1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-24 13:50:49 +03:00

Creation MOTORS_7.1.0 branch

This commit is contained in:
bugmaster
2017-05-15 10:51:03 +03:00
parent 89aebdea8d
commit f2fcedf674
85 changed files with 8215 additions and 0 deletions

View File

@@ -5,3 +5,6 @@ Visualization TKService TKV3d TKOpenGl TKMeshVS TKIVtk TKD3DHost
ApplicationFramework TKCDF TKLCAF TKCAF TKBinL TKXmlL TKBin TKXml TKStdL TKStd TKTObj TKBinTObj TKXmlTObj TKVCAF
DataExchange TKXSBase TKSTEPBase TKSTEPAttr TKSTEP209 TKSTEP TKIGES TKXCAF TKXDEIGES TKXDESTEP TKSTL TKVRML TKXmlXCAF TKBinXCAF
Draw TKDraw TKTopTest TKViewerTest TKXSDRAW TKDCAF TKXDEDRAW TKTObjDRAW TKQADraw TKIVtkDraw DRAWEXE
Helix TKHelix
Unfolding TKUnfolding TKUnfoldingTest
OCCTools TKOCCTools TKOCCToolsTest

View File

@@ -0,0 +1,64 @@
// Created by: Eugeny MALTCHIKOV
// Copyright (c) 2016 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BOPAlgo_GlueEnum_HeaderFile
#define _BOPAlgo_GlueEnum_HeaderFile
//! The Enumeration describes an additional option for the algorithms
//! in the Boolean Component such as General Fuse, Boolean operations,
//! Section operation, Maker Volume and Cells Builder algorithms.
//!
//! The Gluing options have been designed to speed up the computation
//! of the interference among arguments of the operations on special cases,
//! in which the arguments may be overlapping but do not have real intersections
//! between their sub-shapes.
//!
//! This option cannot be used on the shapes having real intersections,
//! like intersection vertex between edges, or intersection vertex between
//! edge and a face or intersection line between faces.
//!
//! There are two possibilities of overlapping shapes:
//! 1. The shapes can be partially coinciding - the faces do not have
//! intersection curves, but overlapping. The faces of such arguments will
//! be split during the operation;
//! 2. The shapes can be fully coinciding - there should be no partial
//! overlapping of the faces, thus no intersection of type EDGE/FACE at all.
//! In such cases the faces will not be split during the operation.
//!
//! Even though there are no real intersections on such cases without Gluing options the algorithm
//! will still intersect the sub-shapes of the arguments with interfering bounding boxes.
//!
//! The performance improvement in gluing mode is achieved by excluding
//! the most time consuming computations according to the given Gluing parameter:
//! 1. Computation of FACE/FACE intersections for partial coincidence;
//! 2. And computation of VERTEX/FACE, EDGE/FACE and FACE/FACE intersections for full coincidence.
//!
//! By setting the Gluing option for the operation user should guarantee
//! that the arguments are really coinciding. The algorithms do not check this itself.
//! Setting inappropriate option for the operation is likely to lead to incorrect result.
//!
//! There are following items in the enumeration:
//! BOPAlgo_GlueOff - default value for the algorithms, Gluing is switched off;
//! BOPAlgo_GlueShift - Glue option for shapes with partial coincidence;
//! BOPAlgo_GlueFull - Glue option for shapes with full coincidence.
//!
enum BOPAlgo_GlueEnum
{
BOPAlgo_GlueOff,
BOPAlgo_GlueShift,
BOPAlgo_GlueFull
};
#endif // _BOPAlgo_GlueEnum_HeaderFile

