0;
if (NbrConstraint < NbrPnt) {
if ( (ERRMAX > WQuality) && (ERRMAX > 1.05*EROLD)) iregre++;
if ( (ERRMAX > WQuality) && (ERRMAX > 2*EROLD)) iregre++;
if ( (EROLD > WQuality) && (ERRMAX <= 0.5*EROLD)) iregre--;
}
Standard_Real E1, E2, E3;
J->GetEstimation(E1, E2, E3);
if ( (VALCRI[0] > E1) && (VALCRI[0] > 1.1*VOCRI[0])) iregre++;
if ( (VALCRI[1] > E2) && (VALCRI[1] > 1.1*VOCRI[1])) iregre++;
if ( (VALCRI[2] > E3) && (VALCRI[2] > 1.1*VOCRI[2])) iregre++;
if (iregre >= 2) {
// if (iregre >= 1) {
// (2.7) on restaure l'iteration precedente
VALCRI[0] = VOCRI[0];
VALCRI[1] = VOCRI[1];
VALCRI[2] = VOCRI[2];
ERRMAX = EROLD;
CBLONG = LNOLD;
CCurrent = COld;
CurrentTi->ChangeArray1() = OldTi->Array1();
ToOptim = Standard_False;
}
else { // Iteration is Ok.
CCurrent = CNew;
CurrentTi = NewTi;
}
if (Iter >= myNbIterations) ToOptim = Standard_False;
}
// (3) Decoupe eventuelle
if ( (CCurrent->NbElements() < myMaxSegment) && myWithCutting ) {
// (3.1) Sauvgarde de l'etat precedent
VOCRI[0] = VALCRI[0];
VOCRI[1] = VALCRI[1];
VOCRI[2] = VALCRI[2];
EROLD = ERRMAX;
COld = CCurrent;
OldTi->ChangeArray1() = CurrentTi->Array1();
// (3.2) On arrange les ti : Trie + recadrage sur (0,1)
// ---> On trie, afin d'assurer l'ordre par la suite.
// Sort.Sort(CurrentTi->ChangeArray1(), CompReal);
SortTools_StraightInsertionSortOfReal::Sort(CurrentTi->ChangeArray1(), CompReal);
if ((CurrentTi->Value(1)!= 0.) ||
(CurrentTi->Value(NbrPnt)!= 1.)) {
Standard_Real t, DelatT =
1.0 /(CurrentTi->Value(NbrPnt)-CurrentTi->Value(1));
for (Standard_Integer ii=2; ii<NbrPnt; ii++) {
t = (CurrentTi->Value(ii)-CurrentTi->Value(1))*DelatT;
CurrentTi->SetValue(ii, t);
}
CurrentTi->SetValue(1, 0.);
CurrentTi->SetValue(NbrPnt, 1.);
}
// (3.3) Insert new Knots
SplitCurve(CCurrent, CurrentTi->Array1(), EpsLength, CNew, iscut);
if (!iscut) again = Standard_False;
else {
CCurrent = CNew;
// New Knots => New Assembly.
J->SetCurve(CNew);
delete TheAssembly;
TheAssembly = new FEmTool_Assembly (Dependence->Array2(),
J->AssemblyTable());
}
}
else { again = Standard_False;}
}
// ================ Great loop end ===================
L8000:
// (4) Compute the best Error.
NewTi = new (TColStd_HArray1OfReal) (1, CurrentTi->Length());
Project(CCurrent, CurrentTi->Array1(),
NewTi->ChangeArray1(),
Ecarts, NumPnt,
ERRMAX, ERRQUA, ERRMOY, 10);
// (5) field's update
TheCurve = CCurrent;
J->EstLength() = CBLONG;
myParameters->ChangeArray1() = NewTi->Array1();
myCriterium[0] = ERRQUA;
myCriterium[1] = Sqrt(VALCRI[0]);
myCriterium[2] = Sqrt(VALCRI[1]);
myCriterium[3] = Sqrt(VALCRI[2]);
myMaxError = ERRMAX;
myMaxErrorIndex = NumPnt;
if(NbrPnt > NbrConstraint)
myAverageError = ERRMOY / (NbrPnt - NbrConstraint);
else
myAverageError = ERRMOY / NbrConstraint;
delete TheAssembly;
}

View File

@ -1,113 +0,0 @@
// Created on: 1998-12-07
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <math_Matrix.hxx>
#include <math_Vector.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <PLib_Base.hxx>
#include <PLib_JacobiPolynomial.hxx>
#include <PLib_HermitJacobi.hxx>
#include <FEmTool_HAssemblyTable.hxx>
//=======================================================================
//function : Optimization
//purpose : (like FORTRAN subroutine MINIMI)
//=======================================================================
void AppParCurves_Variational::Optimization(Handle(AppParCurves_SmoothCriterion)& J,
FEmTool_Assembly& A,
const Standard_Boolean ToAssemble,
const Standard_Real EpsDeg,
Handle(FEmTool_Curve)& Curve,
const TColStd_Array1OfReal& Parameters) const
{
Standard_Integer MxDeg = Curve->Base()->WorkDegree(),
NbElm = Curve->NbElements(),
NbDim = Curve->Dimension();
Handle(FEmTool_HAssemblyTable) AssTable;
math_Matrix H(0, MxDeg, 0, MxDeg);
math_Vector G(0, MxDeg), Sol(1, A.NbGlobVar());
Standard_Integer el, dim;
A.GetAssemblyTable(AssTable);
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
Standard_Real CBLONG = J->EstLength();
// Updating Assembly
if (ToAssemble)
A.NullifyMatrix();
A.NullifyVector();
for (el = 1; el <= NbElm; el++) {
if (ToAssemble) {
J->Hessian(el, 1, 1, H);
for(dim = 1; dim <= NbDim; dim++)
A.AddMatrix(el, dim, dim, H);
}
for(dim = 1; dim <= NbDim; dim++) {
J->Gradient(el, dim, G);
A.AddVector(el, dim, G);
}
}
// Solution of system
if (ToAssemble) {
if(NbConstr != 0) { //Treatment of constraints
AssemblingConstraints(Curve, Parameters, CBLONG, A);
}
A.Solve();
}
A.Solution(Sol);
// Updating J
J->SetCurve(Curve);
J->InputVector(Sol, AssTable);
// Updating Curve and reduction of degree
Standard_Integer Newdeg;
Standard_Real MaxError;
if(NbConstr == 0) {
for(el = 1; el <= NbElm; el++) {
Curve->ReduceDegree(el, EpsDeg, Newdeg, MaxError);
}
}
else {
TColStd_Array1OfReal& TabInt = Curve->Knots();
Standard_Integer Icnt = 1, p0 = Parameters.Lower() - myFirstPoint, point;
for(el = 1; el <= NbElm; el++) {
while((Icnt < NbConstr) &&
(Parameters(p0 + myTypConstraints->Value(2 * Icnt - 1)) <= TabInt(el))) Icnt++;
point = p0 + myTypConstraints->Value(2 * Icnt - 1);
if(Parameters(point) <= TabInt(el) || Parameters(point) >= TabInt(el + 1))
Curve->ReduceDegree(el, EpsDeg, Newdeg, MaxError);
else
if(Curve->Degree(el) < MxDeg) Curve->SetDegree(el, MxDeg);
}
}
}

View File

@ -1,132 +0,0 @@
// Created on: 1998-12-08
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
void AppParCurves_Variational::Project(const Handle(FEmTool_Curve)& C,
const TColStd_Array1OfReal& Ti,
TColStd_Array1OfReal& ProjTi,
TColStd_Array1OfReal& Distance,
Standard_Integer& NumPoints,
Standard_Real& MaxErr,
Standard_Real& QuaErr,
Standard_Real& AveErr,
const Standard_Integer NbIterations) const
{
// Initialisation
const Standard_Real Seuil = 1.e-9, Eps = 1.e-12;
MaxErr = QuaErr = AveErr = 0.;
Standard_Integer Ipnt, NItCv, Iter, i, i0 = -myDimension, d0 = Distance.Lower() - 1;
Standard_Real TNew, Dist, T0, Dist0, F1, F2, Aux, DF, Ecart;
Standard_Boolean EnCour;
TColStd_Array1OfReal ValOfC(1, myDimension), FirstDerOfC(1, myDimension),
SecndDerOfC(1, myDimension);
for(Ipnt = 1; Ipnt <= ProjTi.Length(); Ipnt++) {
i0 += myDimension;
TNew = Ti(Ipnt);
EnCour = Standard_True;
NItCv = 0;
Iter = 0;
C->D0(TNew, ValOfC);
Dist = 0;
for(i = 1; i <= myDimension; i++) {
Aux = ValOfC(i) - myTabPoints->Value(i0 + i);
Dist += Aux * Aux;
}
Dist = Sqrt(Dist);
// ------- Newton's method for solving (C'(t),C(t) - P) = 0
while( EnCour ) {
Iter++;
T0 = TNew;
Dist0 = Dist;
C->D2(TNew, SecndDerOfC);
C->D1(TNew, FirstDerOfC);
F1 = F2 = 0.;
for(i = 1; i <= myDimension; i++) {
Aux = ValOfC(i) - myTabPoints->Value(i0 + i);
DF = FirstDerOfC(i);
F1 += Aux*DF; // (C'(t),C(t) - P)
F2 += DF*DF + Aux * SecndDerOfC(i); // ((C'(t),C(t) - P))'
}
if(Abs(F2) < Eps)
EnCour = Standard_False;
else {
// Formula of Newton x(k+1) = x(k) - F(x(k))/F'(x(k))
TNew -= F1 / F2;
if(TNew < 0.) TNew = 0.;
if(TNew > 1.) TNew = 1.;
// Analysis of result
C->D0(TNew, ValOfC);
Dist = 0;
for(i = 1; i <= myDimension; i++) {
Aux = ValOfC(i) - myTabPoints->Value(i0 + i);
Dist += Aux * Aux;
}
Dist = Sqrt(Dist);
Ecart = Dist0 - Dist;
if(Ecart <= -Seuil) {
// Pas d'amelioration on s'arrete
EnCour = Standard_False;
TNew = T0;
Dist = Dist0;
}
else if(Ecart <= Seuil)
// Convergence
NItCv++;
else
NItCv = 0;
if((NItCv >= 2) || (Iter >= NbIterations)) EnCour = Standard_False;
}
}
ProjTi(Ipnt) = TNew;
Distance(d0 + Ipnt) = Dist;
if(Dist > MaxErr) {
MaxErr = Dist;
NumPoints = Ipnt;
}
QuaErr += Dist * Dist;
AveErr += Dist;
}
NumPoints = NumPoints + myFirstPoint - 1;// Setting NumPoints to interval [myFirstPoint, myLastPoint]
}

View File

@ -1,133 +0,0 @@
// Created on: 1998-12-08
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
void AppParCurves_Variational::ACR(Handle(FEmTool_Curve)& Curve,
TColStd_Array1OfReal& Ti,
const Standard_Integer Decima) const
{
const Standard_Real Eps = 1.e-8;
TColStd_Array1OfReal& Knots = Curve->Knots();
Standard_Integer NbrPnt = Ti.Length(), TiFirst = Ti.Lower(), TiLast = Ti.Upper(),
KFirst = Knots.Lower(), KLast = Knots.Upper();
Standard_Real CbLong, DeltaT, VTest, UNew, UOld, DU, TPara, TOld, DTInv, Ratio;
Standard_Integer ipnt, ii, IElm, IOld, POld, PCnt, ICnt=0;
Standard_Integer NbCntr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
// (1) Calcul de la longueur de courbe
Curve->Length(Ti(TiFirst), Ti(TiLast), CbLong);
// (2) Mise de l'acr dans Ti
if(NbrPnt >= 2) {
// (2.0) Initialisation
DeltaT = (Ti(TiLast) - Ti(TiFirst)) / Decima;
VTest = Ti(TiFirst) + DeltaT;
if(NbCntr > 0) {
PCnt = myTypConstraints->Value(1) - myFirstPoint + TiFirst;
ICnt = 1;
}
else
PCnt = TiLast + 1;
UOld = 0.;
TOld = Ti(TiFirst);
POld = TiFirst;
IElm = KFirst;
IOld = IElm;
Ti(TiFirst) = 0.;
for(ipnt = TiFirst + 1; ipnt <= TiLast; ipnt++) {
while((ICnt <= NbCntr) && (PCnt < ipnt)) {
ICnt++;
PCnt = myTypConstraints->Value(2*ICnt-1) - myFirstPoint + TiFirst;
}
TPara = Ti(ipnt);
if(TPara >= VTest || PCnt == ipnt) {
if ( Ti(TiLast) - TPara <= 1.e-2*DeltaT) {
ipnt = TiLast;
TPara = Ti(ipnt);
}
// (2.2), (2.3) Cacul la longueur de courbe
Curve->Length(Ti(TiFirst), TPara, UNew);
UNew /= CbLong;
while(Knots(IElm + 1) < TPara && IElm < KLast - 1) IElm++;
// (2.4) Mise a jours des parametres de decoupe
DTInv = 1. / (TPara - TOld);
DU = UNew - UOld;
for(ii = IOld+1; ii <= IElm; ii++) {
Ratio = (Knots(ii) - TOld) * DTInv;
Knots(ii) = UOld + Ratio * DU;
}
// (2.5) Mise a jours des parametres de points.
//Very strange loop, because it never works (POld+1 > ipnt-1)
for(ii = POld+1; ii <= ipnt-1; ii++) {
Ratio = ( Ti(ii) - TOld ) * DTInv;
Ti(ii) = UOld + Ratio * DU;
}
Ti(ipnt) = UNew;
UOld = UNew;
IOld = IElm;
TOld = TPara;
POld = ipnt;
}
// --> Nouveau seuil parametrique pour le decimage
if(TPara >= VTest) {
// ii = RealToInt((TPara - VTest + Eps) / DeltaT);
// VTest += (ii + 1) * DeltaT;
VTest += Ceiling((TPara - VTest + Eps) / DeltaT) * DeltaT;
if(VTest > 1. - Eps) VTest = 1.;
}
}
}
// --- On ajuste les valeurs extremes
Ti(TiFirst) = 0.;
Ti(TiLast) = 1.;
ii = TiLast - 1;
while ( Ti(ii) > Knots(KLast) ) {
Ti(ii) = 1.;
--ii;
}
Knots(KFirst) = 0.;
Knots(KLast) = 1.;
}

