1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-24 13:50:49 +03:00

0024708: Convertation of the generic classes to the non-generic. Part 2

Generic classes from "AppParCurves" package:
    "AppDef_SmoothCriterion", "AppDef_LinearCriteria" and "AppDef_Variational" moved to the corresponding non-generic classes "AppDef_SmoothCriterion", "AppDef_LinearCriteria" and "AppDef_Variational" to "AppDef" package. Also several "*.cxx" files of "AppDef_Variational" class merged to one ".cxx".
Generic class from "IntImp" package:
    "IntImp_ZerCOnSSParFunc" moved to the corresponding non-generic class "IntPatch_CSFunction" to "IntPatch" package.
Next unused generic classes were removed:

- IntCurveSurface_SurfaceTool
- Intf_InterferencePolygon3d
And some other minor changes.
This commit is contained in:
dln
2014-03-05 18:22:43 +04:00
committed by abv
parent 84c71f29e4
commit f62de37212
37 changed files with 3482 additions and 4806 deletions

View File

@@ -32,8 +32,6 @@ is
generic class ZerCSParFunc; -- inherits FunctionSetWithDerivatives
generic class ZerCOnSSParFunc; -- inherits FunctionSetWithDerivatives
generic class Int2S,TheFunction;
generic class IntCS;

View File

@@ -1,92 +0,0 @@
-- Created on: 1994-02-14
-- Created by: Jacques GOUSSARD
-- Copyright (c) 1994-1999 Matra Datavision
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
--
-- This file is part of Open CASCADE Technology software library.
--
-- This library is free software; you can redistribute it and/or modify it under
-- the terms of the GNU Lesser General Public License version 2.1 as published
-- by the Free Software Foundation, with special exception defined in the file
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-- distribution for complete text of the license and disclaimer of any warranty.
--
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
generic class ZerCOnSSParFunc from IntImp
(ThePSurface as any;
ThePSurfaceTool as any;
TheCurveOnSurf as any;
TheCurveTool as any
)
inherits FunctionSetWithDerivatives from math
---Purpose: this function is associated to the intersection between
-- a curve on surface and a surface .
uses Vector from math,
Matrix from math,
Pnt from gp
is
Create( S1 : ThePSurface;
C : TheCurveOnSurf;
S2 : ThePSurface )
---Purpose: S1 is the surface on which the intersection is searched.
-- C is a curve on the surface S2.
returns ZerCOnSSParFunc from IntImp;
NbVariables(me) returns Integer from Standard
is static;
NbEquations(me) returns Integer from Standard
is static;
Value(me : in out; X : in Vector from math;
F : out Vector from math)
returns Boolean from Standard
is static;
Derivatives(me : in out;X : in Vector from math;
D : out Matrix from math)
returns Boolean from Standard
is static;
Values(me : in out;
X : in Vector from math;
F : out Vector from math; D: out Matrix from math)
returns Boolean from Standard
is static;
Point(me)
---C++: return const&
returns Pnt from gp
is static;
Root(me) returns Real from Standard
is static;
AuxillarSurface(me)
---C++: return const&
returns ThePSurface
is static;
AuxillarCurve(me)
---C++: return const&
returns TheCurveOnSurf
is static;
fields
curve : Address from Standard; --- TheCurveOnSurf;
surface1 : Address from Standard; --- ThePSurface;
surface2 : Address from Standard; --- ThePSurface;
p : Pnt from gp;
f : Real from Standard;
end ZerCOnSSParFunc;

View File

@@ -1,127 +0,0 @@
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
#define SURFACE1 (*((ThePSurface *)(surface1)))
#define SURFACE2 (*((ThePSurface *)(surface2)))
#define CURVE (*((TheCurveOnSurf *)(curve)))
IntImp_ZerCOnSSParFunc::IntImp_ZerCOnSSParFunc(const ThePSurface& S1,
const TheCurveOnSurf& C,
const ThePSurface& S2)
{
surface1 = (Standard_Address)(&S1);
surface2 = (Standard_Address)(&S2);
curve = (Standard_Address)(&C);
}
Standard_Integer IntImp_ZerCOnSSParFunc::NbVariables()const { return 3;}
Standard_Integer IntImp_ZerCOnSSParFunc::NbEquations()const { return 3;}
Standard_Boolean IntImp_ZerCOnSSParFunc::Value(const math_Vector& X,
math_Vector& F){
gp_Pnt Psurf(ThePSurfaceTool::Value(SURFACE1,X(1),X(2)));
gp_Pnt2d p2d(TheCurveTool::Value(CURVE,X(3)));
gp_Pnt Pcurv(ThePSurfaceTool::Value(SURFACE2,p2d.X(),p2d.Y()));
F(1) = Psurf.X()-Pcurv.X();
F(2) = Psurf.Y()-Pcurv.Y();
F(3) = Psurf.Z()-Pcurv.Z();
f = F(1)*F(1)+ F(2)*F(2)+ F(3)*F(3);
p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())/2.);
return Standard_True;
}
Standard_Boolean IntImp_ZerCOnSSParFunc::Derivatives ( const math_Vector& X,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
gp_Vec D1u,D1v,D1w;
gp_Pnt2d p2d;
gp_Vec2d d2d;
gp_Vec d1u,d1v;
ThePSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(CURVE,X(3),p2d,d2d);
ThePSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
D(1,1) = D1u.X();
D(1,2) = D1v.X();
D(1,3) = -D1w.X();
D(2,1) = D1u.Y();
D(2,2) = D1v.Y();
D(2,3) = -D1w.Y();
D(3,1) = D1u.Z();
D(3,2) = D1v.Z();
D(3,3) = -D1w.Z();
return Standard_True;
}
Standard_Boolean IntImp_ZerCOnSSParFunc::Values( const math_Vector& X,
math_Vector& F,
math_Matrix& D) {
gp_Pnt Psurf,Pcurv;
gp_Vec D1u,D1v,D1w;
gp_Pnt2d p2d;
gp_Vec2d d2d;
gp_Vec d1u,d1v;
ThePSurfaceTool::D1(SURFACE1,X(1),X(2),Psurf,D1u,D1v);
TheCurveTool::D1(CURVE,X(3),p2d,d2d);
ThePSurfaceTool::D1(SURFACE2,p2d.X(),p2d.Y(),Pcurv,d1u,d1v);
D1w.SetLinearForm(d2d.X(),d1u,d2d.Y(),d1v);
D(1,1) = D1u.X();
D(1,2) = D1v.X();
D(1,3) = -D1w.X();
D(2,1) = D1u.Y();
D(2,2) = D1v.Y();
D(2,3) = -D1w.Y();
D(3,1) = D1u.Z();
D(3,2) = D1v.Z();
D(3,3) = -D1w.Z();
F(1) = Psurf.X()-Pcurv.X();
F(2) = Psurf.Y()-Pcurv.Y();
F(3) = Psurf.Z()-Pcurv.Z();
f = F(1)*F(1)+ F(2)*F(2)+ F(3)*F(3);
p = gp_Pnt((Psurf.XYZ()+Pcurv.XYZ())/2.);
return Standard_True;
}
const gp_Pnt& IntImp_ZerCOnSSParFunc::Point() const { return p;}
Standard_Real IntImp_ZerCOnSSParFunc::Root() const { return f;}
const ThePSurface& IntImp_ZerCOnSSParFunc::AuxillarSurface() const {
return SURFACE1;}
const TheCurveOnSurf& IntImp_ZerCOnSSParFunc::AuxillarCurve() const {
return CURVE;}
#undef SURFACE1
#undef SURFACE2
#undef CURVE