2
src/HelixBRep/FILES Normal file
View File

@@ -0,0 +1,2 @@
HelixBRep_BuilderHelix.cxx
HelixBRep_BuilderHelix.hxx

View File

@@ -0,0 +1,637 @@
// File: HelixBRep_BuilderHelix.cxx
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <gp.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Lin.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <HelixBRep_BuilderHelix.hxx>
#include <HelixGeom_BuilderHelix.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_HArray1OfBoolean.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TopExp.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
//=======================================================================
//function :
//purpose :
//=======================================================================
HelixBRep_BuilderHelix::HelixBRep_BuilderHelix()
{
gp_Pnt aP0(0.,0.,0);
//
myAxis3.SetDirection(gp::DZ());
myAxis3.SetLocation(aP0);
myDiams = NULL;
myHeights = NULL;
myPitches = NULL;
myIsPitches = NULL;
myNParts = 1;
myShape.Nullify();
//
myTolerance=0.0001;
myContinuity=GeomAbs_C1;
myMaxDegree=8;
myMaxSegments=1000;
//
myTolReached=99.;
//
myErrorStatus = 1;
myWarningStatus = 1;
}
//=======================================================================
//function : ~
//purpose :
//=======================================================================
HelixBRep_BuilderHelix::~HelixBRep_BuilderHelix()
{
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const TColStd_Array1OfReal& theDiams,
const TColStd_Array1OfReal& theHeights,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfBoolean& bIsPitches)
{
myNParts = theDiams.Length() - 1;
myAxis3 = theAxis;
myDiams = NULL;
myHeights = NULL;
myPitches = NULL;
myShape.Nullify();
myErrorStatus = 1;
myWarningStatus = 1;
if(myNParts != theHeights.Length() || myNParts != thePitches.Length() || myNParts != bIsPitches.Length()) {
Standard_ConstructionError::
Raise("HelixBRep_BuilderHelix::SetParameters: wrong array dimension");
}
myDiams = new TColStd_HArray1OfReal(1, myNParts+1);
myHeights = new TColStd_HArray1OfReal(1, myNParts);
myPitches = new TColStd_HArray1OfReal(1, myNParts);
myIsPitches = new TColStd_HArray1OfBoolean(1, myNParts);
myDiams->ChangeArray1() = theDiams;
myHeights->ChangeArray1() = theHeights;
myPitches->ChangeArray1() = thePitches;
myIsPitches->ChangeArray1() = bIsPitches;
myErrorStatus = 0;
myWarningStatus = 0;
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const Standard_Real theDiam,
const TColStd_Array1OfReal& theHeights,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfBoolean& bIsPitches)
{
Standard_Integer aNbParts = theHeights.Length();
TColStd_Array1OfReal aDiams(1, aNbParts+1);
aDiams.Init(theDiam);
SetParameters(theAxis, aDiams, theHeights, thePitches, bIsPitches);
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const Standard_Real theDiam1,
const Standard_Real theDiam2,
const TColStd_Array1OfReal& theHeights,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfBoolean& bIsPitches)
{
Standard_Integer aNbParts = theHeights.Length();
TColStd_Array1OfReal aDiams(1, aNbParts+1);
Standard_Integer i, j;
Standard_Real anH = 0.;
for(i = theHeights.Lower(); i <= theHeights.Upper(); ++i) {
anH += theHeights(i);
}
Standard_Real K = (theDiam2 - theDiam1)/anH;
aDiams(1) = theDiam1;
aDiams(aNbParts+1) = theDiam2;
anH = theHeights(1);
for(i = theHeights.Lower()+1, j = 2; i <= theHeights.Upper(); ++i, ++j) {
aDiams(j) = theDiam1 + K * anH;
anH += theHeights(i);
}
SetParameters(theAxis, aDiams, theHeights, thePitches, bIsPitches);
}
//=======================================================================
//function : SetApproxParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetApproxParameters(const Standard_Real aTolerance,
const Standard_Integer aMaxDegree,
const GeomAbs_Shape aCont)
{
myTolerance=aTolerance;
myMaxDegree=aMaxDegree;
myContinuity=aCont;
}
//=======================================================================
//function : ToleranceReached
//purpose :
//=======================================================================
Standard_Real HelixBRep_BuilderHelix::ToleranceReached()const
{
return myTolReached;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::Perform()
{
if(myErrorStatus != 0) return;
Standard_Integer i;
myTolReached = 0.;
myShape.Nullify();
BRep_Builder aBB;
//aBB.MakeCompound(TopoDS::Compound(myShape));
TopTools_ListOfShape anLst;
gp_Ax1 anAxis(myAxis3.Axis());
gp_Pnt aPStart = myAxis3.Location();
aPStart.Translate(.5*myDiams->Value(1)*myAxis3.XDirection());
Standard_Boolean bIsClockwise = myAxis3.Direct();
Standard_Real aHeight;
Standard_Real aPitch;
Standard_Real aTaperAngle;
for(i = 1; i <= myNParts; ++i) {
aHeight = myHeights->Value(i);
if(myIsPitches->Value(i)) {
aPitch = myPitches->Value(i);
}
else {
aPitch = aHeight/myPitches->Value(i);
}
aTaperAngle = ATan(.5*(myDiams->Value(i+1) - myDiams->Value(i))/aHeight);
TopoDS_Wire aPart;
aBB.MakeWire(aPart);
BuildPart(anAxis, aPStart, aHeight, aPitch, aTaperAngle, bIsClockwise, aPart);
if(myErrorStatus != 0) return;
TopoDS_Vertex V1, V2;
TopExp::Vertices(aPart, V1, V2);
aPStart = BRep_Tool::Pnt(V2);
anAxis.SetLocation(anAxis.Location().Translated(aHeight*anAxis.Direction()));
anLst.Append(aPart);
//aBB.Add(myShape, aPart);
}
Smoothing(anLst);
TopTools_ListIteratorOfListOfShape anIt(anLst);
BRepBuilderAPI_MakeWire aMkWire(TopoDS::Wire(anLst.First()));
anIt.Next();
for(; anIt.More(); anIt.Next()) {
aMkWire.Add(TopoDS::Wire(anIt.Value()));
}
myShape = aMkWire.Shape();
}
//=======================================================================
//function : BuildPart
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::BuildPart(const gp_Ax1& theAxis,
const gp_Pnt& thePStart,
const Standard_Real theHeight,
const Standard_Real thePitch,
const Standard_Real theTaperAngle,
const Standard_Boolean bIsClockwise,
TopoDS_Wire& thePart)
{
if(myErrorStatus != 0) return;
myErrorStatus=0;
myWarningStatus=0;
//
// 1. check & prepare data
Standard_Real aTolPrec, aDist, aDM, aTwoPI, aC1, aT2, aT1, aT0;
//
aTolPrec=myTolerance;
Standard_Real aTolAng = 1.e-7;
//
if (theTaperAngle > M_PI/2. - aTolAng) {
myErrorStatus=13; // invalid TaperAngle value
return;
}
if (theHeight<aTolPrec) {
myErrorStatus=12; // invalid Height value
return;
}
if (thePitch<aTolPrec) {
myErrorStatus=11; // invalid Pitch value
return;
}
//
gp_Lin aLin(theAxis);
aDist=aLin.Distance(thePStart);
if (aDist<aTolPrec) {
myErrorStatus=10; // myPStart belongs to the myAxis
return;
}
aTolAng = aTolPrec/aDist;
Standard_Real aAngleStart = 0.;
Standard_Boolean bIsOutWard = Standard_False;
if(theTaperAngle > 0.) bIsOutWard = Standard_True;
//
const gp_Dir& aDir=theAxis.Direction();
gp_Vec aVec1 = gp_Vec(aDir);
gp_Pnt aM0 = theAxis.Location();
gp_Vec aVec(aM0, thePStart);
aDM=aVec1.Dot(aVec);
gp_Pnt aM1= aM0.Translated(aDM*aVec1);
gp_Vec aVecX(aM1, thePStart);
gp_Dir aDirX(aVecX);
gp_Ax2 aAx2(aM1, aDir, aDirX);
//
aTwoPI=2.*M_PI;
aC1=thePitch/aTwoPI;
aT0 = 0.;
aT1=aAngleStart;
aT2=theHeight/aC1;
//
// 2. compute
Standard_Boolean bIsDone;
Standard_Integer iErr, aNbC, i;
HelixGeom_BuilderHelix aBH;
gp_Pnt aP1, aP2;
BRep_Builder aBB;
BRepBuilderAPI_MakeEdge aBME;
TopoDS_Vertex aV1, aV2;
//TopoDS_Wire aW;
TopoDS_Edge aE;
//
aBH.SetPosition(aAx2);
aBH.SetCurveParameters(aT0, aT2, thePitch, aDist, theTaperAngle, bIsClockwise);
aBH.SetTolerance(myTolerance);
aBH.SetApproxParameters(myContinuity, myMaxDegree, myMaxSegments);
//
aBH.Perform();
iErr=aBH.ErrorStatus();
if (iErr) {
myErrorStatus=2;
return;
}
//
aBB.MakeWire(thePart);
//
myTolReached=Max(myTolReached, aBH.ToleranceReached());
TColGeom_SequenceOfCurve aSC;
aSC.Assign(aBH.Curves());
if(aT1 < 0.) {
HelixGeom_BuilderHelix aBH1;
aBH1.SetPosition(aAx2);
aBH1.SetCurveParameters(aT1, aT0, thePitch, aDist, theTaperAngle, bIsClockwise);
aBH1.SetTolerance(myTolerance);
aBH1.SetApproxParameters(myContinuity, myMaxDegree, myMaxSegments);
//
aBH1.Perform();
iErr=aBH1.ErrorStatus();
if (iErr) {
myErrorStatus=2;
return;
}
myTolReached = Max(myTolReached, aBH1.ToleranceReached());
const TColGeom_SequenceOfCurve& aSC1=aBH1.Curves();
Standard_Integer nbc = aSC1.Length();
for(i = nbc; i >= 1; i--) {
aSC.Prepend(aSC1.Value(i));
}
}
aNbC=aSC.Length();
for (i=1; i<=aNbC; ++i) {
Handle(Geom_Curve) aC=aSC(i);
//
if (i==1) {
if(aT1 > 0.) {
aT2=aC->LastParameter();
Handle(Geom_TrimmedCurve) aCT = new Geom_TrimmedCurve(aC, aT1, aT2);
aC = aCT;
}
aT1=aC->FirstParameter();
aC->D0(aT1, aP1);
aBB.MakeVertex(aV1, aP1, myTolReached);
aV1.Orientation(TopAbs_FORWARD);
}
//
aT2=aC->LastParameter();
aC->D0(aT2, aP2);
aBB.MakeVertex(aV2, aP2, myTolReached);
aV2.Orientation(TopAbs_REVERSED);
//
aBME.Init(aC, aV1, aV2);
bIsDone=aBME.IsDone();
if (!bIsDone) {
myErrorStatus=3;
return;
}
aE=aBME.Edge();
aBB.UpdateEdge(aE, myTolReached);
aBB.Add(thePart, aE);
//
aV1=aV2;
aV1.Orientation(TopAbs_FORWARD);
}
//
if(myTolReached > myTolerance) myWarningStatus = 1;
}
//=======================================================================
//function : Smoothing
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::Smoothing(TopTools_ListOfShape& theParts)
{
if(theParts.Extent() == 1) return;
BRepTools_WireExplorer anExpl;
TopoDS_Wire aPrevWire = TopoDS::Wire(theParts.First());
anExpl.Init(aPrevWire);
TopoDS_Edge aPrevEdge;
for(; anExpl.More(); anExpl.Next()) {
aPrevEdge = anExpl.Current();
}
TopTools_ListIteratorOfListOfShape anIter(theParts);
anIter.Next();
for(; anIter.More(); anIter.Next()) {
TopoDS_Wire aNextWire = TopoDS::Wire(anIter.Value());
anExpl.Clear();
anExpl.Init(aNextWire);
TopoDS_Edge aNextEdge = anExpl.Current();
//Smoothing curves
SmoothingEdges(aPrevEdge, aNextEdge);
for(; anExpl.More(); anExpl.Next()) {
aPrevEdge = anExpl.Current();
}
}
}
//=======================================================================
//function : Smoothing
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SmoothingEdges(TopoDS_Edge& thePrev,
TopoDS_Edge& theNext)
{
static const Standard_Real EpsAng = 1.e-7;
BRep_Builder aBB;
Standard_Real f1, l1, f2, l2;
Handle(Geom_BSplineCurve) aCPrev =
Handle(Geom_BSplineCurve)::DownCast(BRep_Tool::Curve(thePrev, f1, l1));
Handle(Geom_BSplineCurve) aCNext =
Handle(Geom_BSplineCurve)::DownCast(BRep_Tool::Curve(theNext, f2, l2));
gp_Pnt P1, P2;
gp_Vec V1, V2;
aCPrev->D1(l1, P1, V1);
aCNext->D1(f2, P2, V2);
if(V1.Angle(V2) < EpsAng) return;
V1 = 0.5*(V1 + V2);
V2 = V1;
Standard_Integer anErrorStatus = 1;
Standard_Integer aDegMax = Geom_BSplineCurve::MaxDegree();
Standard_Integer aDeg = aCPrev->Degree();
Standard_Integer i;
Standard_Boolean bPrevOK = Standard_False;
Standard_Boolean bNextOK = Standard_False;
aCPrev->MovePointAndTangent(l1, P1, V1, myTolerance, 1, -1, anErrorStatus);
if(anErrorStatus != 0) {
for(i = aDeg + 1; i <= aDegMax; ++i) {
aCPrev->IncreaseDegree(i);
aCPrev->MovePointAndTangent(l1, P1, V1, myTolerance, 1, -1, anErrorStatus);
if(anErrorStatus == 0) {
bPrevOK = Standard_True;
break;
}
}
}
else {
bPrevOK = Standard_True;
}
if(bPrevOK) {
aBB.UpdateEdge(thePrev, aCPrev, BRep_Tool::Tolerance(thePrev));
}
aDeg = aCNext->Degree();
aCNext->MovePointAndTangent(f2, P2, V2, myTolerance, -1, 1, anErrorStatus);
if(anErrorStatus != 0) {
for(i = aDeg + 1; i <= aDegMax; ++i) {
aCNext->IncreaseDegree(i);
aCNext->MovePointAndTangent(f2, P2, V2, myTolerance, -1, 1, anErrorStatus);
if(anErrorStatus == 0) {
bNextOK = Standard_True;
break;
}
}
}
else {
bNextOK = Standard_True;
}
if(bNextOK) {
aBB.UpdateEdge(theNext, aCNext, BRep_Tool::Tolerance(theNext));
}
}
//=======================================================================
//function : ErrorStatus
//purpose :
//=======================================================================
Standard_Integer HelixBRep_BuilderHelix::ErrorStatus()const
{
return myErrorStatus;
}
//=======================================================================
//function : WarningStatus
//purpose :
//=======================================================================
Standard_Integer HelixBRep_BuilderHelix::WarningStatus()const
{
return myWarningStatus;
}
//=======================================================================
//function : Shape
//purpose :
//=======================================================================
const TopoDS_Shape& HelixBRep_BuilderHelix::Shape() const
{
return myShape;
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const TColStd_Array1OfReal& theDiams,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfReal& theNbTurns)
{
Standard_Integer aNbParts = theDiams.Length() - 1;
if(aNbParts != thePitches.Length() || aNbParts != theNbTurns.Length()) {
Standard_ConstructionError::
Raise("HelixBRep_BuilderHelix::SetParameters: wrong array dimension");
}
TColStd_Array1OfReal aHeights(1, aNbParts);
TColStd_Array1OfBoolean bIsPitches(1, aNbParts);
bIsPitches.Init(Standard_True);
Standard_Integer i, ip, in;
for(i = 1, ip = thePitches.Lower(), in = theNbTurns.Lower(); i <= thePitches.Length(); ++i, ip++, in++) {
aHeights(i) = thePitches(ip)*theNbTurns(in);
}
SetParameters(theAxis, theDiams, aHeights, thePitches, bIsPitches);
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const Standard_Real theDiam,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfReal& theNbTurns)
{
Standard_Integer aNbParts = thePitches.Length();
if(aNbParts != theNbTurns.Length()) {
Standard_ConstructionError::
Raise("HelixBRep_BuilderHelix::SetParameters: wrong array dimension");
}
TColStd_Array1OfReal aHeights(1, aNbParts);
TColStd_Array1OfBoolean bIsPitches(1, aNbParts);
bIsPitches.Init(Standard_True);
Standard_Integer i, ip, in;
for(i = 1, ip = thePitches.Lower(), in = theNbTurns.Lower(); i <= thePitches.Length(); ++i, ip++, in++) {
aHeights(i) = thePitches(ip)*theNbTurns(in);
}
SetParameters(theAxis, theDiam, aHeights, thePitches, bIsPitches);
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
void HelixBRep_BuilderHelix::SetParameters(const gp_Ax3& theAxis,
const Standard_Real theDiam1,
const Standard_Real theDiam2,
const TColStd_Array1OfReal& thePitches,
const TColStd_Array1OfReal& theNbTurns)
{
Standard_Integer aNbParts = thePitches.Length();
if(aNbParts != theNbTurns.Length()) {
Standard_ConstructionError::
Raise("HelixBRep_BuilderHelix::SetParameters: wrong array dimension");
}
TColStd_Array1OfReal aHeights(1, aNbParts);
TColStd_Array1OfBoolean bIsPitches(1, aNbParts);
bIsPitches.Init(Standard_True);
Standard_Integer i, ip, in;
for(i = 1, ip = thePitches.Lower(), in = theNbTurns.Lower(); i <= thePitches.Length(); ++i, ip++, in++) {
aHeights(i) = thePitches(ip)*theNbTurns(in);
}
SetParameters(theAxis, theDiam1, theDiam2, aHeights, thePitches, bIsPitches);
}