View File

@ -1,152 +0,0 @@
// Created on: 1998-12-10
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <SortTools_ShellSortOfReal.hxx>
#include <TCollection_CompareOfReal.hxx>
#include <PLib_Base.hxx>
//----------------------------------------------------------//
// Standard_Integer NearIndex //
// Purpose: searching nearest index of TabPar corresponding //
// given value T (is similar to fortran routine MSRRE2) //
//----------------------------------------------------------//
static Standard_Integer NearIndex(const Standard_Real T,
const TColStd_Array1OfReal& TabPar,
const Standard_Real Eps, Standard_Integer& Flag)
{
Standard_Integer Loi = TabPar.Lower(), Upi = TabPar.Upper();
Flag = 0;
if(T < TabPar(Loi)) { Flag = -1; return Loi;}
if(T > TabPar(Upi)) { Flag = 1; return Upi;}
Standard_Integer Ibeg = Loi, Ifin = Upi, Imidl;
while(Ibeg + 1 != Ifin) {
Imidl = (Ibeg + Ifin) / 2;
if((T >= TabPar(Ibeg)) && (T <= TabPar(Imidl)))
Ifin = Imidl;
else
Ibeg = Imidl;
}
if(Abs(T - TabPar(Ifin)) < Eps) return Ifin;
return Ibeg;
}
//----------------------------------------------------------//
// void GettingKnots //
// Purpose: calculating values of new Knots for elements //
// with degree that is equal Deg //
//----------------------------------------------------------//
static void GettingKnots(const TColStd_Array1OfReal& TabPar,
const Handle(FEmTool_Curve)& InCurve,
const Standard_Integer Deg,
Standard_Integer& NbElm,
TColStd_Array1OfReal& NewKnots)
{
const Standard_Real Eps = 1.e-12;
TColStd_Array1OfReal& OldKnots = InCurve->Knots();
Standard_Integer NbMaxOld = InCurve->NbElements();
Standard_Integer NbMax = NewKnots.Upper(), Ipt, Ipt1, Ipt2;
Standard_Integer el = 0, i1 = OldKnots.Lower(), i0 = i1 - 1, Flag;
Standard_Real TPar;
while((NbElm < NbMax) && (el < NbMaxOld)) {
el++; i0++; i1++; // i0, i1 are indexes of left and right knots of element el
if(InCurve->Degree(el) == Deg) {
NbElm++;
Ipt1 = NearIndex(OldKnots(i0), TabPar, Eps, Flag);
if(Flag != 0) Ipt1 = TabPar.Lower();
Ipt2 = NearIndex(OldKnots(i1), TabPar, Eps, Flag);
if(Flag != 0) Ipt2 = TabPar.Upper();
if(Ipt2 - Ipt1 >= 1) {
Ipt = (Ipt1 + Ipt2) / 2;
if(2 * Ipt == Ipt1 + Ipt2)
TPar = 2. * TabPar(Ipt);
else
TPar = TabPar(Ipt) + TabPar(Ipt + 1);
NewKnots(NbElm) = (OldKnots(i0) + OldKnots(i1) + TPar) / 4.;
}
else
NewKnots(NbElm) = (OldKnots(i0) + OldKnots(i1)) / 2.;
}
}
}
void AppParCurves_Variational::SplitCurve(const Handle(FEmTool_Curve)& InCurve,
const TColStd_Array1OfReal& Ti,
const Standard_Real CurveTol,
Handle(FEmTool_Curve)& OutCurve,
Standard_Boolean& iscut) const
{
Standard_Integer NbElmOld = InCurve->NbElements();
if(NbElmOld >= myMaxSegment) {iscut = Standard_False; return;}
#ifdef DEB
Standard_Integer MaxDegree =
#endif
InCurve->Base()->WorkDegree();
Standard_Integer NbElm = NbElmOld;
TColStd_Array1OfReal NewKnots(NbElm + 1, myMaxSegment);
#ifndef DEB
GettingKnots(Ti, InCurve, InCurve->Base()->WorkDegree(), NbElm, NewKnots);
GettingKnots(Ti, InCurve, InCurve->Base()->WorkDegree() - 1, NbElm, NewKnots);
#else
GettingKnots(Ti, InCurve, MaxDegree, NbElm, NewKnots);
GettingKnots(Ti, InCurve, MaxDegree - 1, NbElm, NewKnots);
#endif
if(NbElm > NbElmOld) {
iscut = Standard_True;
OutCurve = new FEmTool_Curve(InCurve->Dimension(), NbElm, InCurve->Base(), CurveTol);
TColStd_Array1OfReal& OutKnots = OutCurve->Knots();
TColStd_Array1OfReal& InKnots = InCurve->Knots();
Standard_Integer i, i0 = OutKnots.Lower();
for(i = InKnots.Lower(); i <= InKnots.Upper(); i++) OutKnots(i) = InKnots(i);
for(i = NbElmOld + 1; i <= NbElm; i++) OutKnots(i + i0) = NewKnots(i);
// SortTools_ShellSortOfReal Sort;
TCollection_CompareOfReal CompReal;
// Sort.Sort(OutKnots, CompReal);
SortTools_ShellSortOfReal::Sort(OutKnots, CompReal);
}
else
iscut = Standard_False;
}