View File

@@ -0,0 +1,133 @@
// File: HelixBRep_BuilderHelix.cdl
#ifndef _HelixBRep_BuilderHelix_HeaderFile
#define _HelixBRep_BuilderHelix_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <gp_Ax3.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <GeomAbs_Shape.hxx>
#include <TopoDS_Shape.hxx>
#include <Standard_Boolean.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include <TColStd_HArray1OfBoolean.hxx>
class gp_Ax3;
class TopoDS_Shape;
class gp_Ax1;
class gp_Pnt;
class TopoDS_Wire;
class TopoDS_Edge;
//! Implementation of building helix wire
//! Values of Error Status returned by algo:
//! 0 - OK
//! 1 - object is just initialized, it means that no input parameters were set
//! 2 - approximation fails
//!
//! 10 - R < tolerance - starting point is too close to axis
//! 11 - step (Pitch) < tolerancee
//! 12 - Height < tolerance
//! 13 - TaperAngle < 0 or TaperAngle > Pi/2 - TolAng
//! Warning Status:
//! 0 - OK
//! 1 - tolerance reached by approximation > requested tolerance.
class HelixBRep_BuilderHelix
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT HelixBRep_BuilderHelix();
Standard_EXPORT virtual ~HelixBRep_BuilderHelix();
//! Sets parameters of general composite helix
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const TColStd_Array1OfReal& theDiams, const TColStd_Array1OfReal& theHeights, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfBoolean& theIsPitches);
//! Sets parameters of pure helix
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const Standard_Real theDiam, const TColStd_Array1OfReal& theHeights, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfBoolean& theIsPitches);
//! Sets parameters of pure spiral
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const Standard_Real theDiam1, const Standard_Real theDiam2, const TColStd_Array1OfReal& theHeights, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfBoolean& theIsPitches);
//! Sets parameters of general composite helix
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const TColStd_Array1OfReal& theDiams, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfReal& theNbTurns);
//! Sets parameters of pure helix
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const Standard_Real theDiam, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfReal& theNbTurns);
//! Sets parameters of pure spiral
Standard_EXPORT void SetParameters (const gp_Ax3& theAxis, const Standard_Real theDiam1, const Standard_Real theDiam2, const TColStd_Array1OfReal& thePitches, const TColStd_Array1OfReal& theNbTurns);
//! Sets parameters for approximation
Standard_EXPORT void SetApproxParameters (const Standard_Real theTolerance, const Standard_Integer theMaxDegree, const GeomAbs_Shape theContinuity);
//! Performs calculations
Standard_EXPORT void Perform();
//! Gets tolerance reached by approximation
Standard_EXPORT Standard_Real ToleranceReached() const;
//! Returns error status of algorithm
Standard_EXPORT Standard_Integer ErrorStatus() const;
//! Returns warning status of algorithm
Standard_EXPORT Standard_Integer WarningStatus() const;
//! Gets result of algorithm
Standard_EXPORT const TopoDS_Shape& Shape() const;
protected:
gp_Ax3 myAxis3;
Handle(TColStd_HArray1OfReal) myDiams;
Handle(TColStd_HArray1OfReal) myHeights;
Handle(TColStd_HArray1OfReal) myPitches;
Handle(TColStd_HArray1OfBoolean) myIsPitches;
Standard_Real myTolerance;
Standard_Real myTolReached;
GeomAbs_Shape myContinuity;
Standard_Integer myMaxDegree;
Standard_Integer myMaxSegments;
Standard_Integer myErrorStatus;
Standard_Integer myWarningStatus;
TopoDS_Shape myShape;
private:
Standard_EXPORT void BuildPart (const gp_Ax1& theAxis, const gp_Pnt& thePStart, const Standard_Real theHeight, const Standard_Real thePitch, const Standard_Real theTaperAngle, const Standard_Boolean theIsClockwise, TopoDS_Wire& thePart);
Standard_EXPORT void Smoothing (TopTools_ListOfShape& theParts);
Standard_EXPORT void SmoothingEdges (TopoDS_Edge& thePrev, TopoDS_Edge& theNext);
Standard_Integer myNParts;
};
#endif // _HelixBRep_BuilderHelix_HeaderFile

16
src/HelixGeom/FILES Normal file
View File

@@ -0,0 +1,16 @@
HelixGeom_BuilderApproxCurve.cxx
HelixGeom_BuilderApproxCurve.hxx
HelixGeom_BuilderHelix.cxx
HelixGeom_BuilderHelix.hxx
HelixGeom_BuilderHelixCoil.cxx
HelixGeom_BuilderHelixCoil.hxx
HelixGeom_BuilderHelixGen.cxx
HelixGeom_BuilderHelixGen.hxx
HelixGeom_GHHelixCurve.hxx
HelixGeom_GHHelixCurve_0.cxx
HelixGeom_HelixCurve.cxx
HelixGeom_HelixCurve.hxx
HelixGeom_HHelixCurve.cxx
HelixGeom_HHelixCurve.hxx
HelixGeom_Tools.cxx
HelixGeom_Tools.hxx

View File

@@ -0,0 +1,102 @@
// File: HelixGeom_BuilderApproxCurve.cxx
#include <HelixGeom_BuilderApproxCurve.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
//=======================================================================
//function :
//purpose :
//=======================================================================
HelixGeom_BuilderApproxCurve::HelixGeom_BuilderApproxCurve()
{
myTolerance=0.0001;
myCont=GeomAbs_C2;
myMaxDegree=8;
myMaxSeg=150;
//
myTolReached=99.;
}
//=======================================================================
//function : ~
//purpose :
//=======================================================================
HelixGeom_BuilderApproxCurve::~HelixGeom_BuilderApproxCurve()
{
}
//=======================================================================
//function : SetApproxParameters
//purpose :
//=======================================================================
void HelixGeom_BuilderApproxCurve::SetApproxParameters(const GeomAbs_Shape aCont,
const Standard_Integer aMaxDegree,
const Standard_Integer aMaxSeg)
{
myCont=aCont;
myMaxDegree=aMaxDegree;
myMaxSeg=aMaxSeg;
}
//=======================================================================
//function : ApproxParameters
//purpose :
//=======================================================================
void HelixGeom_BuilderApproxCurve::ApproxParameters(GeomAbs_Shape& aCont,
Standard_Integer& aMaxDegree,
Standard_Integer& aMaxSeg)const
{
aCont=myCont;
aMaxDegree=myMaxDegree;
aMaxSeg=myMaxSeg;
}
//=======================================================================
//function : SetTolerance
//purpose :
//=======================================================================
void HelixGeom_BuilderApproxCurve::SetTolerance(const Standard_Real aTolerance)
{
myTolerance=aTolerance;
}
//=======================================================================
//function : Tolerance
//purpose :
//=======================================================================
Standard_Real HelixGeom_BuilderApproxCurve::Tolerance()const
{
return myTolerance;
}
//=======================================================================
//function : ToleranceReached
//purpose :
//=======================================================================
Standard_Real HelixGeom_BuilderApproxCurve::ToleranceReached()const
{
return myTolReached;
}
//=======================================================================
//function : Curves
//purpose :
//=======================================================================
const TColGeom_SequenceOfCurve& HelixGeom_BuilderApproxCurve::Curves()const
{
return myCurves;
}
//=======================================================================
//function : ErrorStatus
//purpose :
//=======================================================================
Standard_Integer HelixGeom_BuilderApproxCurve::ErrorStatus()const
{
return myErrorStatus;
}
//=======================================================================
//function : WarningStatus
//purpose :
//=======================================================================
Standard_Integer HelixGeom_BuilderApproxCurve::WarningStatus()const
{
return myWarningStatus;
}

View File

@@ -0,0 +1,86 @@
// File: HelixGeom_BuilderApproxCurve.cdl
#ifndef _HelixGeom_BuilderApproxCurve_HeaderFile
#define _HelixGeom_BuilderApproxCurve_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <GeomAbs_Shape.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
//! Root class for algorithm of building helix curves
class HelixGeom_BuilderApproxCurve
{
public:
DEFINE_STANDARD_ALLOC
//! Sets aprroximation parameters
Standard_EXPORT void SetApproxParameters (const GeomAbs_Shape aCont, const Standard_Integer aMaxDegree, const Standard_Integer aMaxSeg);
//! Gets aprroximation parameters
Standard_EXPORT void ApproxParameters (GeomAbs_Shape& aCont, Standard_Integer& aMaxDegree, Standard_Integer& aMaxSeg) const;
//! Sets aprroximation tolerance
Standard_EXPORT void SetTolerance (const Standard_Real aTolerance);
//! Gets aprroximation tolerance
Standard_EXPORT Standard_Real Tolerance() const;
//! Gets actual tolerance reached by approximation algorithm
Standard_EXPORT Standard_Real ToleranceReached() const;
//! Gets sequence of Bspline curves representing helix coins.
Standard_EXPORT const TColGeom_SequenceOfCurve& Curves() const;
//! Returns error status of algorithm
Standard_EXPORT Standard_Integer ErrorStatus() const;
//! Returns warning status of algorithm
Standard_EXPORT Standard_Integer WarningStatus() const;
//! Performs calculations.
//! Must be redefined.
Standard_EXPORT virtual void Perform() = 0;
protected:
//! Sets default values of aprroximation parameters
Standard_EXPORT HelixGeom_BuilderApproxCurve();
Standard_EXPORT virtual ~HelixGeom_BuilderApproxCurve();
Standard_Integer myErrorStatus;
Standard_Integer myWarningStatus;
Standard_Real myTolerance;
GeomAbs_Shape myCont;
Standard_Integer myMaxDegree;
Standard_Integer myMaxSeg;
Standard_Real myTolReached;
TColGeom_SequenceOfCurve myCurves;
private:
};
#endif // _HelixGeom_BuilderApproxCurve_HeaderFile

View File

@@ -0,0 +1,165 @@
// File: HelixGeom_BuilderHelix.cxx
#include <Geom_Curve.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Trsf.hxx>
#include <HelixGeom_BuilderHelix.hxx>
#include <HelixGeom_BuilderHelixCoil.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
//=======================================================================
//function :
//purpose :
//=======================================================================
HelixGeom_BuilderHelix::HelixGeom_BuilderHelix()
:
HelixGeom_BuilderHelixGen()
{
}
//=======================================================================
//function : ~
//purpose :
//=======================================================================
HelixGeom_BuilderHelix::~HelixGeom_BuilderHelix()
{
}
//=======================================================================
//function : SetPosition
//purpose :
//=======================================================================
void HelixGeom_BuilderHelix::SetPosition(const gp_Ax2& aAx2)
{
myPosition=aAx2;
}
//=======================================================================
//function : Position
//purpose :
//=======================================================================
const gp_Ax2& HelixGeom_BuilderHelix::Position()const
{
return myPosition;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void HelixGeom_BuilderHelix::Perform()
{
myErrorStatus=0;
myWarningStatus=0;
//
Standard_Integer iErr, aN, i, aNbC;
Standard_Real aTwoPI, dT, aT1x, aT2x, aTR;
//HelixGeom_HelixCurve aHC;
HelixGeom_BuilderHelixCoil aBHC;
//
myCurves.Clear();
myTolReached=-1.;
aTwoPI=2.*M_PI;
//
aBHC.SetTolerance(myTolerance);
aBHC.SetApproxParameters(myCont, myMaxDegree, myMaxSeg);
//
dT=myT2-myT1;
aN=(Standard_Integer)(dT/aTwoPI);
//
if (!aN) {
aBHC.SetCurveParameters(myT1, myT2, myPitch, myRStart, myTaperAngle, myIsClockWise);
aBHC.Perform();
iErr=aBHC.ErrorStatus();
if (iErr) {
myErrorStatus=2;
return;
}
const TColGeom_SequenceOfCurve& aSC=aBHC.Curves();
const Handle(Geom_Curve)& aC=aSC(1);
myCurves.Append(aC);
myTolReached=aBHC.ToleranceReached();
}
//
else {
Standard_Boolean bIsCylindrical;
Standard_Real aTolAngle;
//
aTolAngle=1.e-4;
bIsCylindrical=fabs(myTaperAngle)<aTolAngle;
//
aT1x=myT1;
aT2x=myT1+aTwoPI;
for (i=1; i<=aN; ++i) {
//
if (i>1 && bIsCylindrical) {
Handle(Geom_Curve) aCi;
gp_Pnt aP1, aPi;
//
const Handle(Geom_Curve)& aC1=myCurves(1);
aC1->D0(aC1->FirstParameter(), aP1);
aPi.SetCoord(aP1.X(), aP1.Y(), aP1.Z()+(i-1)*myPitch);
aCi=Handle(Geom_Curve)::DownCast(aC1->Translated(aP1, aPi));
//
myCurves.Append(aCi);
//
aT1x=aT2x;
aT2x=aT1x+aTwoPI;
//
continue;
}
aBHC.SetCurveParameters(aT1x, aT2x, myPitch, myRStart, myTaperAngle, myIsClockWise);
//
aBHC.Perform();
iErr=aBHC.ErrorStatus();
if (iErr) {
myErrorStatus=2;
return;
}
//
const TColGeom_SequenceOfCurve& aSC=aBHC.Curves();
const Handle(Geom_Curve)& aC=aSC(1);
myCurves.Append(aC);
aTR=aBHC.ToleranceReached();
if(aTR>myTolReached) {
myTolReached=aTR;
}
//
aT1x=aT2x;
aT2x=aT1x+aTwoPI;
} // for (i=1; i<=aN; ++i) {
//
aT2x=myT2;
Standard_Real eps = 1.e-7*aTwoPI;
if (fabs (aT2x-aT1x)>eps) {
aBHC.SetCurveParameters(aT1x, aT2x, myPitch, myRStart, myTaperAngle, myIsClockWise);
aBHC.Perform();
iErr=aBHC.ErrorStatus();
if (iErr) {
myErrorStatus=2;
return;
}
//
const TColGeom_SequenceOfCurve& aSC=aBHC.Curves();
const Handle(Geom_Curve)& aC=aSC(1);
myCurves.Append(aC);
aTR=aBHC.ToleranceReached();
if(aTR>myTolReached) {
myTolReached=aTR;
}
}
}
//
// Transformation
gp_Trsf aTrsf;
gp_Ax3 aAx3, aAx3x(myPosition);
//
aTrsf.SetDisplacement(aAx3, aAx3x);
//
aNbC=myCurves.Length();
for (i=1; i<=aNbC; ++i) {
Handle(Geom_Curve)& aC=myCurves(i);
aC->Transform(aTrsf);
}
//
}