View File

@ -1,622 +0,0 @@
// Created on: 1998-12-21
// Created by: Igor FEOKTISTOV
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified by skv - Fri Apr 8 14:58:12 2005 OCC8559
#include <PLib_Base.hxx>
#include <PLib_JacobiPolynomial.hxx>
#include <PLib_HermitJacobi.hxx>
#include <FEmTool_Curve.hxx>
#include <math_Vector.hxx>
#include <TColStd_Array1OfReal.hxx>
//=======================================================================
//function : InitSmoothCriterion
//purpose : Initializes the SmoothCriterion
//=======================================================================
void AppParCurves_Variational::InitSmoothCriterion()
{
const Standard_Real Eps2 = 1.e-6, Eps3 = 1.e-9;
// const Standard_Real J1 = .01, J2 = .001, J3 = .001;
Standard_Real Length;
InitParameters(Length);
mySmoothCriterion->SetParameters(myParameters);
Standard_Real E1, E2, E3;
InitCriterionEstimations(Length, E1, E2, E3);
/*
J1 = 1.e-8; J2 = J3 = (E1 + 1.e-8) * 1.e-6;
if(E1 < J1) E1 = J1;
if(E2 < J2) E2 = J2;
if(E3 < J3) E3 = J3;
*/
mySmoothCriterion->EstLength() = Length;
mySmoothCriterion->SetEstimation(E1, E2, E3);
Standard_Real WQuadratic, WQuality;
if(!myWithMinMax && myTolerance != 0.)
WQuality = myTolerance;
else if (myTolerance == 0.)
WQuality = 1.;
else
WQuality = Max(myTolerance, Eps2 * Length);
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
WQuadratic = Sqrt((Standard_Real)(myNbPoints - NbConstr)) * WQuality;
if(WQuadratic > Eps3) WQuadratic = 1./ WQuadratic;
if(WQuadratic == 0.) WQuadratic = Max(Sqrt(E1), 1.);
mySmoothCriterion->SetWeight(WQuadratic, WQuality,
myPercent[0], myPercent[1], myPercent[2]);
Handle(PLib_Base) TheBase = new PLib_HermitJacobi(myMaxDegree, myContinuity);
Handle(FEmTool_Curve) TheCurve;
Standard_Integer NbElem;
Standard_Real CurvTol = Eps2 * Length / myNbPoints;
// Decoupe de l'intervalle en fonction des contraintes
if(myWithCutting == Standard_True && NbConstr != 0) {
InitCutting(TheBase, CurvTol, TheCurve);
}
else {
NbElem = 1;
TheCurve = new FEmTool_Curve(myDimension, NbElem, TheBase, CurvTol);
TheCurve->Knots().SetValue(TheCurve->Knots().Lower(),
myParameters->Value(myFirstPoint));
TheCurve->Knots().SetValue(TheCurve->Knots().Upper(),
myParameters->Value(myLastPoint));
}
mySmoothCriterion->SetCurve(TheCurve);
return;
}
//
//=======================================================================
//function : InitParameters
//purpose : Calculation of initial estimation of the multicurve's length
// and parameters for multipoints.
//=======================================================================
//
void AppParCurves_Variational::InitParameters(Standard_Real& Length)
{
const Standard_Real Eps1 = Precision::Confusion() * .01;
Standard_Real aux, dist;
Standard_Integer i, i0, i1 = 0, ipoint;
Length = 0.;
myParameters->SetValue(myFirstPoint, Length);
for(ipoint = myFirstPoint + 1; ipoint <= myLastPoint; ipoint++) {
i0 = i1; i1 += myDimension;
dist = 0;
for(i = 1; i <= myDimension; i++) {
aux = myTabPoints->Value(i1 + i) - myTabPoints->Value(i0 + i);
dist += aux * aux;
}
Length += Sqrt(dist);
myParameters->SetValue(ipoint, Length);
}
if(Length <= Eps1)
Standard_ConstructionError::Raise("AppParCurves_Variational::InitParameters");
for(ipoint = myFirstPoint + 1; ipoint <= myLastPoint - 1; ipoint++)
myParameters->SetValue(ipoint, myParameters->Value(ipoint) / Length);
myParameters->SetValue(myLastPoint, 1.);
// Avec peu de point il y a sans doute sous estimation ...
if(myNbPoints < 10) Length *= (1. + 0.1 / (myNbPoints - 1));
}
//
//=======================================================================
//function : InitCriterionEstimations
//purpose : Calculation of initial estimation of the linear criteria
//
//=======================================================================
//
void AppParCurves_Variational::InitCriterionEstimations(const Standard_Real Length,
Standard_Real& E1,
Standard_Real& E2,
Standard_Real& E3) const
{
E1 = Length * Length;
const Standard_Real Eps1 = Precision::Confusion() * .01;
math_Vector VTang1(1, myDimension), VTang2(1, myDimension), VTang3(1, myDimension),
VScnd1(1, myDimension), VScnd2(1, myDimension), VScnd3(1, myDimension);
// ========== Treatment of first point =================
Standard_Integer ipnt = myFirstPoint;
EstTangent(ipnt, VTang1);
ipnt++;
EstTangent(ipnt, VTang2);
ipnt++;
EstTangent(ipnt, VTang3);
ipnt = myFirstPoint;
EstSecnd(ipnt, VTang1, VTang2, Length, VScnd1);
ipnt++;
EstSecnd(ipnt, VTang1, VTang3, Length, VScnd2);
// Modified by skv - Fri Apr 8 14:58:12 2005 OCC8559 Begin
// Standard_Real Delta = .5 * (myParameters->Value(ipnt) - myParameters->Value(--ipnt));
Standard_Integer anInd = ipnt;
Standard_Real Delta = .5 * (myParameters->Value(anInd) - myParameters->Value(--ipnt));
// Modified by skv - Fri Apr 8 14:58:12 2005 OCC8559 End
if(Delta <= Eps1) Delta = 1.;
E2 = VScnd1.Norm2() * Delta;
E3 = (Delta > Eps1) ? VScnd2.Subtracted(VScnd1).Norm2() / (4. * Delta) : 0.;
// ========== Treatment of internal points =================
Standard_Integer CurrPoint = 2;
for(ipnt = myFirstPoint + 1; ipnt < myLastPoint; ipnt++) {
Delta = .5 * (myParameters->Value(ipnt + 1) - myParameters->Value(ipnt - 1));
if(CurrPoint == 1) {
if(ipnt + 1 != myLastPoint) {
EstTangent(ipnt + 2, VTang3);
EstSecnd(ipnt + 1, VTang1, VTang3, Length, VScnd2);
}
else
EstSecnd(ipnt + 1, VTang1, VTang2, Length, VScnd2);
E2 += VScnd1.Norm2() * Delta;
E3 += (Delta > Eps1) ? VScnd2.Subtracted(VScnd3).Norm2() / (4. * Delta) : 0.;
}
else if(CurrPoint == 2) {
if(ipnt + 1 != myLastPoint) {
EstTangent(ipnt + 2, VTang1);
EstSecnd(ipnt + 1, VTang2, VTang1, Length, VScnd3);
}
else
EstSecnd(ipnt + 1, VTang2, VTang3, Length, VScnd3);
E2 += VScnd2.Norm2() * Delta;
E3 += (Delta > Eps1) ? VScnd3.Subtracted(VScnd1).Norm2() / (4. * Delta) : 0.;
}
else {
if(ipnt + 1 != myLastPoint) {
EstTangent(ipnt + 2, VTang2);
EstSecnd(ipnt + 1, VTang3, VTang2, Length, VScnd1);
}
else
EstSecnd(ipnt + 1, VTang3, VTang1, Length, VScnd1);
E2 += VScnd3.Norm2() * Delta;
E3 += (Delta > Eps1) ? VScnd1.Subtracted(VScnd2).Norm2() / (4. * Delta) : 0.;
}
CurrPoint++; if(CurrPoint == 4) CurrPoint = 1;
}
// ========== Treatment of last point =================
Delta = .5 * (myParameters->Value(myLastPoint) - myParameters->Value(myLastPoint - 1));
if(Delta <= Eps1) Delta = 1.;
Standard_Real aux;
if(CurrPoint == 1) {
E2 += VScnd1.Norm2() * Delta;
aux = VScnd1.Subtracted(VScnd3).Norm2();
E3 += (Delta > Eps1) ? aux / (4. * Delta) : aux;
}
else if(CurrPoint == 2) {
E2 += VScnd2.Norm2() * Delta;
aux = VScnd2.Subtracted(VScnd1).Norm2();
E3 += (Delta > Eps1) ? aux / (4. * Delta) : aux;
}
else {
E2 += VScnd3.Norm2() * Delta;
aux = VScnd3.Subtracted(VScnd2).Norm2();
E3 += (Delta > Eps1) ? aux / (4. * Delta) : aux;
}
aux = Length * Length;
E2 *= aux; E3 *= aux;
}
//
//=======================================================================
//function : EstTangent
//purpose : Calculation of estimation of the Tangent
// (see fortran routine MMLIPRI)
//=======================================================================
//
void AppParCurves_Variational::EstTangent(const Standard_Integer ipnt,
math_Vector& VTang) const
{
Standard_Integer i ;
const Standard_Real Eps1 = Precision::Confusion() * .01;
const Standard_Real EpsNorm = 1.e-9;
Standard_Real Wpnt = 1.;
if(ipnt == myFirstPoint) {
// Estimation at first point
if(myNbPoints < 3)
Wpnt = 0.;
else {
Standard_Integer adr1 = 1, adr2 = adr1 + myDimension,
adr3 = adr2 + myDimension;
math_Vector Pnt1((Standard_Real*)&myTabPoints->Value(adr1), 1, myDimension);
math_Vector Pnt2((Standard_Real*)&myTabPoints->Value(adr2), 1, myDimension);
math_Vector Pnt3((Standard_Real*)&myTabPoints->Value(adr3), 1, myDimension);
// Parabolic interpolation
// if we have parabolic interpolation: F(t) = A0 + A1*t + A2*t*t,
// first derivative for t=0 is A1 = ((d2-1)*P1 + P2 - d2*P3)/(d*(1-d))
// d= |P2-P1|/(|P2-P1|+|P3-P2|), d2 = d*d
Standard_Real V1 = Pnt2.Subtracted(Pnt1).Norm();
Standard_Real V2 = 0.;
if(V1 > Eps1) V2 = Pnt3.Subtracted(Pnt2).Norm();
if(V2 > Eps1) {
Standard_Real d = V1 / (V1 + V2), d1;
d1 = 1. / (d * (1 - d)); d *= d;
VTang = ((d - 1.) * Pnt1 + Pnt2 - d * Pnt3) * d1;
}
else {
// Simple 2-point estimation
VTang = Pnt2 - Pnt1;
}
}
}
else if (ipnt == myLastPoint) {
// Estimation at last point
if(myNbPoints < 3)
Wpnt = 0.;
else {
Standard_Integer adr1 = (myLastPoint - 3) * myDimension + 1,
adr2 = adr1 + myDimension,
adr3 = adr2 + myDimension;
math_Vector Pnt1((Standard_Real*)&myTabPoints->Value(adr1), 1, myDimension);
math_Vector Pnt2((Standard_Real*)&myTabPoints->Value(adr2), 1, myDimension);
math_Vector Pnt3((Standard_Real*)&myTabPoints->Value(adr3), 1, myDimension);
// Parabolic interpolation
// if we have parabolic interpolation: F(t) = A0 + A1*t + A2*t*t,
// first derivative for t=1 is 2*A2 + A1 = ((d2+1)*P1 - P2 - d2*P3)/(d*(1-d))
// d= |P2-P1|/(|P2-P1|+|P3-P2|), d2 = d*(d-2)
Standard_Real V1 = Pnt2.Subtracted(Pnt1).Norm();
Standard_Real V2 = 0.;
if(V1 > Eps1) V2 = Pnt3.Subtracted(Pnt2).Norm();
if(V2 > Eps1) {
Standard_Real d = V1 / (V1 + V2), d1;
d1 = 1. / (d * (1 - d)); d *= d - 2;
VTang = ((d + 1.) * Pnt1 - Pnt2 - d * Pnt3) * d1;
}
else {
// Simple 2-point estimation
VTang = Pnt3 - Pnt2;
}
}
}
else {
Standard_Integer adr1 = (ipnt - myFirstPoint - 1) * myDimension + 1,
adr2 = adr1 + 2 * myDimension;
math_Vector Pnt1((Standard_Real*)&myTabPoints->Value(adr1), 1, myDimension);
math_Vector Pnt2((Standard_Real*)&myTabPoints->Value(adr2), 1, myDimension);
VTang = Pnt2 - Pnt1;
}
Standard_Real Vnorm = VTang.Norm();
if(Vnorm <= EpsNorm)
VTang.Init(0.);
else
VTang /= Vnorm;
// Estimation with constraints
Standard_Real Wcnt = 0.;
Standard_Integer IdCnt = 1;
// Warning!! Here it is suppoused that all points are in range [myFirstPoint, myLastPoint]
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
math_Vector VCnt(1, myDimension, 0.);
if(NbConstr > 0) {
while(myTypConstraints->Value(2 * IdCnt - 1) < ipnt &&
IdCnt <= NbConstr) IdCnt++;
if((myTypConstraints->Value(2 * IdCnt - 1) == ipnt) &&
(myTypConstraints->Value(2 * IdCnt) >= 1)) {
Wcnt = 1.;
Standard_Integer i0 = 2 * myDimension * (IdCnt - 1), k = 0;
for( i = 1; i <= myNbP3d; i++) {
for(Standard_Integer j = 1; j <= 3; j++)
VCnt(++k) = myTabConstraints->Value(++i0);
i0 += 3;
}
for(i = 1; i <= myNbP2d; i++) {
for(Standard_Integer j = 1; j <= 2; j++)
VCnt(++k) = myTabConstraints->Value(++i0);
i0 += 2;
}
}
}
// Averaging of estimation
Standard_Real Denom = Wpnt + Wcnt;
if(Denom == 0.) Denom = 1.;
else Denom = 1. / Denom;
VTang = (Wpnt * VTang + Wcnt * VCnt) * Denom;
Vnorm = VTang.Norm();
if(Vnorm <= EpsNorm)
VTang.Init(0.);
else
VTang /= Vnorm;
}
//
//=======================================================================
//function : EstSecnd
//purpose : Calculation of estimation of the second derivative
// (see fortran routine MLIMSCN)
//=======================================================================
//
void AppParCurves_Variational::EstSecnd(const Standard_Integer ipnt,
const math_Vector& VTang1,
const math_Vector& VTang2,
const Standard_Real Length,
math_Vector& VScnd) const
{
Standard_Integer i ;
const Standard_Real Eps = 1.e-9;
Standard_Real Wpnt = 1.;
Standard_Real aux;
if(ipnt == myFirstPoint)
aux = myParameters->Value(ipnt + 1) - myParameters->Value(ipnt);
else if(ipnt == myLastPoint)
aux = myParameters->Value(ipnt) - myParameters->Value(ipnt - 1);
else
aux = myParameters->Value(ipnt + 1) - myParameters->Value(ipnt - 1);
if(aux <= Eps)
aux = 1.;
else
aux = 1. / aux;
VScnd = (VTang2 - VTang1) * aux;
// Estimation with constraints
Standard_Real Wcnt = 0.;
Standard_Integer IdCnt = 1;
// Warning!! Here it is suppoused that all points are in range [myFirstPoint, myLastPoint]
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
math_Vector VCnt(1, myDimension, 0.);
if(NbConstr > 0) {
while(myTypConstraints->Value(2 * IdCnt - 1) < ipnt &&
IdCnt <= NbConstr) IdCnt++;
if((myTypConstraints->Value(2 * IdCnt - 1) == ipnt) &&
(myTypConstraints->Value(2 * IdCnt) >= 2)) {
Wcnt = 1.;
Standard_Integer i0 = 2 * myDimension * (IdCnt - 1) + 3, k = 0;
for( i = 1; i <= myNbP3d; i++) {
for(Standard_Integer j = 1; j <= 3; j++)
VCnt(++k) = myTabConstraints->Value(++i0);
i0 += 3;
}
i0--;
for(i = 1; i <= myNbP2d; i++) {
for(Standard_Integer j = 1; j <= 2; j++)
VCnt(++k) = myTabConstraints->Value(++i0);
i0 += 2;
}
}
}
// Averaging of estimation
Standard_Real Denom = Wpnt + Wcnt;
if(Denom == 0.) Denom = 1.;
else Denom = 1. / Denom;
VScnd = (Wpnt * VScnd + (Wcnt * Length) * VCnt) * Denom;
}
//
//=======================================================================
//function : InitCutting
//purpose : Realisation of curve's cutting a priory accordingly to
// constraints (see fortran routine MLICUT)
//=======================================================================
//
void AppParCurves_Variational::InitCutting(const Handle(PLib_Base)& aBase,
const Standard_Real CurvTol,
Handle(FEmTool_Curve)& aCurve) const
{
// Definition of number of elements
Standard_Integer ORCMx = -1, NCont = 0, i, kk, NbElem;
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
for(i = 1; i <= NbConstr; i++) {
kk = Abs(myTypConstraints->Value(2 * i)) + 1;
ORCMx = Max(ORCMx, kk);
NCont += kk;
}
if(ORCMx > myMaxDegree - myNivCont)
Standard_ConstructionError::Raise("AppParCurves_Variational::InitCutting");
Standard_Integer NLibre = Max(myMaxDegree - myNivCont - (myMaxDegree + 1) / 4,
myNivCont + 1);
NbElem = (NCont % NLibre == 0) ? NCont / NLibre : NCont / NLibre + 1;
while((NbElem > myMaxSegment) && (NLibre < myMaxDegree - myNivCont)) {
NLibre++;
NbElem = (NCont % NLibre == 0) ? NCont / NLibre : NCont / NLibre + 1;
}
if(NbElem > myMaxSegment)
Standard_ConstructionError::Raise("AppParCurves_Variational::InitCutting");
aCurve = new FEmTool_Curve(myDimension, NbElem, aBase, CurvTol);
Standard_Integer NCnt = (NCont - 1) / NbElem + 1;
Standard_Integer NPlus = NbElem - (NCnt * NbElem - NCont);
TColStd_Array1OfReal& Knot = aCurve->Knots();
Standard_Integer IDeb = 0, IFin = NbConstr + 1,
NDeb = 0, NFin = 0,
IndEl = Knot.Lower(), IUpper = Knot.Upper(),
NbEl = 0;
Knot(IndEl) = myParameters->Value(myFirstPoint);
Knot(IUpper) = myParameters->Value(myLastPoint);
while(NbElem - NbEl > 1) {
IndEl++; NbEl++;
if(NPlus == 0) NCnt--;
while(NDeb < NCnt && IDeb < IFin) {
IDeb++;
NDeb += Abs(myTypConstraints->Value(2 * IDeb)) + 1;
}
if(NDeb == NCnt) {
NDeb = 0;
if(NPlus == 1 &&
myParameters->Value(myTypConstraints->Value(2 * IDeb - 1)) > Knot(IndEl - 1))
Knot(IndEl) = myParameters->Value(myTypConstraints->Value(2 * IDeb - 1));
else
Knot(IndEl) = (myParameters->Value(myTypConstraints->Value(2 * IDeb - 1)) +
myParameters->Value(myTypConstraints->Value(2 * IDeb + 1))) / 2;
}
else {
NDeb -= NCnt;
Knot(IndEl) = myParameters->Value(myTypConstraints->Value(2 * IDeb - 1));
}
NPlus--;
if(NPlus == 0) NCnt--;
if(NbElem - NbEl == 1) break;
NbEl++;
while(NFin < NCnt && IDeb < IFin) {
IFin--;
NFin += Abs(myTypConstraints->Value(2 * IFin)) + 1;
}
if(NFin == NCnt) {
NFin = 0;
Knot(IUpper + 1 - IndEl) = (myParameters->Value(myTypConstraints->Value(2 * IFin - 1)) +
myParameters->Value(myTypConstraints->Value(2 * IFin - 3))) / 2;
}
else {
NFin -= NCnt;
if(myParameters->Value(myTypConstraints->Value(2 * IFin - 1)) < Knot(IUpper - IndEl + 1))
Knot(IUpper + 1 - IndEl) = myParameters->Value(myTypConstraints->Value(2 * IFin - 1));
else
Knot(IUpper + 1 - IndEl) = (myParameters->Value(myTypConstraints->Value(2 * IFin - 1)) +
myParameters->Value(myTypConstraints->Value(2 * IFin - 3))) / 2;
}
}
}