View File

@@ -0,0 +1,61 @@
// File: HelixGeom_BuilderHelix.cdl
#ifndef _HelixGeom_BuilderHelix_HeaderFile
#define _HelixGeom_BuilderHelix_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <gp_Ax2.hxx>
#include <HelixGeom_BuilderHelixGen.hxx>
class gp_Ax2;
//! Upper level class for geometrical algorithm of building
//! helix curves using arbitrary axis
class HelixGeom_BuilderHelix : public HelixGeom_BuilderHelixGen
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT HelixGeom_BuilderHelix();
Standard_EXPORT virtual ~HelixGeom_BuilderHelix();
//! Sets coordinate axes for helix
Standard_EXPORT void SetPosition (const gp_Ax2& aAx2);
//! Gets coordinate axes for helix
Standard_EXPORT const gp_Ax2& Position() const;
//! Performs calculations
Standard_EXPORT virtual void Perform() Standard_OVERRIDE;
protected:
gp_Ax2 myPosition;
private:
};
#endif // _HelixGeom_BuilderHelix_HeaderFile

View File

@@ -0,0 +1,63 @@
// File: HelixGeom_BuilderHelixCoil.cxx
#include <Geom_BSplineCurve.hxx>
#include <HelixGeom_BuilderHelixCoil.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <HelixGeom_HHelixCurve.hxx>
#include <HelixGeom_Tools.hxx>
//=======================================================================
//function : HelixGeom_BuilderHelixCoil
//purpose :
//=======================================================================
HelixGeom_BuilderHelixCoil::HelixGeom_BuilderHelixCoil()
:
HelixGeom_BuilderHelixGen()
{
myT1=0.;
myT2=2.*M_PI;
myPitch=1.;
myRStart=1.;
myTaperAngle=0.;
myIsClockWise=Standard_True;
}
//=======================================================================
//function : ~
//purpose :
//=======================================================================
HelixGeom_BuilderHelixCoil::~HelixGeom_BuilderHelixCoil()
{
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void HelixGeom_BuilderHelixCoil::Perform()
{
myErrorStatus=0;
myWarningStatus=0;
//
Standard_Integer iErr;
HelixGeom_HelixCurve aAdaptor;
Handle(HelixGeom_HHelixCurve) aHAdaptor;
Handle(Geom_BSplineCurve)aBC;
//
myCurves.Clear();
//
aAdaptor.Load(myT1, myT2, myPitch, myRStart, myTaperAngle, myIsClockWise);
aHAdaptor=new HelixGeom_HHelixCurve(aAdaptor);
//
iErr=HelixGeom_Tools::ApprCurve3D(aHAdaptor,
myTolerance, myCont, myMaxSeg, myMaxDegree,
aBC, myTolReached);
if(iErr) {
myErrorStatus=2;
}
else {
myCurves.Append(aBC);
}
}

View File

@@ -0,0 +1,52 @@
// File: HelixGeom_BuilderHelixCoil.cdl
#ifndef _HelixGeom_BuilderHelixCoil_HeaderFile
#define _HelixGeom_BuilderHelixCoil_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <HelixGeom_BuilderHelixGen.hxx>
//! Implementation of algorithm for building helix coil with
//! axis OZ
class HelixGeom_BuilderHelixCoil : public HelixGeom_BuilderHelixGen
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT HelixGeom_BuilderHelixCoil();
Standard_EXPORT virtual ~HelixGeom_BuilderHelixCoil();
//! Performs calculations
Standard_EXPORT virtual void Perform() Standard_OVERRIDE;
protected:
private:
};
#endif // _HelixGeom_BuilderHelixCoil_HeaderFile

View File

@@ -0,0 +1,59 @@
// File: HelixGeom_BuilderHelixGen.cxx
#include <HelixGeom_BuilderHelixGen.hxx>
//=======================================================================
//function :
//purpose :
//=======================================================================
HelixGeom_BuilderHelixGen::HelixGeom_BuilderHelixGen()
:
HelixGeom_BuilderApproxCurve()
{
}
//=======================================================================
//function : ~
//purpose :
//=======================================================================
HelixGeom_BuilderHelixGen::~HelixGeom_BuilderHelixGen()
{
}
//=======================================================================
//function : SetCurveParameters
//purpose :
//=======================================================================
void HelixGeom_BuilderHelixGen::SetCurveParameters(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real aPitch,
const Standard_Real aRStart,
const Standard_Real aTaperAngle,
const Standard_Boolean aIsCW)
{
myT1=aT1;
myT2=aT2;
myPitch=aPitch;
myRStart=aRStart;
myTaperAngle=aTaperAngle;
myIsClockWise=aIsCW;
}
//=======================================================================
//function : CurveParameters
//purpose :
//=======================================================================
void HelixGeom_BuilderHelixGen::CurveParameters(Standard_Real& aT1,
Standard_Real& aT2,
Standard_Real& aPitch,
Standard_Real& aRStart,
Standard_Real& aTaperAngle,
Standard_Boolean& aIsClockWise)const
{
aT1=myT1;
aT2=myT2;
aPitch=myPitch;
aRStart=myRStart;
aTaperAngle=myTaperAngle;
aIsClockWise=myIsClockWise;
}

View File

@@ -0,0 +1,62 @@
// File: HelixGeom_BuilderHelixGen.cdl
#ifndef _HelixGeom_BuilderHelixGen_HeaderFile
#define _HelixGeom_BuilderHelixGen_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <HelixGeom_BuilderApproxCurve.hxx>
//! Root class for algorithms of building helix curves
class HelixGeom_BuilderHelixGen : public HelixGeom_BuilderApproxCurve
{
public:
DEFINE_STANDARD_ALLOC
//! Sets parameters for building helix curves
Standard_EXPORT void SetCurveParameters (const Standard_Real aT1, const Standard_Real aT2, const Standard_Real aPitch, const Standard_Real aRStart, const Standard_Real aTaperAngle, const Standard_Boolean bIsClockwise);
//! Gets parameters for building helix curves
Standard_EXPORT void CurveParameters (Standard_Real& aT1, Standard_Real& aT2, Standard_Real& aPitch, Standard_Real& aRStart, Standard_Real& aTaperAngle, Standard_Boolean& bIsClockwise) const;
protected:
//! Sets default parameters
Standard_EXPORT HelixGeom_BuilderHelixGen();
Standard_EXPORT virtual ~HelixGeom_BuilderHelixGen();
Standard_Real myT1;
Standard_Real myT2;
Standard_Real myPitch;
Standard_Real myRStart;
Standard_Real myTaperAngle;
Standard_Boolean myIsClockWise;
private:
};
#endif // _HelixGeom_BuilderHelixGen_HeaderFile

View File

@@ -0,0 +1,75 @@
// File: HelixGeom.cdl
#ifndef _HelixGeom_GHHelixCurve_HeaderFile
#define _HelixGeom_GHHelixCurve_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <Adaptor3d_HCurve.hxx>
class Standard_OutOfRange;
class Standard_NoSuchObject;
class Standard_DomainError;
class HelixGeom_HelixCurve;
class Adaptor3d_Curve;
class HelixGeom_GHHelixCurve;
DEFINE_STANDARD_HANDLE(HelixGeom_GHHelixCurve, Adaptor3d_HCurve)
class HelixGeom_GHHelixCurve : public Adaptor3d_HCurve
{
public:
Standard_EXPORT HelixGeom_GHHelixCurve();
Standard_EXPORT HelixGeom_GHHelixCurve(const HelixGeom_HelixCurve& C);
Standard_EXPORT void Set (const HelixGeom_HelixCurve& C);
Standard_EXPORT const Adaptor3d_Curve& Curve() const;
Standard_EXPORT Adaptor3d_Curve& GetCurve();
HelixGeom_HelixCurve& ChangeCurve();
DEFINE_STANDARD_RTTI_INLINE(HelixGeom_GHHelixCurve,Adaptor3d_HCurve)
protected:
HelixGeom_HelixCurve myCurve;
private:
};
#define TheCurve HelixGeom_HelixCurve
#define TheCurve_hxx <HelixGeom_HelixCurve.hxx>
#define Adaptor3d_GenHCurve HelixGeom_GHHelixCurve
#define Adaptor3d_GenHCurve_hxx <HelixGeom_GHHelixCurve.hxx>
#define Handle_Adaptor3d_GenHCurve Handle(HelixGeom_GHHelixCurve)
#include <Adaptor3d_GenHCurve.lxx>
#undef TheCurve
#undef TheCurve_hxx
#undef Adaptor3d_GenHCurve
#undef Adaptor3d_GenHCurve_hxx
#undef Handle_Adaptor3d_GenHCurve
#endif // _HelixGeom_GHHelixCurve_HeaderFile

View File

@@ -0,0 +1,28 @@
// File: HelixGeom.cdl
#include <HelixGeom_GHHelixCurve.hxx>
#include <Standard_Type.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_NoSuchObject.hxx>
#include <Standard_DomainError.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <Adaptor3d_Curve.hxx>
#define TheCurve HelixGeom_HelixCurve
#define TheCurve_hxx <HelixGeom_HelixCurve.hxx>
#define Adaptor3d_GenHCurve HelixGeom_GHHelixCurve
#define Adaptor3d_GenHCurve_hxx <HelixGeom_GHHelixCurve.hxx>
#define Handle_Adaptor3d_GenHCurve Handle(HelixGeom_GHHelixCurve)
#include <Adaptor3d_GenHCurve.gxx>