View File

@ -1,178 +0,0 @@
// Created on: 1997-09-17
// Created by: Philippe MANGIN
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//====================== Private Methodes =============================//
//=======================================================================
//function : Adjusting
//purpose : Smoothing's adjusting like STRIM routine "MAJLIS"
//=======================================================================
void AppParCurves_Variational::Adjusting(
Handle(AppParCurves_SmoothCriterion)& J,
Standard_Real& WQuadratic,
Standard_Real& WQuality,
Handle(FEmTool_Curve)& TheCurve,
TColStd_Array1OfReal& Ecarts)
{
// cout << "=========== Adjusting =============" << endl;
/* Initialized data */
const Standard_Integer mxiter = 2;
const Standard_Real eps1 = 1e-6;
Standard_Integer NbrPnt = myLastPoint - myFirstPoint + 1;
Standard_Integer NbrConstraint = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
Standard_Real CurvTol = eps1 * J->EstLength() / NbrPnt;
/* Local variables */
Standard_Integer iter, ipnt;
Standard_Real ecart, emold, erold, tpara;
Standard_Real vocri[4], j1cibl, vtest, vseuil;
Standard_Integer i, numint, flag;
TColStd_Array1OfReal tbpoid(myFirstPoint, myLastPoint);
Standard_Boolean loptim, lrejet;
Handle(AppParCurves_SmoothCriterion) JNew;
Handle(FEmTool_Curve) CNew;
Standard_Real E1, E2, E3;
/* (0.b) Initialisations */
loptim = Standard_True;
iter = 0;
tbpoid.Init(1.);
/* ============ boucle sur le moteur de lissage ============== */
vtest = WQuality * .9;
j1cibl = Sqrt(myCriterium[0] / (NbrPnt - NbrConstraint));
while(loptim) {
++iter;
/* (1) Sauvegarde de l'etat precedents */
vocri[0] = myCriterium[0];
vocri[1] = myCriterium[1];
vocri[2] = myCriterium[2];
vocri[3] = myCriterium[3];
erold = myMaxError;
emold = myAverageError;
/* (2) Augmentation du poids des moindre carre */
if (j1cibl > vtest) {
WQuadratic = j1cibl / vtest * WQuadratic;
}
/* (3) Augmentation du poid associe aux points a problemes */
vseuil = WQuality * .88;
for (ipnt = myFirstPoint; ipnt <= myLastPoint; ++ipnt) {
if (Ecarts(ipnt) > vtest) {
ecart = (Ecarts(ipnt) - vseuil) / WQuality;
tbpoid(ipnt) = (ecart * 3 + 1.) * tbpoid(ipnt);
}
}
/* (4) Decoupe force */
if (TheCurve->NbElements() < myMaxSegment && myWithCutting) {
numint = NearIndex(myParameters->Value(myMaxErrorIndex), TheCurve->Knots(), 0, flag);
tpara = (TheCurve->Knots()(numint) + TheCurve->Knots()(numint + 1) +
myParameters->Value(myMaxErrorIndex) * 2) / 4;
CNew = new FEmTool_Curve(myDimension, TheCurve->NbElements() + 1,
TheCurve->Base(), CurvTol);
for(i = 1; i <= numint; i++) CNew->Knots()(i) = TheCurve->Knots()(i);
for(i = numint + 1; i <= TheCurve->Knots().Length(); i++)
CNew->Knots()(i + 1) = TheCurve->Knots()(i);
CNew->Knots()(numint + 1) = tpara;
} else {
CNew = new FEmTool_Curve(myDimension, TheCurve->NbElements(), TheCurve->Base(), CurvTol);
CNew->Knots() = TheCurve->Knots();
}
JNew = new AppParCurves_MyCriterion(mySSP, myFirstPoint, myLastPoint);
JNew->EstLength() = J->EstLength();
J->GetEstimation(E1, E2, E3);
JNew->SetEstimation(E1, E2, E3);
JNew->SetParameters(myParameters);
JNew->SetWeight(WQuadratic, WQuality, myPercent[0], myPercent[1], myPercent[2]);
JNew->SetWeight(tbpoid);
JNew->SetCurve(CNew);
/* (5) Relissage */
TheMotor(JNew, WQuadratic, WQuality, CNew, Ecarts);
/* (6) Tests de rejet */
j1cibl = Sqrt(myCriterium[0] / (NbrPnt - NbrConstraint));
vseuil = Sqrt(vocri[1]) + (erold - myMaxError) * 4;
lrejet = ((myMaxError > WQuality) && (myMaxError > erold * 1.01)) || (Sqrt(myCriterium[1]) > vseuil * 1.05);
if (lrejet) {
myCriterium[0] = vocri[0];
myCriterium[1] = vocri[1];
myCriterium[2] = vocri[2];
myCriterium[3] = vocri[3];
myMaxError = erold;
myAverageError = emold;
loptim = Standard_False;
}
else {
J = JNew;
TheCurve = CNew;
J->SetCurve(TheCurve);
}
/* (7) Test de convergence */
if (((iter >= mxiter) && (myMaxSegment == CNew->NbElements())) || myMaxError < WQuality) {
loptim = Standard_False;
}
}
}

View File

@ -1,292 +0,0 @@
// Created on: 1999-02-15
// Created by: Igor FEOKTISTOV
// Copyright (c) 1999-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <PLib_Base.hxx>
#include <PLib_JacobiPolynomial.hxx>
#include <PLib_HermitJacobi.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <math_Vector.hxx>
void AppParCurves_Variational::AssemblingConstraints(const Handle(FEmTool_Curve)& Curve,
const TColStd_Array1OfReal& Parameters,
const Standard_Real CBLONG,
FEmTool_Assembly& A ) const
{
Standard_Integer MxDeg = Curve->Base()->WorkDegree(),
NbElm = Curve->NbElements(),
NbDim = Curve->Dimension();
TColStd_Array1OfReal G0(0, MxDeg), G1(0, MxDeg), G2(0, MxDeg);
math_Vector V0((Standard_Real*)&G0(0), 0, MxDeg),
V1((Standard_Real*)&G1(0), 0, MxDeg),
V2((Standard_Real*)&G2(0), 0, MxDeg);
Standard_Integer IndexOfConstraint, Ng3d, Ng2d, NBeg2d, NPass, NgPC1,
NTang3d, NTang2d,
Point, TypOfConstr,
p0 = Parameters.Lower() - myFirstPoint,
curel = 1, el, i, ipnt, ityp, j, k, pnt, curdim,
jt, Ntheta = 6 * myNbP3d + 2 * myNbP2d;
Standard_Integer NbConstr = myNbPassPoints + myNbTangPoints + myNbCurvPoints;
// Ng3d = 3 * NbConstr + 2 * myNbTangPoints + 5 * myNbCurvPoints;
// Ng2d = 2 * NbConstr + 1 * myNbTangPoints + 3 * myNbCurvPoints;
Ng3d = 3 * NbConstr + 3 * myNbTangPoints + 5 * myNbCurvPoints;
Ng2d = 2 * NbConstr + 2 * myNbTangPoints + 3 * myNbCurvPoints;
NBeg2d = Ng3d * myNbP3d;
// NgPC1 = NbConstr + myNbCurvPoints;
NgPC1 = NbConstr + myNbTangPoints + myNbCurvPoints;
NPass = 0;
NTang3d = 3 * NgPC1;
NTang2d = 2 * NgPC1;
TColStd_Array1OfReal& Intervals = Curve->Knots();
Standard_Real t, R1, R2;
Handle(PLib_Base) myBase = Curve->Base();
Handle(PLib_HermitJacobi) myHermitJacobi = (*((Handle(PLib_HermitJacobi)*)&myBase));
Standard_Integer Order = myHermitJacobi->NivConstr() + 1;
Standard_Real UFirst, ULast, coeff, c0, mfact, mfact1;
A.NullifyConstraint();
ipnt = -1;
ityp = 0;
for(i = 1; i <= NbConstr; i++) {
ipnt += 2; ityp += 2;
Point = myTypConstraints->Value(ipnt);
TypOfConstr = myTypConstraints->Value(ityp);
t = Parameters(p0 + Point);
for(el = curel; el <= NbElm; ) {
if( t <= Intervals(++el) ) {
curel = el - 1;
break;
}
}
UFirst = Intervals(curel); ULast = Intervals(curel + 1);
coeff = (ULast - UFirst)/2.; c0 = (ULast + UFirst)/2.;
t = (t - c0) / coeff;
if(TypOfConstr == 0) {
myBase->D0(t, G0);
for(k = 1; k < Order; k++) {
mfact = Pow(coeff, k);
G0(k) *= mfact;
G0(k + Order) *= mfact;
}
}
else if(TypOfConstr == 1) {
myBase->D1(t, G0, G1);
for(k = 1; k < Order; k++) {
mfact = Pow(coeff, k);
G0(k) *= mfact;
G0(k + Order) *= mfact;
G1(k) *= mfact;
G1(k + Order) *= mfact;
}
mfact = 1./coeff;
for(k = 0; k <= MxDeg; k++) {
G1(k) *= mfact;
}
}
else {
myBase->D2(t, G0, G1, G2);
for(k = 1; k < Order; k++) {
mfact = Pow(coeff, k);
G0(k) *= mfact;
G0(k + Order) *= mfact;
G1(k) *= mfact;
G1(k + Order) *= mfact;
G2(k) *= mfact;
G2(k + Order) *= mfact;
}
mfact = 1. / coeff;
mfact1 = mfact / coeff;
for(k = 0; k <= MxDeg; k++) {
G1(k) *= mfact;
G2(k) *= mfact1;
}
}
NPass++;
j = NbDim * (Point - myFirstPoint);
Standard_Integer n0 = NPass;
curdim = 0;
for(pnt = 1; pnt <= myNbP3d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 3; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V0, myTabPoints->Value(j + k));
IndexOfConstraint += NgPC1;
}
j +=3;
n0 += Ng3d;
}
n0 = NPass + NBeg2d;
for(pnt = 1; pnt <= myNbP2d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 2; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V0, myTabPoints->Value(j + k));
IndexOfConstraint += NgPC1;
}
j +=2;
n0 += Ng2d;
}
/* if(TypOfConstr == 1) {
IndexOfConstraint = NTang3d + 1;
jt = Ntheta * (i - 1);
for(pnt = 1; pnt <= myNbP3d; pnt++) {
for(k = 1; k <= 3; k++) {
A.AddConstraint(IndexOfConstraint, curel, k, myTtheta->Value(jt + k) * V1, 0.);
A.AddConstraint(IndexOfConstraint + 1, curel, k, myTtheta->Value(jt + 3 + k) * V1, 0.);
}
IndexOfConstraint += Ng3d;
jt += 6;
}
IndexOfConstraint = NBeg2d + NTang2d + 1;
for(pnt = 1; pnt <= myNbP2d; pnt++) {
for(k = 1; k <= 2; k++) {
A.AddConstraint(IndexOfConstraint, curel, k, myTtheta->Value(jt + k) * V1, 0.);
}
IndexOfConstraint += Ng2d;
jt += 2;
}
NTang3d += 2;
NTang2d += 1;
} */
if(TypOfConstr == 1) {
NPass++;
n0 = NPass;
j = 2 * NbDim * (i - 1);
curdim = 0;
for(pnt = 1; pnt <= myNbP3d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 3; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V1, CBLONG * myTabConstraints->Value(j + k));
IndexOfConstraint += NgPC1;
}
n0 += Ng3d;
j += 6;
}
n0 = NPass + NBeg2d;
for(pnt = 1; pnt <= myNbP2d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 2; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V1, CBLONG * myTabConstraints->Value(j + k));
IndexOfConstraint += NgPC1;
}
n0 += Ng2d;
j += 4;
}
}
if(TypOfConstr == 2) {
NPass++;
n0 = NPass;
j = 2 * NbDim * (i - 1);
curdim = 0;
for(pnt = 1; pnt <= myNbP3d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 3; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V1, CBLONG * myTabConstraints->Value(j + k));
IndexOfConstraint += NgPC1;
}
n0 += Ng3d;
j += 6;
}
n0 = NPass + NBeg2d;
for(pnt = 1; pnt <= myNbP2d; pnt++) {
IndexOfConstraint = n0;
for(k = 1; k <= 2; k++) {
curdim++;
A.AddConstraint(IndexOfConstraint, curel, curdim, V1, CBLONG * myTabConstraints->Value(j + k));
IndexOfConstraint += NgPC1;
}
n0 += Ng2d;
j += 4;
}
j = 2 * NbDim * (i - 1) + 3;
jt = Ntheta * (i - 1);
IndexOfConstraint = NTang3d + 1;
curdim = 0;
for(pnt = 1; pnt <= myNbP3d; pnt++) {
R1 = 0.; R2 = 0.;
for(k = 1; k <= 3; k++) {
R1 += myTabConstraints->Value(j + k) * myTtheta->Value(jt + k);
R2 += myTabConstraints->Value(j + k) * myTtheta->Value(jt + 3 + k);
}
R1 *= CBLONG * CBLONG;
R2 *= CBLONG * CBLONG;
for(k = 1; k <= 3; k++) {
curdim++;
if(k > 1) R1 = R2 = 0.;
A.AddConstraint(IndexOfConstraint, curel, curdim, myTfthet->Value(jt + k) * V2, R1);
A.AddConstraint(IndexOfConstraint + 1, curel, curdim, myTfthet->Value(jt + 3 + k) * V2, R2);
}
IndexOfConstraint += Ng3d;
j += 6;
jt += 6;
}
j--;
IndexOfConstraint = NBeg2d + NTang2d + 1;
for(pnt = 1; pnt <= myNbP2d; pnt++) {
R1 = 0.;
for(k = 1; k <= 2; k++) {
R1 += myTabConstraints->Value(j + k) * myTtheta->Value(jt + k);
}
R1 *= CBLONG * CBLONG;
for(k = 1; k <= 2; k++) {
curdim++;
if(k > 1) R1 = 0.;
A.AddConstraint(IndexOfConstraint, curel, curdim, myTfthet->Value(jt + k) * V2, R1);
}
IndexOfConstraint += Ng2d;
j += 4;
jt += 2;
}
NTang3d += 2;
NTang2d += 1;
}
}
}