View File

@@ -0,0 +1,44 @@
// File: HelixGeom_HHelixCurve.cxx
#include <HelixGeom_HelixCurve.hxx>
#include <HelixGeom_HHelixCurve.hxx>
#include <Standard_Type.hxx>
IMPLEMENT_STANDARD_RTTIEXT(HelixGeom_HHelixCurve,HelixGeom_GHHelixCurve)
//=======================================================================
//function : HelixGeom_HHelixCurve
//purpose :
//=======================================================================
HelixGeom_HHelixCurve::HelixGeom_HHelixCurve()
{
}
//=======================================================================
//function : HelixGeom_HHelixCurve// Lastly modified by :
// +---------------------------------------------------------------------------+
// ! ifv ! Creation !$Date: 2007-10-19 18:21:42 $! %V%-%L%!
// +---------------------------------------------------------------------------+
//purpose :
//=======================================================================
HelixGeom_HHelixCurve::HelixGeom_HHelixCurve(const HelixGeom_HelixCurve& aC)
: HelixGeom_GHHelixCurve(aC)
{
}
//=======================================================================
//function : HelixGeom_HHelixCurve
//purpose :
//=======================================================================
HelixGeom_HHelixCurve::HelixGeom_HHelixCurve(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real aPitch,
const Standard_Real aRStart,
const Standard_Real aTaperAngle,
const Standard_Boolean aIsCW)
{
ChangeCurve().Load(aT1, aT2, aPitch, aRStart, aTaperAngle, aIsCW);
}

View File

@@ -0,0 +1,57 @@
// File: HelixGeom_HHelixCurve.cdl
#ifndef _HelixGeom_HHelixCurve_HeaderFile
#define _HelixGeom_HHelixCurve_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <HelixGeom_GHHelixCurve.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
class HelixGeom_HelixCurve;
class HelixGeom_HHelixCurve;
DEFINE_STANDARD_HANDLE(HelixGeom_HHelixCurve, HelixGeom_GHHelixCurve)
//! HAdaptor class for helix curve
class HelixGeom_HHelixCurve : public HelixGeom_GHHelixCurve
{
public:
//! Empty constructor
Standard_EXPORT HelixGeom_HHelixCurve();
//! Constructor by corresponding adaptor curve
Standard_EXPORT HelixGeom_HHelixCurve(const HelixGeom_HelixCurve& aC);
//! Constructor by parameters
Standard_EXPORT HelixGeom_HHelixCurve(const Standard_Real aT1, const Standard_Real aT2, const Standard_Real aPitch, const Standard_Real aRStart, const Standard_Real aTaperAngle, const Standard_Boolean aIsCW);
DEFINE_STANDARD_RTTIEXT(HelixGeom_HHelixCurve,HelixGeom_GHHelixCurve)
protected:
private:
};
#endif // _HelixGeom_HHelixCurve_HeaderFile

View File

@@ -0,0 +1,292 @@
// File: HelixGeom_HelixCurve.cxx
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_NotImplemented.hxx>
#include <Standard_OutOfRange.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <math.h>
//=======================================================================
//function : HelixGeom_HelixCurve
//purpose :
//=======================================================================
HelixGeom_HelixCurve::HelixGeom_HelixCurve()
{
myFirst=0.;
myLast=2.*M_PI;
myPitch=1.;
myRStart=1.;
myTaperAngle=0.;
myIsClockWise=Standard_True;
//
myC1=myPitch/myLast;
myTgBeta=0.;
myTolAngle=1.e-4;
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::Load()
{
Load(myFirst, myLast, myPitch, myRStart, myTaperAngle, myIsClockWise);
}
//=======================================================================
//function : Load
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::Load(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real aPitch,
const Standard_Real aRStart,
const Standard_Real aTaperAngle,
const Standard_Boolean aIsCW)
{
char buf[]={"HelixGeom_HelixCurve::Load"};
Standard_Real aTwoPI, aHalfPI;
//
aTwoPI=2.*M_PI;
aHalfPI=0.5*M_PI;
//
myFirst=aT1;
myLast=aT2;
myPitch=aPitch;
myRStart=aRStart;
myTaperAngle=aTaperAngle;
myIsClockWise=aIsCW;
//
if (aT1>=aT2) {
Standard_ConstructionError::Raise(buf);
}
if (myPitch<0.) {
Standard_ConstructionError::Raise(buf);
}
if (myRStart<0.) {
Standard_ConstructionError::Raise(buf);
}
if (myTaperAngle<=-aHalfPI ||
myTaperAngle>=aHalfPI) {
Standard_ConstructionError::Raise(buf);
}
//
myC1=myPitch/aTwoPI;
if (fabs(myTaperAngle)>myTolAngle) {
myTgBeta=tan(myTaperAngle);
}
}
//=======================================================================
//function : FirstParameter
//purpose :
//=======================================================================
Standard_Real HelixGeom_HelixCurve::FirstParameter() const
{
return myFirst;
}
//=======================================================================
//function : LastParameter
//purpose :
//=======================================================================
Standard_Real HelixGeom_HelixCurve::LastParameter() const
{
return myLast;
}
//=======================================================================
//function : Continuity
//purpose :
//=======================================================================
GeomAbs_Shape HelixGeom_HelixCurve::Continuity() const
{
return GeomAbs_CN;
}
//=======================================================================
//function : NbIntervals
//purpose :
//=======================================================================
Standard_Integer HelixGeom_HelixCurve::NbIntervals(const GeomAbs_Shape ) const
{
return 1;
}
//=======================================================================
//function : Intervals
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::Intervals(TColStd_Array1OfReal& T,
const GeomAbs_Shape) const
{
T(1)=myFirst;
T(2)=myLast;
}
//=======================================================================
//function : Resolution
//purpose :
//=======================================================================
Standard_Real HelixGeom_HelixCurve::Resolution(const Standard_Real) const
{
Standard_NotImplemented::Raise("HelixGeom_HelixCurve::Resolution");
return 0.;
}
//=======================================================================
//function : IsClosed
//purpose :
//=======================================================================
Standard_Boolean HelixGeom_HelixCurve::IsClosed() const
{
Standard_NotImplemented::Raise("HelixGeom_HelixCurve::IsClosed");
return Standard_False;
}
//=======================================================================
//function : IsPeriodic
//purpose :
//=======================================================================
Standard_Boolean HelixGeom_HelixCurve::IsPeriodic() const
{
Standard_NotImplemented::Raise("HelixGeom_HelixCurve::IsPeriodic");
return Standard_False;
}
//=======================================================================
//function : Period
//purpose :
//=======================================================================
Standard_Real HelixGeom_HelixCurve::Period()const
{
Standard_DomainError::Raise("HelixGeom_HelixCurve::Periodic");
return 0.;
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
gp_Pnt HelixGeom_HelixCurve::Value(const Standard_Real aT) const
{
Standard_Real aST, aCT, aX, aY, aZ, a1;
//
aCT=cos(aT);
aST=sin(aT);
a1=myRStart+myC1*myTgBeta*aT;
//
aX=a1*aCT;
aY=a1*aST;
if (!myIsClockWise) {
aY=-aY;
}
aZ=myC1*aT;
return gp_Pnt(aX, aY, aZ);
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::D0(const Standard_Real aT,
gp_Pnt& aP) const
{
aP=Value(aT);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::D1(const Standard_Real aT,
gp_Pnt& aP,
gp_Vec& aV1) const
{
Standard_Real aST, aCT, aX, aY, aZ, a1, a2;
//
aCT=cos(aT);
aST=sin(aT);
//
a1=myRStart+myC1*myTgBeta*aT;
//
aX=a1*aCT;
aY=a1*aST;
if (!myIsClockWise) {
aY=-aY;
}
aZ=myC1*aT;
aP.SetCoord(aX, aY, aZ);
//
a1=myC1*myTgBeta;
a2=myRStart+a1*aT;
//
aX=a1*aCT-a2*aST;
aY=a1*aST+a2*aCT;
if (!myIsClockWise) {
aY=-aY;
}
aZ=myC1;
aV1.SetCoord(aX, aY, aZ);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void HelixGeom_HelixCurve::D2(const Standard_Real aT,
gp_Pnt& aP,
gp_Vec& aV1,
gp_Vec& aV2) const
{
Standard_Real aST, aCT, aX, aY, aZ, a1, a2;
//
aCT=cos(aT);
aST=sin(aT);
//
a1=myRStart+myC1*myTgBeta*aT;
//
aX=a1*aCT;
aY=a1*aST;
if (!myIsClockWise) {
aY=-aY;
}
aZ=myC1*aT;
aP.SetCoord(aX, aY, aZ);
//
a1=myC1*myTgBeta;
a2=myRStart+a1*aT;
//
aX=a1*aCT-a2*aST;
aY=a1*aST+a2*aCT;
if (!myIsClockWise) {
aY=-aY;
}
aZ=myC1;
aV1.SetCoord(aX, aY, aZ);
//
a1=2.*a1;
aX=-a2*aCT-a1*aST;
aY=-a2*aST-a1*aCT;
if (!myIsClockWise) {
aY=-aY;
}
aZ=0.;
aV2.SetCoord(aX, aY, aZ);
}
//=======================================================================
//function : DN
//purpose :
//=======================================================================
gp_Vec HelixGeom_HelixCurve::DN(const Standard_Real aT,
const Standard_Integer aN) const
{
gp_Pnt aP;
gp_Vec aV1, aV2;
//
switch (aN) {
case 1:
D1(aT, aP, aV1);
break;
case 2:
D2(aT, aP, aV1, aV2);
break;
default:
Standard_NotImplemented::Raise("HelixGeom_HelixCurve::DN");
break;
}
return gp_Vec(aV1);
}

View File

@@ -0,0 +1,117 @@
// File: HelixGeom_HelixCurve.cdl
#ifndef _HelixGeom_HelixCurve_HeaderFile
#define _HelixGeom_HelixCurve_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <Adaptor3d_Curve.hxx>
#include <GeomAbs_Shape.hxx>
#include <Standard_Integer.hxx>
class Standard_ConstructionError;
class Standard_OutOfRange;
class Standard_DomainError;
class gp_Pnt;
class gp_Vec;
//! Adaptor class for calculation helix curve
class HelixGeom_HelixCurve : public Adaptor3d_Curve
{
public:
DEFINE_STANDARD_ALLOC
//! Adaptor class for calculation helix curve
//! implementation of analytical expressions
Standard_EXPORT HelixGeom_HelixCurve();
//! Sets default values for parameters
Standard_EXPORT void Load();
//! Sets helix parameters
Standard_EXPORT void Load (const Standard_Real aT1, const Standard_Real aT2, const Standard_Real aPitch, const Standard_Real aRStart, const Standard_Real aTaperAngle, const Standard_Boolean aIsCW);
//! Gets first parameter
Standard_EXPORT virtual Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Gets last parameter
Standard_EXPORT virtual Standard_Real LastParameter() const Standard_OVERRIDE;
//! Gets continuity
Standard_EXPORT virtual GeomAbs_Shape Continuity() const Standard_OVERRIDE;
//! Gets number of intervals
Standard_EXPORT virtual Standard_Integer NbIntervals (const GeomAbs_Shape S) const Standard_OVERRIDE;
//! Gets parametric intervals
Standard_EXPORT virtual void Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const Standard_OVERRIDE;
//! Gets parametric resolution
Standard_EXPORT virtual Standard_Real Resolution (const Standard_Real R3d) const Standard_OVERRIDE;
//! Returns False
Standard_EXPORT virtual Standard_Boolean IsClosed() const Standard_OVERRIDE;
//! Returns False
Standard_EXPORT virtual Standard_Boolean IsPeriodic() const Standard_OVERRIDE;
//! Returns 2*PI
Standard_EXPORT virtual Standard_Real Period() const Standard_OVERRIDE;
//! Gets curve point for parameter U
Standard_EXPORT virtual gp_Pnt Value (const Standard_Real U) const Standard_OVERRIDE;
//! Gets curve point for parameter U
Standard_EXPORT virtual void D0 (const Standard_Real U, gp_Pnt& P) const Standard_OVERRIDE;
//! Gets curve point and first derivatives
//! for parameter U
Standard_EXPORT virtual void D1 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1) const Standard_OVERRIDE;
//! Gets curve point, first and second derivatives
//! for parameter U
Standard_EXPORT virtual void D2 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const Standard_OVERRIDE;
//! Gets curve derivative of demanded order
//! for parameter U
Standard_EXPORT virtual gp_Vec DN (const Standard_Real U, const Standard_Integer N) const Standard_OVERRIDE;
protected:
Standard_Real myFirst;
Standard_Real myLast;
Standard_Real myPitch;
Standard_Real myRStart;
Standard_Real myTaperAngle;
Standard_Boolean myIsClockWise;
Standard_Real myC1;
Standard_Real myTgBeta;
Standard_Real myTolAngle;
private:
};
#endif // _HelixGeom_HelixCurve_HeaderFile