View File

@ -1,110 +0,0 @@
// Created on: 1999-02-19
// Created by: Sergey KHROMOV
// Copyright (c) 1999-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
static Standard_Boolean NotParallel(gp_Vec& T, gp_Vec& V)
{
V = T;
V.SetX(V.X() + 1.);
if (V.CrossMagnitude(T) > 1.e-12)
return Standard_True;
V.SetY(V.Y() + 1.);
if (V.CrossMagnitude(T) > 1.e-12)
return Standard_True;
V.SetZ(V.Z() + 1.);
if (V.CrossMagnitude(T) > 1.e-12)
return Standard_True;
return Standard_False;
}
Standard_Boolean AppParCurves_Variational::InitTthetaF(const Standard_Integer ndimen,
const AppParCurves_Constraint typcon,
const Standard_Integer begin,
const Standard_Integer jndex)
{
if ((ndimen < 2)||(ndimen >3))
return Standard_False;
gp_Vec T, V;
gp_Vec theta1, theta2;
gp_Vec F;
Standard_Real XX, XY, YY, XZ, YZ, ZZ;
if ((typcon == AppParCurves_TangencyPoint)||(typcon == AppParCurves_CurvaturePoint))
{
T.SetX(myTabConstraints->Value(jndex));
T.SetY(myTabConstraints->Value(jndex + 1));
if (ndimen == 3)
T.SetZ(myTabConstraints->Value(jndex + 2));
else
T.SetZ(0.);
if (ndimen == 2)
{
V.SetX(0.);
V.SetY(0.);
V.SetZ(1.);
}
if (ndimen == 3)
if (!NotParallel(T, V))
return Standard_False;
theta1 = V ^ T;
theta1.Normalize();
myTtheta->SetValue(begin, theta1.X());
myTtheta->SetValue(begin + 1, theta1.Y());
if (ndimen == 3)
{
theta2 = T ^ theta1;
theta2.Normalize();
myTtheta->SetValue(begin + 2, theta1.Z());
myTtheta->SetValue(begin + 3, theta2.X());
myTtheta->SetValue(begin + 4, theta2.Y());
myTtheta->SetValue(begin + 5, theta2.Z());
}
// Calculation of myTfthet
if (typcon == AppParCurves_CurvaturePoint)
{
XX = Pow(T.X(), 2);
XY = T.X() * T.Y();
YY = Pow(T.Y(), 2);
if (ndimen == 2)
{
F.SetX(YY * theta1.X() - XY * theta1.Y());
F.SetY(XX * theta1.Y() - XY * theta1.X());
myTfthet->SetValue(begin, F.X());
myTfthet->SetValue(begin + 1, F.Y());
}
if (ndimen == 3)
{
XZ = T.X() * T.Z();
YZ = T.Y() * T.Z();
ZZ = Pow(T.Z(), 2);
F.SetX((ZZ + YY) * theta1.X() - XY * theta1.Y() - XZ * theta1.Z());
F.SetY((XX + ZZ) * theta1.Y() - XY * theta1.X() - YZ * theta1.Z());
F.SetZ((XX + YY) * theta1.Z() - XZ * theta1.X() - YZ * theta1.Y());
myTfthet->SetValue(begin, F.X());
myTfthet->SetValue(begin + 1, F.Y());
myTfthet->SetValue(begin + 2, F.Z());
F.SetX((ZZ + YY) * theta2.X() - XY * theta2.Y() - XZ * theta2.Z());
F.SetY((XX + ZZ) * theta2.Y() - XY * theta2.X() - YZ * theta2.Z());
F.SetZ((XX + YY) * theta2.Z() - XZ * theta2.X() - YZ * theta2.Y());
myTfthet->SetValue(begin + 3, F.X());
myTfthet->SetValue(begin + 4, F.Y());
myTfthet->SetValue(begin + 5, F.Z());
}
}
}
return Standard_True;
}

View File

@ -1,9 +0,0 @@
AppParCurves_Variational_1.gxx
AppParCurves_Variational_2.gxx
AppParCurves_Variational_3.gxx
AppParCurves_Variational_4.gxx
AppParCurves_Variational_5.gxx
AppParCurves_Variational_6.gxx
AppParCurves_Variational_7.gxx
AppParCurves_Variational_8.gxx
AppParCurves_Variational_9.gxx

View File

@ -26,7 +26,7 @@
#include <math_Vector.hxx>
#include <AppDef_MultiPointConstraint.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppDef_Variational.hxx>
//=======================================================================
@ -408,7 +408,7 @@ void Geom2dAPI_PointsToBSpline::Init
}
AppDef_TheVariational Variation(multL, 1, NbPoint, TABofCC);
AppDef_Variational Variation(multL, 1, NbPoint, TABofCC);
//===================================
Standard_Integer theMaxSegments = 1000;

View File

@ -25,7 +25,7 @@
#include <AppDef_MultiPointConstraint.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppParCurves_Constraint.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppDef_Variational.hxx>
//=======================================================================
@ -287,7 +287,7 @@ void GeomAPI_PointsToBSpline::Init
}
AppDef_TheVariational Variation(multL, 1, NbPoint, TABofCC);
AppDef_Variational Variation(multL, 1, NbPoint, TABofCC);
//===================================
Standard_Integer theMaxSegments = 1000;

View File

@ -31,7 +31,7 @@
#include <math_Vector.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppParCurves_ConstraintCouple.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppDef_Variational.hxx>
//=======================================================================
@ -325,7 +325,7 @@ void GeomAPI_PointsToBSplineSurface::Init(const TColgp_Array2OfPnt& Points,
}
AppDef_TheVariational Variation(Line, 1, NbPointJ, TABofCC);
AppDef_Variational Variation(Line, 1, NbPointJ, TABofCC);
//===================================
Standard_Integer theMaxSegments = 1000;
@ -390,7 +390,7 @@ void GeomAPI_PointsToBSplineSurface::Init(const TColgp_Array2OfPnt& Points,
}
AppDef_TheVariational Variation2(Line2, 1, NbPointI, TABofCC2);
AppDef_Variational Variation2(Line2, 1, NbPointI, TABofCC2);
Variation2.SetMaxDegree(DegMax);
Variation2.SetContinuity(Continuity);

View File

@ -58,7 +58,6 @@
#include <TColStd_HArray1OfBoolean.hxx>
#include <AppParCurves_MultiBSpCurve.hxx>
#include <AppDef_MultiLine.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppParCurves_ConstraintCouple.hxx>
#include <GC_MakeSegment.hxx>

View File

@ -52,7 +52,7 @@
#include <AppParCurves_MultiBSpCurve.hxx>
#include <AppParCurves_MultiCurve.hxx>
#include <AppDef_MultiLine.hxx>
#include <AppDef_TheVariational.hxx>
#include <AppDef_Variational.hxx>
#include <AppDef_Compute.hxx>
#include <AppParCurves_HArray1OfConstraintCouple.hxx>
#include <AppParCurves_ConstraintCouple.hxx>
@ -406,7 +406,7 @@ static Standard_Integer smoothing (Draw_Interpretor& di,Standard_Integer n, cons
}
}
AppDef_TheVariational Variation(AML,
AppDef_Variational Variation(AML,
1, NbPoints,
TABofCC);
@ -452,7 +452,7 @@ static Standard_Integer smoothing (Draw_Interpretor& di,Standard_Integer n, cons
}
}
AppDef_TheVariational Variation(AML,
AppDef_Variational Variation(AML,
1, NbPoints,
TABofCC);
@ -610,7 +610,7 @@ static Standard_Integer smoothingbybezier (Draw_Interpretor& di,
di <<" Error2D is : " << err2d << "\n";
}
else {
AppDef_TheVariational Varia(AML,
AppDef_Variational Varia(AML,
1, NbPoints,
TABofCC,
Degree, 1);
@ -685,7 +685,7 @@ static Standard_Integer smoothingbybezier (Draw_Interpretor& di,
di <<" Error3D is : " << err << "\n";
}
else {
AppDef_TheVariational Varia(AML,
AppDef_Variational Varia(AML,
1, NbPoints,
TABofCC,
Degree, 1);

View File

@ -1,2 +0,0 @@
IntCurveSurface_SurfaceTool.gxx

View File

@ -80,8 +80,6 @@ is
--------------------------------------------------
generic class HCurveTool;
--------------------------------------------------
generic class SurfaceTool;
--------------------------------------------------
generic class Polygon;
--------------------------------------------------
generic class Polyhedron;

View File

@ -1,240 +0,0 @@
-- Created on: 1993-07-02
-- Created by: Laurent BUCHARD
-- Copyright (c) 1993-1999 Matra Datavision
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
--
-- This file is part of Open CASCADE Technology software library.
--
-- This library is free software; you can redistribute it and/or modify it under
-- the terms of the GNU Lesser General Public License version 2.1 as published
-- by the Free Software Foundation, with special exception defined in the file
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-- distribution for complete text of the license and disclaimer of any warranty.
--
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
generic class SurfaceTool from IntCurveSurface
( TheSurface as any)
uses
Shape from GeomAbs,
SurfaceType from GeomAbs,
Pln from gp,
Cone from gp,
Cylinder from gp,
Sphere from gp,
Torus from gp,
Pnt from gp,
Vec from gp,
Array1OfReal from TColStd,
BezierSurface from Geom,
BSplineSurface from Geom,
HSurface from Adaptor3d,
HCurve from Adaptor3d,
Ax1 from gp,
Dir from gp
raises
NoSuchObject from Standard,
OutOfRange from Standard
is
FirstUParameter(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
FirstVParameter(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
LastUParameter(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
LastVParameter(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
NbUIntervals(myclass; S: TheSurface;
Sh : Shape from GeomAbs)
---C++: inline
returns Integer from Standard;
NbVIntervals(myclass; S: TheSurface;
Sh : Shape from GeomAbs)
---C++: inline
returns Integer from Standard;
UIntervals(myclass; S : TheSurface;
T : in out Array1OfReal from TColStd;
Sh : Shape from GeomAbs);
---C++: inline
VIntervals(myclass; S : TheSurface;
T : in out Array1OfReal from TColStd;
Sh : Shape from GeomAbs) ;
---C++: inline
UTrim(myclass; S : TheSurface;
First, Last, Tol : Real)
---C++: inline
returns HSurface from Adaptor3d
raises
OutOfRange from Standard;
---Purpose: If <First> >= <Last>
VTrim(myclass; S : TheSurface;
First, Last, Tol : Real)
---C++: inline
returns HSurface from Adaptor3d
raises
OutOfRange from Standard;
---Purpose: If <First> >= <Last>
IsUClosed(myclass; S: TheSurface)
---C++: inline
returns Boolean from Standard;
IsVClosed(myclass; S: TheSurface)
---C++: inline
returns Boolean from Standard;
IsUPeriodic(myclass; S: TheSurface)
---C++: inline
returns Boolean from Standard;
UPeriod(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
IsVPeriodic(myclass; S: TheSurface)
---C++: inline
returns Boolean from Standard;
VPeriod(myclass; S: TheSurface)
---C++: inline
returns Real from Standard;
Value(myclass; S : TheSurface;
u,v : Real from Standard)
---C++: inline
returns Pnt from gp;
D0(myclass; S : TheSurface;
u,v : Real from Standard;
P : out Pnt from gp);
---C++: inline
D1(myclass; S : TheSurface;
u,v : Real from Standard;
P : out Pnt from gp;
D1u,D1v: out Vec from gp);
---C++: inline
D2(myclass; S : TheSurface;
u,v : Real from Standard;
P : out Pnt from gp;
D1U,D1V,D2U,D2V,D2UV: out Vec from gp);
---C++: inline
D3(myclass; S : TheSurface;
u,v : Real from Standard;
P : out Pnt from gp;
D1U, D1V, D2U, D2V, D2UV, D3U, D3V, D3UUV, D3UVV: out Vec from gp);
---C++: inline
DN(myclass; S : TheSurface;
u,v : Real from Standard;
Nu,Nv : Integer from Standard)
---C++: inline
returns Vec from gp;
UResolution(myclass; S:TheSurface; R3d: Real from Standard)
---C++: inline
returns Real from Standard;
VResolution(myclass; S:TheSurface; R3d: Real from Standard)
---C++: inline
returns Real from Standard;
GetType(myclass; S: TheSurface)
---C++: inline
returns SurfaceType from GeomAbs;
Plane(myclass; S: TheSurface)
---C++: inline
returns Pln from gp;
Cylinder(myclass; S : TheSurface) returns Cylinder from gp
raises NoSuchObject from Standard;
---C++: inline
Cone(myclass; S : TheSurface) returns Cone from gp
raises NoSuchObject from Standard;
---C++: inline
Torus(myclass; S : TheSurface) returns Torus from gp
raises NoSuchObject from Standard;
---C++: inline
Sphere(myclass; S : TheSurface) returns Sphere from gp
raises NoSuchObject from Standard;
---C++: inline
Bezier(myclass; S : TheSurface) returns BezierSurface from Geom
raises NoSuchObject from Standard;
---C++: inline
BSpline(myclass; S : TheSurface) returns BSplineSurface from Geom
raises NoSuchObject from Standard;
---C++: inline
AxeOfRevolution(myclass; S: TheSurface) returns Ax1 from gp
raises NoSuchObject from Standard;
---C++: inline
Direction(myclass; S: TheSurface) returns Dir from gp
raises NoSuchObject from Standard;
---C++: inline
BasisCurve(myclass; S:TheSurface) returns HCurve from Adaptor3d
raises NoSuchObject from Standard;
---C++: inline
--------------------------------------------------------------------------------
NbSamplesU(myclass; S : TheSurface) returns Integer from Standard;
NbSamplesV(myclass; S : TheSurface) returns Integer from Standard;
NbSamplesU(myclass; S : TheSurface; u1,u2: Real from Standard) returns Integer from Standard;
NbSamplesV(myclass; S : TheSurface; v1,v2: Real from Standard) returns Integer from Standard;
end SurfaceTool;

View File

@ -1,139 +0,0 @@
// Created by: Laurent BUCHARD
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//-- <lbr@nonox>
#include TheSurface_hxx
Standard_Integer IntCurveSurface_SurfaceTool::NbSamplesU(const TheSurface& S) {
Standard_Integer nbs;
GeomAbs_SurfaceType typS = S.GetType();
switch(typS) {
case GeomAbs_Plane:
{
nbs = 2;
}
break;
case GeomAbs_BezierSurface:
{
nbs = 3 + S.NbUPoles();
}
break;
case GeomAbs_BSplineSurface:
{
nbs = S.NbUKnots();
nbs*= S.UDegree();
if(nbs < 2) nbs=2;
}
break;
case GeomAbs_Torus:
{
nbs = 20;
}
break;
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
case GeomAbs_SurfaceOfRevolution:
case GeomAbs_SurfaceOfExtrusion:
{
nbs = 10;
}
break;
default:
{
nbs = 10;
}
break;
}
return(nbs);
}
Standard_Integer IntCurveSurface_SurfaceTool::NbSamplesV(const TheSurface& S) {
Standard_Integer nbs;
GeomAbs_SurfaceType typS = S.GetType();
switch(typS) {
case GeomAbs_Plane:
{
nbs = 2;
}
break;
case GeomAbs_BezierSurface:
{
nbs = 3 + S.NbVPoles();
}
break;
case GeomAbs_BSplineSurface:
{
nbs = S.NbVKnots();
nbs*= S.VDegree();
if(nbs < 2) nbs=2;
}
break;
case GeomAbs_Cylinder:
case GeomAbs_Cone:
case GeomAbs_Sphere:
case GeomAbs_Torus:
case GeomAbs_SurfaceOfRevolution:
case GeomAbs_SurfaceOfExtrusion:
{
nbs = 15;
}
break;
default:
{
nbs = 10;
}
break;
}
return(nbs);
}
Standard_Integer IntCurveSurface_SurfaceTool::NbSamplesU(const TheSurface& S,
const Standard_Real u1,
const Standard_Real u2) {
Standard_Integer nbs = NbSamplesU(S);
Standard_Integer n = nbs;
if(nbs>10) {
Standard_Real uf = FirstUParameter(S);
Standard_Real ul = LastUParameter(S);
n*= (Standard_Integer)((u2-u1)/(uf-ul));
if(n>nbs) n = nbs;
if(n<5) n = 5;
}
return(n);
}
Standard_Integer IntCurveSurface_SurfaceTool::NbSamplesV(const TheSurface& S,
const Standard_Real v1,
const Standard_Real v2) {
Standard_Integer nbs = NbSamplesV(S);
Standard_Integer n = nbs;
if(nbs>10) {
Standard_Real vf = FirstVParameter(S);
Standard_Real vl = LastVParameter(S);
n*= (Standard_Integer)((v2-v1)/(vf-vl));
if(n>nbs) n = nbs;
if(n<5) n = 5;
}
return(n);
}

View File

@ -1,239 +0,0 @@
// Created by: Laurent BUCHARD
// Copyright (c) 1993-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
//-- <lbr@nonox>
#include TheSurface_hxx
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Pln.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Cone.hxx>
#include <gp_Torus.hxx>
#include <gp_Sphere.hxx>
#include <gp_Ax1.hxx>
#include <gp_Dir.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Adaptor3d_HCurve.hxx>
inline Standard_Real IntCurveSurface_SurfaceTool::FirstUParameter(const TheSurface& Surf){ return Surf.FirstUParameter(); }
inline Standard_Real IntCurveSurface_SurfaceTool::FirstVParameter(const TheSurface& Surf){ return Surf.FirstVParameter();}
inline Standard_Real IntCurveSurface_SurfaceTool::LastUParameter(const TheSurface& Surf){ return Surf.LastUParameter();}
inline Standard_Real IntCurveSurface_SurfaceTool::LastVParameter(const TheSurface& Surf){ return Surf.LastVParameter();}
inline Standard_Integer IntCurveSurface_SurfaceTool::NbUIntervals(const TheSurface& Surf,
const GeomAbs_Shape S){
return Surf.NbUIntervals(S);
}
inline Standard_Integer IntCurveSurface_SurfaceTool::NbVIntervals(const TheSurface& Surf,
const GeomAbs_Shape S){
return Surf.NbVIntervals(S);
}
inline void IntCurveSurface_SurfaceTool::UIntervals(const TheSurface& Surf,
TColStd_Array1OfReal& Tab,
const GeomAbs_Shape S){
Surf.UIntervals(Tab,S);
}
inline void IntCurveSurface_SurfaceTool::VIntervals(const TheSurface& Surf,
TColStd_Array1OfReal& Tab,
const GeomAbs_Shape S){
Surf.VIntervals(Tab,S);
}
inline Handle_Adaptor3d_HSurface IntCurveSurface_SurfaceTool::UTrim(const TheSurface& Surf,
const Standard_Real F,
const Standard_Real L,
const Standard_Real Tol) {
return Surf.UTrim(F,L,Tol);
}
inline Handle_Adaptor3d_HSurface IntCurveSurface_SurfaceTool::VTrim(const TheSurface& Surf,
const Standard_Real F,
const Standard_Real L,
const Standard_Real Tol) {
return Surf.VTrim(F,L,Tol);
}
inline Standard_Boolean IntCurveSurface_SurfaceTool::IsUClosed(const TheSurface& S)
{
return S.IsUClosed();
}
inline Standard_Boolean IntCurveSurface_SurfaceTool::IsVClosed(const TheSurface& S)
{
return S.IsVClosed();
}
inline Standard_Boolean IntCurveSurface_SurfaceTool::IsUPeriodic(const TheSurface& S)
{
return S.IsUPeriodic();
}
inline Standard_Real IntCurveSurface_SurfaceTool::UPeriod(const TheSurface& S)
{
return S.UPeriod();
}
inline Standard_Boolean IntCurveSurface_SurfaceTool::IsVPeriodic(const TheSurface& S)
{
return S.IsVPeriodic();
}
inline Standard_Real IntCurveSurface_SurfaceTool::VPeriod(const TheSurface& S)
{
return S.VPeriod();
}
inline gp_Pnt IntCurveSurface_SurfaceTool::Value(const TheSurface& S,
const Standard_Real U,
const Standard_Real V )
{
return S.Value(U,V);
}
inline void IntCurveSurface_SurfaceTool::D0(const TheSurface& S,
const Standard_Real U,
const Standard_Real V,
gp_Pnt& P)
{
S.D0(U,V,P);
}
inline void IntCurveSurface_SurfaceTool::D1(const TheSurface& S,
const Standard_Real U,
const Standard_Real V,
gp_Pnt& P,
gp_Vec& D1U,
gp_Vec& D1V)
{
S.D1(U,V,P,D1U,D1V);
}
inline void IntCurveSurface_SurfaceTool::D2(const TheSurface& S,
const Standard_Real U,
const Standard_Real V,
gp_Pnt& P,
gp_Vec& D1U,
gp_Vec& D1V,
gp_Vec& D2U,
gp_Vec& D2V,
gp_Vec& D2UV)
{
S.D2(U,V,P,D1U,D1V,D2U,D2V,D2UV);
}
inline void IntCurveSurface_SurfaceTool::D3(const TheSurface& S,
const Standard_Real U,
const Standard_Real V,
gp_Pnt& P,
gp_Vec& D1U,
gp_Vec& D1V,
gp_Vec& D2U,
gp_Vec& D2V,
gp_Vec& D2UV,
gp_Vec& D3U,
gp_Vec& D3V,
gp_Vec& D3UUV,
gp_Vec& D3UVV)
{
S.D3(U,V,P,D1U,D1V,D2U,D2V,D2UV,D3U,D3V,D3UUV,D3UVV);
}
inline gp_Vec IntCurveSurface_SurfaceTool::DN(const TheSurface& S,
const Standard_Real U,
const Standard_Real V,
const Standard_Integer Nu,
const Standard_Integer Nv)
{
return S.DN(U,V,Nu,Nv);
}
inline Standard_Real IntCurveSurface_SurfaceTool::UResolution(const TheSurface& S,
const Standard_Real R3d)
{
return S.UResolution(R3d);
}
inline Standard_Real IntCurveSurface_SurfaceTool::VResolution(const TheSurface& S,
const Standard_Real R3d)
{
return S.VResolution(R3d);
}
inline GeomAbs_SurfaceType IntCurveSurface_SurfaceTool::GetType(const TheSurface& S )
{
return S.GetType();
}
inline gp_Pln IntCurveSurface_SurfaceTool::Plane(const TheSurface& S)
{
return S.Plane();
}
inline gp_Cylinder IntCurveSurface_SurfaceTool::Cylinder(const TheSurface& S)
{
return S.Cylinder();
}
inline gp_Cone IntCurveSurface_SurfaceTool::Cone(const TheSurface& S)
{
return S.Cone();
}
inline gp_Sphere IntCurveSurface_SurfaceTool::Sphere(const TheSurface& S)
{
return S.Sphere();
}
inline gp_Torus IntCurveSurface_SurfaceTool::Torus(const TheSurface& S)
{
return S.Torus();
}
inline Handle(Geom_BezierSurface) IntCurveSurface_SurfaceTool::Bezier(const TheSurface& S) {
return(S.Bezier());
}
inline Handle(Geom_BSplineSurface) IntCurveSurface_SurfaceTool::BSpline(const TheSurface& S) {
return(S.BSpline());
}
inline gp_Ax1 IntCurveSurface_SurfaceTool::AxeOfRevolution(const TheSurface& S) {
return(S.AxeOfRevolution());
}
inline gp_Dir IntCurveSurface_SurfaceTool::Direction(const TheSurface& S) {
return(S.Direction());
}
inline Handle(Adaptor3d_HCurve) IntCurveSurface_SurfaceTool::BasisCurve(const TheSurface& S) {
return(S.BasisCurve());
}