View File

@@ -0,0 +1,166 @@
// File: HelixGeom_Tools.cxx
#include <Adaptor3d_HCurve.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <AdvApprox_DichoCutting.hxx>
#include <AdvApprox_EvaluatorFunction.hxx>
#include <Geom_BSplineCurve.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <HelixGeom_HHelixCurve.hxx>
#include <HelixGeom_Tools.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColStd_HArray1OfReal.hxx>
//=======================================================================
//class : HelixGeom_Tools_Eval
//purpose: evaluator class for approximation
//=======================================================================
class HelixGeom_Tools_Eval : public AdvApprox_EvaluatorFunction
{
public:
HelixGeom_Tools_Eval (const Handle(Adaptor3d_HCurve)& theFunc)
: fonct(theFunc) {}
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Handle(Adaptor3d_HCurve) fonct;
};
void HelixGeom_Tools_Eval::Evaluate (Standard_Integer *Dimension,
Standard_Real /*StartEnd*/[2],
Standard_Real *Param, // Parameter at which evaluation
Standard_Integer *Order, // Derivative Request
Standard_Real *Result,// [Dimension]
Standard_Integer *ErrorCode)
{
*ErrorCode = 0;
Standard_Real par = *Param;
// Dimension is incorrect
if (*Dimension!=3) {
*ErrorCode = 1;
}
gp_Pnt pnt;
gp_Vec v1, v2;
switch (*Order) {
case 0:
pnt = fonct->Value(par);
Result[0] = pnt.X();
Result[1] = pnt.Y();
Result[2] = pnt.Z();
break;
case 1:
fonct->D1(par, pnt, v1);
Result[0] = v1.X();
Result[1] = v1.Y();
Result[2] = v1.Z();
break;
case 2:
fonct->D2(par, pnt, v1, v2);
Result[0] = v2.X();
Result[1] = v2.Y();
Result[2] = v2.Z();
break;
default:
Result[0] = Result[1] = Result[2] = 0.;
*ErrorCode = 3;
break;
}
}
//=======================================================================
//function : ApprCurve3D
//purpose :
//=======================================================================
Standard_Integer HelixGeom_Tools::ApprCurve3D(Handle(Adaptor3d_HCurve)& theHC,
const Standard_Real theTol,
const GeomAbs_Shape theCont,
const Standard_Integer theMaxSeg,
const Standard_Integer theMaxDeg,
Handle(Geom_BSplineCurve)& theBSpl,
Standard_Real& theMaxError)
{
Standard_Boolean anIsDone, aHasResult;
Standard_Integer Num1DSS, Num2DSS, Num3DSS;
Standard_Real First, Last;
Handle(TColStd_HArray1OfReal) OneDTolNul, TwoDTolNul, ThreeDTol;
AdvApprox_DichoCutting aCutTool;
//
Num1DSS=0;
Num2DSS=0;
Num3DSS=1;
ThreeDTol = new TColStd_HArray1OfReal(1,Num3DSS);
ThreeDTol->Init(theTol);
//
First = theHC->FirstParameter();
Last = theHC->LastParameter();
//
HelixGeom_Tools_Eval ev (theHC);
AdvApprox_ApproxAFunction aApprox (Num1DSS, Num2DSS, Num3DSS,
OneDTolNul, TwoDTolNul, ThreeDTol,
First, Last, theCont,
theMaxDeg, theMaxSeg,
ev, aCutTool);
//
anIsDone = aApprox.IsDone();
if(!anIsDone) {
return 1;
}
//
theMaxError = 0.;
//
aHasResult = aApprox.HasResult();
if (!aHasResult) {
return 2;
}
//
TColgp_Array1OfPnt Poles(1,aApprox.NbPoles());
aApprox.Poles(1,Poles);
Handle(TColStd_HArray1OfReal) Knots = aApprox.Knots();
Handle(TColStd_HArray1OfInteger) Mults = aApprox.Multiplicities();
Standard_Integer Degree = aApprox.Degree();
theBSpl = new Geom_BSplineCurve(Poles, Knots->Array1(), Mults->Array1(), Degree);
theMaxError = aApprox.MaxError(3, 1);
//
return 0;
}
//=======================================================================
//function : ApprHelix
//purpose :
//=======================================================================
Standard_Integer HelixGeom_Tools::ApprHelix(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real aPitch,
const Standard_Real aRStart,
const Standard_Real aTaperAngle,
const Standard_Boolean aIsCW,
const Standard_Real theTol,
Handle(Geom_BSplineCurve)& theBSpl,
Standard_Real& theMaxError)
{
Standard_Integer iErr, aMaxDegree, aMaxSeg;
GeomAbs_Shape aCont;
HelixGeom_HelixCurve aAdaptor;
Handle(HelixGeom_HHelixCurve) aHAdaptor;
//
aAdaptor.Load(aT1, aT2, aPitch, aRStart, aTaperAngle, aIsCW);
aHAdaptor=new HelixGeom_HHelixCurve(aAdaptor);
//
aCont=GeomAbs_C2;
aMaxDegree = 8;
aMaxSeg=150;
//
iErr=HelixGeom_Tools::ApprCurve3D(aHAdaptor,
theTol, aCont, aMaxSeg, aMaxDegree,
theBSpl, theMaxError);
return iErr;
}

View File

@@ -0,0 +1,55 @@
// File: HelixGeom_Tools.cdl
#ifndef _HelixGeom_Tools_HeaderFile
#define _HelixGeom_Tools_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <GeomAbs_Shape.hxx>
class Geom_BSplineCurve;
class Adaptor3d_HCurve;
//! Approximation algorithms for bulding helix curves
class HelixGeom_Tools
{
public:
DEFINE_STANDARD_ALLOC
//! Bulding helix curves
Standard_EXPORT static Standard_Integer ApprHelix (const Standard_Real aT1, const Standard_Real aT2, const Standard_Real aPitch, const Standard_Real aRStart, const Standard_Real aTaperAngle, const Standard_Boolean aIsCW, const Standard_Real aTol, Handle(Geom_BSplineCurve)& theBSpl, Standard_Real& theMaxError);
//! Reaprroximation of adaptor curve
Standard_EXPORT static Standard_Integer ApprCurve3D (Handle(Adaptor3d_HCurve)& theHC, const Standard_Real theTol, const GeomAbs_Shape theCont, const Standard_Integer theMaxSeg, const Standard_Integer theMaxDeg, Handle(Geom_BSplineCurve)& theBSpl, Standard_Real& theMaxError);
protected:
private:
};
#endif // _HelixGeom_Tools_HeaderFile

3
src/HelixTest/FILES Normal file
View File

@@ -0,0 +1,3 @@
HelixTest.cxx
HelixTest.hxx
HelixTest_HelixCommands.cxx

View File

@@ -0,0 +1,36 @@
// File: HelixTest.cxx
#include <HelixTest.hxx>
#include <stdio.h>
//=======================================================================
//function : AllCommands
//purpose :
//=======================================================================
void HelixTest::AllCommands(Draw_Interpretor& theCommands)
{
static Standard_Boolean done = Standard_False;
if (done) return;
done = Standard_True;
//
HelixTest::HelixCommands (theCommands);
}
//=======================================================================
//function : Factory
//purpose :
//=======================================================================
void HelixTest::Factory(Draw_Interpretor& theCommands)
{
static Standard_Boolean FactoryDone = Standard_False;
if (FactoryDone) return;
FactoryDone = Standard_True;
HelixTest::AllCommands(theCommands);
Printf(" Helix Plugin is loaded\n");
}
#include <Draw_PluginMacro.hxx>
DPLUGIN(HelixTest)

View File

@@ -0,0 +1,50 @@
// File: HelixTest.cdl
#ifndef _HelixTest_HeaderFile
#define _HelixTest_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Draw_Interpretor.hxx>
class HelixTest
{
public:
DEFINE_STANDARD_ALLOC
Standard_EXPORT static void AllCommands (Draw_Interpretor& aDI);
Standard_EXPORT static void HelixCommands (Draw_Interpretor& aDI);
Standard_EXPORT static void Factory (Draw_Interpretor& aDI);
protected:
private:
};
#endif // _HelixTest_HeaderFile