View File

@ -32,8 +32,6 @@ is
generic class ZerCSParFunc; -- inherits FunctionSetWithDerivatives
generic class ZerCOnSSParFunc; -- inherits FunctionSetWithDerivatives
generic class Int2S,TheFunction;
generic class IntCS;

View File

@ -58,6 +58,8 @@ is
class ImpImpIntersection;
class CSFunction; -- inherits FunctionSetWithDerivatives
-- commun implicite/parametree et parametree/parametree
@ -148,11 +150,6 @@ is
alias SearchPnt is InterferencePolygon2d from Intf;
class CSFunction instantiates ZerCOnSSParFunc from IntImp
(HSurface from Adaptor3d,
HSurfaceTool from Adaptor3d,
HCurve2d from Adaptor2d,
HCurve2dTool from IntPatch);
class CurvIntSurf instantiates IntCS from IntImp
(HSurface from Adaptor3d,

View File

@ -14,14 +14,7 @@
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
generic class ZerCOnSSParFunc from IntImp
(ThePSurface as any;
ThePSurfaceTool as any;
TheCurveOnSurf as any;
TheCurveTool as any
)
inherits FunctionSetWithDerivatives from math
class CSFunction from IntPatch inherits FunctionSetWithDerivatives from math
---Purpose: this function is associated to the intersection between
-- a curve on surface and a surface .
@ -29,17 +22,21 @@ inherits FunctionSetWithDerivatives from math
uses Vector from math,
Matrix from math,
Pnt from gp
Pnt from gp,
HSurface from Adaptor3d,
HSurfaceTool from Adaptor3d,
HCurve2d from Adaptor2d,
HCurve2dTool from IntPatch
is
Create( S1 : ThePSurface;
C : TheCurveOnSurf;
S2 : ThePSurface )
Create( S1 : HSurface from Adaptor3d;
C : HCurve2d from Adaptor2d;
S2 : HSurface from Adaptor3d )
---Purpose: S1 is the surface on which the intersection is searched.
-- C is a curve on the surface S2.
returns ZerCOnSSParFunc from IntImp;
returns CSFunction from IntPatch;
NbVariables(me) returns Integer from Standard
@ -74,19 +71,19 @@ is
AuxillarSurface(me)
---C++: return const&
returns ThePSurface
returns HSurface from Adaptor3d
is static;
AuxillarCurve(me)
---C++: return const&
returns TheCurveOnSurf
returns HCurve2d from Adaptor2d
is static;
fields
curve : Address from Standard; --- TheCurveOnSurf;
surface1 : Address from Standard; --- ThePSurface;
surface2 : Address from Standard; --- ThePSurface;
curve : Address from Standard; --- HCurve2d from Adaptor2d;
surface1 : Address from Standard; --- HSurface from Adaptor3d;
surface2 : Address from Standard; --- HSurface from Adaptor3d;
p : Pnt from gp;
f : Real from Standard;
end ZerCOnSSParFunc;
end CSFunction;

View File

@ -12,6 +12,13 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntPatch_CSFunction.ixx>
#include <Adaptor3d_HSurface.hxx>
#include <Adaptor3d_HSurfaceTool.hxx>
#include <Adaptor2d_HCurve2d.hxx>
#include <IntPatch_HCurve2dTool.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt2d.hxx>
@ -23,29 +30,29 @@
#endif
#define SURFACE1 (*((ThePSurface *)(surface1)))
#define SURFACE2 (*((ThePSurface *)(surface2)))
#define CURVE (*((TheCurveOnSurf *)(curve)))
#define SURFACE1 (*((Handle(Adaptor3d_HSurface) *)(surface1)))
#define SURFACE2 (*((Handle(Adaptor3d_HSurface) *)(surface2)))
#define CURVE (*((Handle(Adaptor2d_HCurve2d) *)(curve)))
IntImp_ZerCOnSSParFunc::IntImp_ZerCOnSSParFunc(const ThePSurface& S1,
const TheCurveOnSurf& C,
const ThePSurface& S2)
IntPatch_CSFunction::IntPatch_CSFunction(const Handle(Adaptor3d_HSurface)& S1,
const Handle(Adaptor2d_HCurve2d)& C,
const Handle(Adaptor3d_HSurface)& S2)
{
surface1 = (Standard_Address)(&S1);
surface2 = (Standard_Address)(&S2);
curve = (Standard_Address)(&C);
}
Standard_Integer IntImp_ZerCOnSSParFunc::NbVariables()const { return 3;}
Standard_Integer IntPatch_CSFunction::NbVariables()const { return 3;}
Standard_Integer IntImp_ZerCOnSSParFunc::NbEquations()const { return 3;}
Standard_Integer IntPatch_CSFunction::NbEquations()const { return 3;}
Standard_Boolean IntImp_ZerCOnSSParFunc::Value(const math_Vector& X,
Standard_Boolean IntPatch_CSFunction::Value(const math_Vector& X,
math_Vector& F){
gp_Pnt Psurf(ThePSurfaceTool::Value(SURFACE1,X(1),X(2)));
gp_Pnt2d p2d(TheCurveTool::Value(CURVE,X(3)));
gp_Pnt Pcurv(ThePSurfaceTool::Value(SURFACE2,p2d.X(),p2d.Y()));
gp_Pnt Psurf(Adaptor3d_HSurfaceTool::Value(SURFACE1,X(1),X(2)));
gp_Pnt2d p2d(IntPatch_HCurve2dTool::Value(CURVE,X(3)));
gp_Pnt Pcurv(Adaptor3d_HSurfaceTool::Value(SURFACE2,p2d.X(),p2d.Y()));
F(1) = Psurf.X()-Pcurv.X();
F(2) = Psurf.Y()-Pcurv.Y();
@ -55,7 +62,7 @@ Standard_Boolean IntImp_ZerCOnSSParFunc::Value(const math_Vector& X,
return Standard_True;
}
Standard_Boolean IntImp_ZerCOnSSParFunc::Derivatives ( const math_Vector& X,
Standard_Boolean IntPatch_CSFunction::Derivatives ( const math_Vector& X,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
gp_Vec D1u,D1v,D1w;
@ -63,9 +70,9 @@ Standard_Boolean IntImp_ZerCOnSSParFunc::Derivatives ( const math_Vector& X,
gp_Vec2d d2d;
gp_Vec d1u,d1v;
ThePSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(CURVE,X(3),p2d,d2d);
ThePSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
Adaptor3d_HSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
IntPatch_HCurve2dTool::D1(CURVE,X(3),p2d,d2d);
Adaptor3d_HSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
D(1,1) = D1u.X();
@ -80,7 +87,7 @@ Standard_Boolean IntImp_ZerCOnSSParFunc::Derivatives ( const math_Vector& X,
return Standard_True;
}
Standard_Boolean IntImp_ZerCOnSSParFunc::Values( const math_Vector& X,
Standard_Boolean IntPatch_CSFunction::Values( const math_Vector& X,
math_Vector& F,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
@ -90,9 +97,9 @@ Standard_Boolean IntImp_ZerCOnSSParFunc::Values( const math_Vector& X,
gp_Vec2d d2d;
gp_Vec d1u,d1v;
ThePSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(CURVE,X(3),p2d,d2d);
ThePSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
Adaptor3d_HSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
IntPatch_HCurve2dTool::D1(CURVE,X(3),p2d,d2d);
Adaptor3d_HSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
D(1,1) = D1u.X();
@ -112,14 +119,14 @@ Standard_Boolean IntImp_ZerCOnSSParFunc::Values( const math_Vector& X,
return Standard_True;
}
const gp_Pnt& IntImp_ZerCOnSSParFunc::Point() const { return p;}
const gp_Pnt& IntPatch_CSFunction::Point() const { return p;}
Standard_Real IntImp_ZerCOnSSParFunc::Root() const { return f;}
Standard_Real IntPatch_CSFunction::Root() const { return f;}
const ThePSurface& IntImp_ZerCOnSSParFunc::AuxillarSurface() const {
const Handle_Adaptor3d_HSurface& IntPatch_CSFunction::AuxillarSurface() const {
return SURFACE1;}
const TheCurveOnSurf& IntImp_ZerCOnSSParFunc::AuxillarCurve() const {
const Handle_Adaptor2d_HCurve2d& IntPatch_CSFunction::AuxillarCurve() const {
return CURVE;}
#undef SURFACE1

View File

@ -92,10 +92,6 @@ is
---Purpose: Computes the interference between two polygons in 2d.
-- Result : points of intersections and zones of tangence.
generic class InterferencePolygon3d;
---Purpose: Computes the interference between two polygon in 3d.
-- Section points, common perpendicular and projections.
generic class InterferencePolygonPolyhedron;
---Purpose: Computes the interference between a polygon or a straight
-- line and a polyhedron. Points of intersection and zones