View File

@@ -0,0 +1,555 @@
// File: HelixTest_HelixCommands.cxx
#include <DBRep.hxx>
#include <Draw.hxx>
#include <Draw_Color.hxx>
#include <Draw_Interpretor.hxx>
#include <Draw_Marker3D.hxx>
#include <Draw_Segment3D.hxx>
#include <Draw_Viewer.hxx>
#include <DrawTrSurf.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Plane.hxx>
#include <Geom_Surface.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <gp.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Dir.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <HelixBRep_BuilderHelix.hxx>
#include <HelixGeom_BuilderHelix.hxx>
#include <HelixGeom_BuilderHelixCoil.hxx>
#include <HelixGeom_HelixCurve.hxx>
#include <HelixGeom_Tools.hxx>
#include <HelixTest.hxx>
#include <TColGeom_HArray1OfCurve.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TCollection_AsciiString.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TopoDS_Shape.hxx>
//
Standard_IMPORT Draw_Viewer dout;
//
static gp_Ax3 theHelixAxis(gp_Pnt(0., 0., 0), gp_Dir(0., 0., 1.), gp_Dir(1., 0., 0.));
static Standard_Integer comphelix (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer helix (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer spiral (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer setaxis (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer comphelix2 (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer helix2 (Draw_Interpretor& , Standard_Integer , const char ** );
static Standard_Integer spiral2 (Draw_Interpretor& , Standard_Integer , const char ** );
//=======================================================================
//function : HelixTest::HelixCommands
//purpose :
//=======================================================================
void HelixTest::HelixCommands(Draw_Interpretor& theCommands)
{
static Standard_Boolean done = Standard_False;
if (done) return;
done = Standard_True;
// Chapters name
const char* g = "Helix commands";
// Commands
theCommands.Add("setaxis", "setaxis x y z Nx Ny Nz Xx Xy Xz",
__FILE__, setaxis, g);
theCommands.Add("comphelix", "comphelix name np D1 [Di...] H1 [Hi...] P1 [Pi...] PF1 [PFi...]",
__FILE__, comphelix, g);
theCommands.Add("helix", "helix name np D1 H1 [Hi...] P1 [Pi...] PF1 [PFi...]",
__FILE__, helix, g);
theCommands.Add("spiral", "spiral name np D1 D2 H1 [Hi...] P1 [Pi...] PF1 [PFi...]",
__FILE__, spiral, g);
theCommands.Add("comphelix2", "comphelix2 name np D1 [Di...] P1 [Pi...] N1 [Ni...]",
__FILE__, comphelix2, g);
theCommands.Add("helix2", "helix2 name np D1 P1 [Pi...] N1 [Ni...]",
__FILE__, helix2, g);
theCommands.Add("spiral2", "spiral2 name np D1 D2 P1 [Pi...] N1 [Ni...]",
__FILE__, spiral2, g);
}
//=======================================================================
//function : setaxis
//purpose :
//=======================================================================
Standard_Integer setaxis(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 10) {
di << "Usage : " << a[0] << " x y z Nx Ny Nz Xx Xy Xz" <<"\n";
di << " " << "x y z - location" <<"\n";
di << " " << "Nx Ny Nz - direction" <<"\n";
di << " " << "Xx Xy Xz - X direction" <<"\n";
return 1;
}
Standard_Real xx[9];
Standard_Integer i;
for(i = 0; i < 9; ++i) {
xx[i] = Draw::Atof(a[i+1]);
}
theHelixAxis.SetLocation(gp_Pnt(xx[0], xx[1], xx[2]));
theHelixAxis.SetDirection(gp_Dir(xx[3], xx[4], xx[5]));
theHelixAxis.SetXDirection(gp_Dir(xx[6], xx[7], xx[8]));
return 0;
}
//
//=======================================================================
//function : comphelix
//purpose :
//=======================================================================
Standard_Integer comphelix(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 8) {
di << "Usage : " << a[0] << " name np D1 D2 [Di...] H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 ... (must be np+1 values) - diameters" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + (aNb+1) + aNb*3) {
di << "Usage : " << a[0] << " name np D1 D2 [Di...] H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 ... (must be np+1 values) - diameters" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, aNb + 1);
TColStd_Array1OfReal aHeights(1, aNb);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfBoolean bIsPitches(1, aNb);
ic = 3;
for(i = 1; i <= aNb+1; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aHeights(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
bIsPitches(i) = Draw::Atoi(a[ic]) != 0;
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams, aHeights, aPitches, bIsPitches);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}
//=======================================================================
//function : helix
//purpose :
//=======================================================================
Standard_Integer helix(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 7) {
di << "Usage : " << a[0] << " name np D1 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 - diameter" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + 1 + aNb*3) {
di << "Usage : " << a[0] << " name np D1 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 - diameter" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, 1);
TColStd_Array1OfReal aHeights(1, aNb);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfBoolean bIsPitches(1, aNb);
ic = 3;
for(i = 1; i <= 1; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aHeights(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
bIsPitches(i) = Draw::Atoi(a[ic]) != 0;
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams(1), aHeights, aPitches, bIsPitches);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}
//=======================================================================
//function : spiral
//purpose :
//=======================================================================
Standard_Integer spiral(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 8) {
di << "Usage : " << a[0] << " name np D1 D2 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 - first and last diameters" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + 2 + aNb*3) {
di << "Usage : " << a[0] << " name np D1 D2 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 - first and last diameters" <<"\n";
di << " " << "H1, H2 ... (must be np values) - heights" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches or numbers of turns" <<"\n";
di << " " << "PF1, PF2 ... (must be np values) - 0 or 1, if PFi = 1, Pi is pitch, otherwise Pi is number of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, 2);
TColStd_Array1OfReal aHeights(1, aNb);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfBoolean bIsPitches(1, aNb);
ic = 3;
for(i = 1; i <= 2; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aHeights(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
bIsPitches(i) = Draw::Atoi(a[ic]) != 0;
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams(1), aDiams(2), aHeights, aPitches, bIsPitches);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}
//=======================================================================
//function : comphelix2
//purpose :
//=======================================================================
Standard_Integer comphelix2(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 7) {
di << "Usage : " << a[0] << " name np D1 D2 [Di...] P1 [Pi...] N1 [Ni...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2, ... (must be np+1 values) - diameters" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + (aNb+1) + aNb*2) {
di << "Usage : " << a[0] << " name np D1 D2 [Di...] P1 [Pi...] N1 [Ni...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2, ... (must be np+1 values) - diameters" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, aNb + 1);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfReal aNbTurns(1, aNb);
ic = 3;
for(i = 1; i <= aNb+1; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aNbTurns(i) = Draw::Atof(a[ic]);
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams, aPitches, aNbTurns);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}
//=======================================================================
//function : helix2
//purpose :
//=======================================================================
Standard_Integer helix2(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 6) {
di << "Usage : " << a[0] << " name np D1 P1 [Pi...] N1 [Ni...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 - diameter" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + 1 + aNb*2) {
di << "Usage : " << a[0] << " name np D1 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 - diameter" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, 1);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfReal aNbTurns(1, aNb);
ic = 3;
for(i = 1; i <= 1; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aNbTurns(i) = Draw::Atof(a[ic]);
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams(1), aPitches, aNbTurns);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}
//=======================================================================
//function : spiral2
//purpose :
//=======================================================================
Standard_Integer spiral2(Draw_Interpretor& di, Standard_Integer n, const char ** a)
{
if (n < 7) {
di << "Usage : " << a[0] << " name np D1 D2 P1 [Pi...] N1 [Ni...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 - first and last diameters" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
Standard_Integer i, aNb, ic;
HelixBRep_BuilderHelix aBH;
//
aNb = Draw::Atoi(a[2]);
if (n != 3 + 2 + aNb*2) {
di << "Usage : " << a[0] << " name np D1 D2 H1 [Hi...] P1 [Pi...] PF1 [PFi...]" <<"\n";
di << " " << "name - name of result" <<"\n";
di << " " << "np - number of helix parts" <<"\n";
di << " " << "D1 D2 - first and last diameters" <<"\n";
di << " " << "P1, P2, ... (must be np values) - pitches" <<"\n";
di << " " << "N1, N2, ... (must be np values) - numbers of turns" <<"\n";
return 1;
}
//
TColStd_Array1OfReal aDiams(1, 2);
TColStd_Array1OfReal aPitches(1, aNb);
TColStd_Array1OfReal aNbTurns(1, aNb);
ic = 3;
for(i = 1; i <= 2; ++i) {
aDiams(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aPitches(i) = Draw::Atof(a[ic]);
++ic;
}
for(i = 1; i <= aNb; ++i) {
aNbTurns(i) = Draw::Atof(a[ic]);
++ic;
}
//
aBH.SetParameters(theHelixAxis, aDiams(1), aDiams(2), aPitches, aNbTurns);
aBH.Perform();
if(aBH.ErrorStatus() == 0) {
Standard_Real aMaxError=aBH.ToleranceReached();
di << "WarningStatus = " << aBH.WarningStatus() <<"\n";
di << "ToleranceReached = " << aMaxError <<"\n";
//
const TopoDS_Shape& aW=aBH.Shape();
DBRep::Set(a[1], aW);
}
else {
di << "ErrorStatus = " << aBH.ErrorStatus() << "\n";
}
return 0;
}

5
src/OCCTools/FILES Normal file
View File

@@ -0,0 +1,5 @@
FILES
OCCTools.cxx
OCCTools.hxx
OCCTools_ComputeExposedArea.cxx
OCCTools_ComputeExposedArea.hxx

57
src/OCCTools/OCCTools.cxx Normal file
View File

@@ -0,0 +1,57 @@
// File: OCCTools.cxx
// Created: 21.02.2017
// Author: Mikhail Sazonov
#include "OCCTools.hxx"
#include <TopoDS_Shape.hxx>
#include <StlAPI.hxx>
#include <STEPControl_Reader.hxx>
#include <Standard_ErrorHandler.hxx>
#pragma comment(lib,"TKSTL")
#pragma comment(lib,"TKXSBase")
#pragma comment(lib,"TKSTEP")
//=======================================================================
//function : ReadStl
//purpose :
//=======================================================================
TopoDS_Shape OCCTools::ReadStl(const char* theFName)
{
TopoDS_Shape aShape;
try
{
OCC_CATCH_SIGNALS
StlAPI::Read(aShape, theFName);
}
catch (Standard_Failure)
{
aShape.Nullify();
}
return aShape;
}
//=======================================================================
//function : ReadStep
//purpose :
//=======================================================================
TopoDS_Shape OCCTools::ReadStep(const char* theFName)
{
TopoDS_Shape aShape;
try
{
OCC_CATCH_SIGNALS
STEPControl_Reader aReader;
IFSelect_ReturnStatus aStatus = aReader.ReadFile(theFName);
if (aStatus == IFSelect_RetDone)
{
aReader.TransferRoots();
aShape = aReader.OneShape();
}
}
catch (Standard_Failure)
{
aShape.Nullify();
}
return aShape;
}

27
src/OCCTools/OCCTools.hxx Normal file
View File

@@ -0,0 +1,27 @@
// File: OCCTools.hxx
// Created: 21.02.2017
// Author: Mikhail Sazonov
#ifndef OCCTools_hxx
#define OCCTools_hxx
#include <Standard_TypeDef.hxx>
class TopoDS_Shape;
//! This class provides some useful static methods
class OCCTools
{
public:
//! Reads STL file and creates a shape, in which each triangle from STL is
//! represented by a single TopoDS_Face.
//! Returns null shape in the case of failure.
Standard_EXPORT static TopoDS_Shape ReadStl(const char* theFName);
//! Reads STEP file and creates a shape from its contents.
//! Returns null shape in the case of failure.
Standard_EXPORT static TopoDS_Shape ReadStep(const char* theFName);
};
#endif

View File

@@ -0,0 +1,136 @@
// File: OCCTools_ComputeExposedArea.cxx
// Created: 20.02.2017
// Author: Mikhail Sazonov
#include "OCCTools_ComputeExposedArea.hxx"
#include <BRepAlgoAPI_Fuse.hxx>
#include <BRepGProp.hxx>
#include <BOPAlgo_MakerVolume.hxx>
#include <TopExp_Explorer.hxx>
#include <GProp_GProps.hxx>
#pragma comment(lib,"TKernel")
#pragma comment(lib,"TKMath")
#pragma comment(lib,"TKG2d")
#pragma comment(lib,"TKBRep")
#pragma comment(lib,"TKTopAlgo")
#pragma comment(lib,"TKBO")
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
OCCTools_ComputeExposedArea::OCCTools_ComputeExposedArea()
: myFuzzyValue(0.),
mySumArea(0.),
myArea(0.),
myIsGluing(Standard_False)
{
}
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
OCCTools_ComputeExposedArea::OCCTools_ComputeExposedArea(const TopTools_ListOfShape& theShapes)
: myFuzzyValue(0.),
mySumArea(0.),
myArea(0.),
myIsGluing(Standard_False)
{
TopTools_ListOfShape::Iterator anIt(theShapes);
for (; anIt.More(); anIt.Next())
{
AddShape(anIt.Value());
}
}
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
Standard_Boolean OCCTools_ComputeExposedArea::AddShape(const TopoDS_Shape& theShape)
{
TopExp_Explorer anExp(theShape, TopAbs_SOLID);
if (anExp.More())
{
// Shape has solids
for (; anExp.More(); anExp.Next())
{
const TopoDS_Shape& aShape = anExp.Current();
myShapes.Append(aShape);
GProp_GProps aProps;
BRepGProp::SurfaceProperties(aShape, aProps);
mySumArea += aProps.Mass();
}
}
else
{
// No solids, so try to make them from faces
BOPAlgo_MakerVolume aMkVol;
aMkVol.SetRunParallel(Standard_True);
anExp.Init(theShape, TopAbs_FACE);
for (; anExp.More(); anExp.Next())
{
aMkVol.AddArgument(anExp.Current());
}
aMkVol.Perform();
if (aMkVol.ErrorStatus() != 0)
return Standard_False;
const TopoDS_Shape& aShape = aMkVol.Shape();
return AddShape(aShape);
}
return Standard_True;
}
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
Standard_Integer OCCTools_ComputeExposedArea::Perform(const Handle(Message_ProgressIndicator)& theProgress)
{
if (myShapes.Extent() == 0)
{
// no solid shapes
return Status_BadInput;
}
else if (myShapes.Extent() == 1)
{
// one solid - nothing to fuse
myFusedShape = myShapes.First();
}
else
{
// create fuse algorithm
BRepAlgoAPI_Fuse aBOP;
aBOP.SetProgressIndicator(theProgress);
aBOP.SetRunParallel(Standard_True);
aBOP.SetFuzzyValue(myFuzzyValue);
//aBOP.SetNonDestructive(Standard_True);
if (myIsGluing)
aBOP.SetGlue(BOPAlgo_GlueShift);
// prepare arguments for fusion
TopTools_ListOfShape anArgs, aTools;
anArgs = myShapes;
anArgs.RemoveFirst();
aTools.Append(myShapes.First());
aBOP.SetArguments(anArgs);
aBOP.SetTools(aTools);
// perform fusion
aBOP.Build();
if (!aBOP.IsDone())
{
return Status_FuseError;
}
myFusedShape = aBOP.Shape();
}
// compute area of fused shape
GProp_GProps aProps;
BRepGProp::SurfaceProperties(myFusedShape, aProps);
myArea = aProps.Mass();
return Status_OK;
}