View File

@ -1,148 +0,0 @@
-- Created on: 1992-09-29
-- Created by: Didier PIFFAULT
-- Copyright (c) 1992-1999 Matra Datavision
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
--
-- This file is part of Open CASCADE Technology software library.
--
-- This library is free software; you can redistribute it and/or modify it under
-- the terms of the GNU Lesser General Public License version 2.1 as published
-- by the Free Software Foundation, with special exception defined in the file
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-- distribution for complete text of the license and disclaimer of any warranty.
--
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
generic class InterferencePolygon3d from Intf
(Polygon3d1 as any;
ToolPolygon3d1 as any; -- as ToolPolygon(Pnt,Polygon3d1,Box)
Polygon3d2 as any;
ToolPolygon3d2 as any) -- as ToolPolygon(Pnt,Polygon3d2,Box)
inherits Interference from Intf
---Purpose: Computes the interference between two polygons or the
-- self interference of a polygon in 3 dimensions . In 3
-- dimensions the result can be a common perpendicular ,
-- an orthogonal projection or a real intersections.
-- There are two different instantiation arguments to
-- authorize an interference between two polygons from
-- differents origin. Ex : to intersect a curve polygon
-- with an algorithmic curve from numerical walking
-- between two surfaces.
uses Pnt from gp,
SectionPoint from Intf,
SeqOfSectionPoint from Intf,
SectionLine from Intf,
SeqOfSectionLine from Intf
raises OutOfRange from Standard
is
-- Interface :
Create returns InterferencePolygon3d from Intf;
---Purpose: Constructs an empty interference of 3d Polygon.
Create (Obje1 : in Polygon3d1 ;Obje2 : in Polygon3d2)
returns InterferencePolygon3d from Intf;
---Purpose: Constructs and computes an interference between two Polygons.
Create (Obje : in Polygon3d1)
returns InterferencePolygon3d from Intf;
---Purpose: Constructs and computes the self interference of a Polygon.
Perform (me : in out;
Obje1 : in Polygon3d1 ;Obje2 : in Polygon3d2);
---Purpose: Computes an interference between two Polygons.
Perform (me : in out;
Obje : in Polygon3d1);
---Purpose: Computes the auto interference of a Polygon.
NbResults (me)
returns Integer is static;
---Purpose: Gives the number of common Perpendiculars or orthogonal
-- projections between the two polygons.
ResultLine (me;
Index : in Integer)
returns SectionLine from Intf
raises OutOfRange from Standard
is static;
---Purpose: Gives the segment of address <Index> in the interference
-- representing the perpendicular or the orthogonal
-- projection .
--
---C++: return const &
ResultValue (me;
Index : in Integer)
returns Real from Standard
raises OutOfRange from Standard
is static;
---Purpose: Gives the distance between the two polygons
MinimalDistance(me)
returns Real from Standard
is static;
---Purpose: Gives the distance between the two polygon3d at the
-- perpendicular or projection of minimal length.
MinimalResult (me)
returns Integer from Standard
is static;
---Purpose: Give the perpendicular or projection of minimal length.
-- WARNING : if there are points of intersection the minimal
-- result is one of them and this function is unusuable.
-- Implementation :
Interference (me : in out;
Obje1 : in Polygon3d1;
Obje2 : in Polygon3d2)
is private;
Interference (me : in out;
Obje : in Polygon3d1)
is private;
CommonPerpen (me : in out;
BegO : in Pnt from gp;
EndO : in Pnt from gp;
BegT : in Pnt from gp;
EndT : in Pnt from gp)
is private;
---Purpose: Computes the common perpendicular between the two
-- segments <BegO><EndO> and <BegT><EndT>.
Projections (me : in out;
BegO : in Pnt from gp;
EndO : in Pnt from gp;
BegT : in Pnt from gp;
EndT : in Pnt from gp)
is private;
---Purpose: Computes the different orthogonal projections between
-- segment <BegO><EndO> and points <BegT>,<EndT> and segment
-- <BegT><EndT> and points <BegO>,<EndO>.
fields IndexMin : Integer from Standard;
MinimalDist : Real from Standard;
iObje1, iObje2 : Integer from Standard;
beginOfNotClosedFirst: Boolean from Standard;
beginOfNotClosedSecon: Boolean from Standard;
end InterferencePolygon3d;

View File

@ -1,320 +0,0 @@
// Created on: 1992-10-09
// Created by: Didier PIFFAULT
// Copyright (c) 1992-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Intf_SectionPoint.hxx>
#include <Intf_SeqOfSectionPoint.hxx>
#include <Intf_SectionLine.hxx>
#include <Intf_SeqOfSectionLine.hxx>
#include <Intf_SeqOfTangentZone.hxx>
#include <Intf_TangentZone.hxx>
//=======================================================================
//function : Intf_InterferencePolygon3d
//purpose : Empty constructor.
//=======================================================================
Intf_InterferencePolygon3d::Intf_InterferencePolygon3d()
: Intf_Interference (Standard_False),
IndexMin (0),
iObje1 (0),
iObje2 (0),
beginOfNotClosedFirst (Standard_True),
beginOfNotClosedSecon (Standard_True)
{}
//=======================================================================
//function : Intf_InterferencePolygon3d
//purpose : Constructor of the interference beetween two Polygon.
//=======================================================================
Intf_InterferencePolygon3d::Intf_InterferencePolygon3d
(const Polygon3d1& Obje1, const Polygon3d2& Obje2)
: Intf_Interference (Standard_False),
IndexMin (0),
iObje1 (0),
iObje2 (0),
beginOfNotClosedFirst (Standard_True),
beginOfNotClosedSecon (Standard_True)
{
Tolerance=ToolPolygon3d1::DeflectionOverEstimation(Obje1)+
ToolPolygon3d2::DeflectionOverEstimation(Obje2);
if (Tolerance<=0.) Tolerance=Epsilon(1000.);
Interference(Obje1, Obje2);
}
//=======================================================================
//function : Intf_InterferencePolygon3d
//purpose : Constructor of the auto interference of a Polygon.
//=======================================================================
Intf_InterferencePolygon3d::Intf_InterferencePolygon3d
(const Polygon3d1& Obje)
: Intf_Interference (Standard_True),
IndexMin(0),
iObje1 (0),
iObje2 (0),
beginOfNotClosedFirst (Standard_True),
beginOfNotClosedSecon (Standard_True)
{
Tolerance=ToolPolygon3d1::DeflectionOverEstimation(Obje)*2;
Interference(Obje);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::Perform
(const Polygon3d1& Obje1, const Polygon3d2& Obje2)
{
SelfInterference(Standard_False);
IndexMin=0;
Tolerance=ToolPolygon3d1::DeflectionOverEstimation(Obje1)+
ToolPolygon3d2::DeflectionOverEstimation(Obje2);
if (Tolerance<=0.) Tolerance=Epsilon(1000.);
Interference(Obje1, Obje2);
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::Perform
(const Polygon3d1& Obje)
{
SelfInterference(Standard_True);
IndexMin=0;
Tolerance=ToolPolygon3d1::DeflectionOverEstimation(Obje)*2;
Interference(Obje);
}
//--------------------------------------------------------
// Return the number of singularity in the interference.
//--------------------------------------------------------
Standard_Integer Intf_InterferencePolygon3d::NbResults () const
{
return mySLines.Length();
}
//----------------------------------------------------------
// Give the result of range Index in the interference.
//----------------------------------------------------------
const Intf_SectionLine& Intf_InterferencePolygon3d::ResultLine
(const Standard_Integer Index) const
{
return mySLines(Index);
}
//=======================================================================
//function : ResultValue
//purpose : give the distance beetween the two polygons for this result.
//=======================================================================
Standard_Real Intf_InterferencePolygon3d::ResultValue
(const Standard_Integer Index) const
{
return mySLines(Index).GetPoint(1).Pnt().Distance
(mySLines(Index).GetPoint(2).Pnt());
}
//=======================================================================
//function : MinimalDistance
//purpose :
//=======================================================================
Standard_Real Intf_InterferencePolygon3d::MinimalDistance () const
{
return MinimalDist;
}
//=======================================================================
//function : MinimalResult
//purpose : give the result of minimal distance.
//=======================================================================
Standard_Integer Intf_InterferencePolygon3d::MinimalResult () const
{
return IndexMin;
}
//=======================================================================
//function : Interference
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::Interference
(const Polygon3d1& Obje1,
const Polygon3d2& Obje2)
{
beginOfNotClosedFirst=!ToolPolygon3d1::Closed(Obje1);
for (iObje1=1; iObje1<=ToolPolygon3d1::NbSegments(Obje1); iObje1++) {
beginOfNotClosedSecon=!ToolPolygon3d2::Closed(Obje2);
for (iObje2=1; iObje2<=ToolPolygon3d2::NbSegments(Obje2); iObje2++) {
CommonPerpen(ToolPolygon3d1::BeginOfSeg(Obje1, iObje1),
ToolPolygon3d1::EndOfSeg(Obje1, iObje1),
ToolPolygon3d2::BeginOfSeg(Obje2, iObje2),
ToolPolygon3d2::EndOfSeg(Obje2, iObje2));
Projections(ToolPolygon3d1::BeginOfSeg(Obje1, iObje1),
ToolPolygon3d1::EndOfSeg(Obje1, iObje1),
ToolPolygon3d2::BeginOfSeg(Obje2, iObje2),
ToolPolygon3d2::EndOfSeg(Obje2, iObje2));
beginOfNotClosedSecon=Standard_False;
}
beginOfNotClosedFirst=Standard_False;
}
}
//=======================================================================
//function : Interference
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::Interference
(const Polygon3d1& Obje)
{
beginOfNotClosedFirst=!ToolPolygon3d1::Closed(Obje);
beginOfNotClosedSecon=Standard_False;
for (iObje1=1; iObje1<=ToolPolygon3d1::NbSegments(Obje); iObje1++) {
for (iObje2=iObje1+1; iObje2<=ToolPolygon3d1::NbSegments(Obje); iObje2++) {
CommonPerpen(ToolPolygon3d1::BeginOfSeg(Obje, iObje1),
ToolPolygon3d1::EndOfSeg(Obje, iObje1),
ToolPolygon3d1::BeginOfSeg(Obje, iObje2),
ToolPolygon3d1::EndOfSeg(Obje, iObje2));
Projections(ToolPolygon3d1::BeginOfSeg(Obje, iObje1),
ToolPolygon3d1::EndOfSeg(Obje, iObje1),
ToolPolygon3d1::BeginOfSeg(Obje, iObje2),
ToolPolygon3d1::EndOfSeg(Obje, iObje2));
}
beginOfNotClosedFirst=Standard_False;
}
}
//=======================================================================
//function : CommonPerpen
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::CommonPerpen
(const gp_Pnt& BegO, const gp_Pnt& EndO,
const gp_Pnt& BegT, const gp_Pnt& EndT)
{
gp_XYZ segT=EndT.XYZ()-BegT.XYZ();
gp_XYZ segO=EndO.XYZ()-BegO.XYZ();
gp_XYZ refPlane=segT^segO;
Standard_Real lgsO=Sqrt(segT*segT);
Standard_Real lgsT=Sqrt(segO*segO);
if (lgsO<=Tolerance || lgsT<=Tolerance) {
// Un des segments n a pas une longueur significative
}
else if (refPlane.Modulus()<Tolerance) {
// Les deux segments sont paralleles
}
else {
// Les deux segments ne sont pas parralleles
Standard_Real distOP=(BegT.XYZ()*refPlane)/refPlane.Modulus();
Standard_Real distTP=(BegO.XYZ()*refPlane)/refPlane.Modulus();
Standard_Real lgPC=distOP-distTP;
if (Abs(lgPC)< Tolerance) {
// Les deux segments sont dans le meme plan
}
else {
// Les deux segments ne sont pas dans le meme plan
gp_XYZ pO=refPlane^segO; // Plan contenant segO normal a refPlane
pO.Normalize();
Standard_Real dpO=pO*BegO.XYZ();
Standard_Real distBegTpO=(pO*BegT.XYZ())-dpO;
Standard_Real distEndTpO=(pO*EndT.XYZ())-dpO;
Standard_Real parT=-1.;
if (distBegTpO*distEndTpO<0.)
parT=distBegTpO/(distBegTpO-distEndTpO);
else if (Abs(distBegTpO)<=Tolerance)
parT=0.;
else if (Abs(distEndTpO)<=Tolerance)
parT=1.;
if (parT>=0.) {
gp_XYZ pT=refPlane^segT; // Plan contenant segT normal a refPlane
pT.Normalize();
Standard_Real dpT=pT*BegT.XYZ();
Standard_Real distBegOpT=(pT*BegO.XYZ())-dpT;
Standard_Real distEndOpT=(pT*EndO.XYZ())-dpT;
Standard_Real parO=-1.;
if (distBegOpT*distEndOpT<0.)
parO=distBegOpT/(distBegOpT-distEndOpT);
else if (Abs(distBegOpT)<=Tolerance)
parO=0.;
else if (Abs(distEndOpT)<=Tolerance)
parO=1.;
if (parO>=0.) {
// Il y a une perpendiculaire commune interessante
Intf_SectionLine PC;
PC.Append(Intf_SectionPoint
(BegO.Translated(gp_Vec(segO*parO)),
Intf_EDGE, iObje1, 0, parO,
Intf_EXTERNAL, 0, 0, 0., 0));
PC.Append(Intf_SectionPoint
(BegT.Translated(gp_Vec(segT*parT)),
Intf_EXTERNAL, 0, 0, 0.,
Intf_EDGE, iObje2, 0, parT, 0.));
mySLines.Append(PC);
Standard_Real dist=PC.GetPoint(1).Pnt().Distance
(PC.GetPoint(2).Pnt());
if (dist< MinimalDist) {
MinimalDist=dist;
IndexMin=mySLines.Length();
}
}
}
}
}
}
//=======================================================================
//function : Projections
//purpose :
//=======================================================================
void Intf_InterferencePolygon3d::Projections
(const gp_Pnt& BegO, const gp_Pnt& EndO,
const gp_Pnt& BegT, const gp_Pnt& EndT)
{
}
// EOF File: Intf_InterferencePolygon3d.gxx