View File

@@ -0,0 +1,96 @@
// File: OCCTools_ComputeExposedArea.hxx
// Created: 20.02.2017
// Author: Mikhail Sazonov
#ifndef OCCTools_ComputeExposedArea_hxx
#define OCCTools_ComputeExposedArea_hxx
#include <Standard_TypeDef.hxx>
#include <TopTools_ListOfShape.hxx>
class Message_ProgressIndicator;
//! This class computes fusion of inputs shapes
//! and calculates the area of the result (exposed area).
//! It looks only for solid shapes in input arguments. If there are no solids
//! it looks for faces and tries to create closed shells and then solids of them.
class OCCTools_ComputeExposedArea
{
public:
//! Enumerates error statuses
enum ErrorStatus
{
Status_OK = 0, //!< No error
Status_BadInput = 0x01, //!< Bad input, no solids are found
Status_FuseError = 0x02 //!< Failure of computation of fused shape
};
//! Empty constructor
Standard_EXPORT OCCTools_ComputeExposedArea();
//! Constructor with input shapes
Standard_EXPORT OCCTools_ComputeExposedArea(const TopTools_ListOfShape& theShapes);
//! Adds an input shape. If there are no solids it tries to make solids from faces.
//! Returns false if the input does not contain solids or faces constituting closed shells.
Standard_EXPORT Standard_Boolean AddShape(const TopoDS_Shape& theShape);
//! Returns the number of recognized input solids
Standard_Integer GetNbOfSolids() const
{
return myShapes.Extent();
}
//! Returns the list of input solid shapes.
const TopTools_ListOfShape& GetShapes() const
{
return myShapes;
}
//! Sets the mode of gluing, which tells that no face-face intersection
//! needs to be performed
void SetIsGluing(const Standard_Boolean theVal)
{
myIsGluing = theVal;
}
//! Sets fuzzy value. It allows ignoring gaps of the given size between shapes.
void SetFuzzyValue(const Standard_Real theVal)
{
myFuzzyValue = theVal;
}
//! Performs the computations.
//! Returns the combination of error statuses (see ErrorStatus)
Standard_EXPORT Standard_Integer Perform(const Handle(Message_ProgressIndicator)& theProgress =
Handle(Message_ProgressIndicator)());
//! Returns the fused shape
const TopoDS_Shape& GetFusedShape() const
{
return myFusedShape;
}
//! Returns the sum of areas of inputs shapes
Standard_Real GetSumArea() const
{
return mySumArea;
}
//! Returns the exposed area
Standard_Real GetArea() const
{
return myArea;
}
private:
TopTools_ListOfShape myShapes;
TopoDS_Shape myFusedShape;
Standard_Real myFuzzyValue;
Standard_Real mySumArea;
Standard_Real myArea;
Standard_Boolean myIsGluing;
};
#endif

3
src/OCCToolsTest/FILES Normal file
View File

@@ -0,0 +1,3 @@
FILES
OCCToolsTest.cpp
OCCToolsTest.hxx

View File

@@ -0,0 +1,160 @@
// File: OCCToolsTest.cpp
#include "OCCToolsTest.hxx"
#include <Draw_PluginMacro.hxx>
#include <Draw_Interpretor.hxx>
#include <Draw.hxx>
#include <DBRep.hxx>
#include <BRepGProp.hxx>
#include <GProp_GProps.hxx>
#include <OCCTools_ComputeExposedArea.hxx>
#include <OCCTools.hxx>
#pragma comment(lib,"TKernel")
#pragma comment(lib,"TKMath")
#pragma comment(lib,"TKDraw")
#pragma comment(lib,"TKG2d")
#pragma comment(lib,"TKTopAlgo")
//=======================================================================
// taExposedArea
//=======================================================================
Standard_Integer taExposedArea(Draw_Interpretor& di,
Standard_Integer n, const char** a)
{
if (n < 3)
{
di << "Invalid usage, use help";
return 1;
}
// algorithm instance
OCCTools_ComputeExposedArea aCompEA;
// read options
Standard_Integer anInd = 2;
while (a[anInd][0] == '-')
{
if (strcmp(a[anInd], "-fuz") == 0)
{
anInd++;
Standard_Real aValue = Draw::Atof(a[anInd++]);
aCompEA.SetFuzzyValue(aValue);
}
else if (strcmp(a[anInd], "-glue") == 0)
{
anInd++;
aCompEA.SetIsGluing(Standard_True);
}
else
{
di << "Invalid option " << a[anInd];
return 1;
}
}
// get shapes
for (; anInd < n; anInd++)
{
TopoDS_Shape aShape = DBRep::Get(a[anInd]);
if (aShape.IsNull())
{
di << "No such shape " << a[anInd];
return 1;
}
aCompEA.AddShape(aShape);
}
di << "Nb solids is " << aCompEA.GetNbOfSolids() << "\n";
di << "Sum area is " << aCompEA.GetSumArea() << "\n";
// perform algo
Standard_Integer anError = aCompEA.Perform();
if (anError != OCCTools_ComputeExposedArea::Status_OK)
{
// process error statuses
if (anError & OCCTools_ComputeExposedArea::Status_BadInput)
{
di << "Bad input, no solids are found\n";
}
if (anError & OCCTools_ComputeExposedArea::Status_FuseError)
{
di << "Failure of computation of fused shape\n";
}
}
else
{
// show result
const TopoDS_Shape& aFusedShape = aCompEA.GetFusedShape();
Standard_Real anArea = aCompEA.GetArea();
DBRep::Set(a[1], aFusedShape);
di << "Area is " << anArea;
}
return 0;
}
//=======================================================================
// taReadStep
//=======================================================================
Standard_Integer taReadFile(Draw_Interpretor& di,
Standard_Integer n, const char** a)
{
if (n < 3)
{
di << "Invalid usage, use help";
return 1;
}
const char* aFName = a[2];
TopoDS_Shape aShape;
if (strcmp(a[0], "taReadStep") == 0)
aShape = OCCTools::ReadStep(aFName);
else //if (strcmp(a[0], "taReadStl") == 0)
aShape = OCCTools::ReadStl(aFName);
if (aShape.IsNull())
{
di << "Read error";
}
else
{
DBRep::Set(a[1], aShape);
}
return 0;
}
//=======================================================================
// Commands
//=======================================================================
void OCCToolsTest::Commands(Draw_Interpretor& theCommands)
{
static Standard_Boolean done = Standard_False;
if (done) return;
done = Standard_True;
char* g = "OCCToolsTest commands";
theCommands.Add("taExposedArea",
"taExposedArea res_name [-fuz <val>] [-glue] shape [shape ...]",
__FILE__, taExposedArea, g);
theCommands.Add("taReadStep",
"taReadStep res_name file_name",
__FILE__, taReadFile, g);
theCommands.Add("taReadStl",
"taReadStl res_name file_name",
__FILE__, taReadFile, g);
}
//=======================================================================
// Factory
//=======================================================================
void OCCToolsTest::Factory(Draw_Interpretor& theDI)
{
static Standard_Boolean FactoryDone = Standard_False;
if (FactoryDone) return;
FactoryDone = Standard_True;
OCCToolsTest::Commands(theDI);
}
// Declare entry point PLUGINFACTORY
DPLUGIN(OCCToolsTest)

View File

@@ -0,0 +1,19 @@
#ifndef _PFC_HeaderFile
#define _PFC_HeaderFile
class Draw_Interpretor;
#include <Standard_TypeDef.hxx>
//! The OCCToolsTest package provides the plug-in for DRAW Test Harness,
//! which contains a set of DRAW commands wrapping OCCTools functions.
class OCCToolsTest {
public:
//! Defines all OCCToolsTest commands.
Standard_EXPORT static void Commands(Draw_Interpretor& DI);
//! Defines the weld-bead plugin. <br>
Standard_EXPORT static void Factory(Draw_Interpretor& DI);
};
#endif

View File

@@ -6,3 +6,6 @@ srcinc:::ModelingAlgorithms.tcl
srcinc:::ModelingData.tcl
srcinc:::Modules.tcl
srcinc:::Visualization.tcl
srcinc:::Helix.tcl
srcinc:::Unfolding.tcl
srcinc:::OCCTools.tcl

36
src/OS/Helix.tcl Normal file
View File

@@ -0,0 +1,36 @@
# Definitions for a product: Helix
# List of toolkits
proc Helix:toolkits { } {
return [list TKHelix]
}
# List of non-toolkits (resource units, executables etc., with associated info)
proc Helix:ressources { } {
return {}
}
# Product name
proc Helix:name { } {
return Helix
}
# And short alias
proc Helix:alias { } {
return Helix
}
# Dependency on other products
proc Helix:depends { } {
return {}
}
proc Helix:CompileWith { } {
}
proc Helix:LinksoWith { } {
}
proc Helix:Export { } {
return [list source runtime wokadm api]
}

View File

@@ -22,6 +22,9 @@ proc OS:Modules { {plat ""} } {
ApplicationFramework \
DataExchange \
Draw \
OCCTools \
Helix \
Unfolding
]
return $ret
}

36
src/OS/OCCTools.tcl Normal file
View File

@@ -0,0 +1,36 @@
# Definitions for a product: Unfolding
# List of toolkits
proc Unfolding:toolkits { } {
return [list TKOCCTools TKOCCToolsTest]
}
# List of non-toolkits (resource units, executables etc., with associated info)
proc Unfolding:ressources { } {
return {}
}
# Product name
proc Unfolding:name { } {
return Unfolding
}
# And short alias
proc Unfolding:alias { } {
return Unfolding
}
# Dependency on other products
proc Unfolding:depends { } {
return {}
}
proc Unfolding:CompileWith { } {
}
proc Unfolding:LinksoWith { } {
}
proc Unfolding:Export { } {
return [list source runtime wokadm api]
}

36
src/OS/Unfolding.tcl Normal file
View File

@@ -0,0 +1,36 @@
# Definitions for a product: Unfolding
# List of toolkits
proc Unfolding:toolkits { } {
return [list TKUnfolding TKUnfoldingTest]
}
# List of non-toolkits (resource units, executables etc., with associated info)
proc Unfolding:ressources { } {
return {}
}
# Product name
proc Unfolding:name { } {
return Unfolding
}
# And short alias
proc Unfolding:alias { } {
return Unfolding
}
# Dependency on other products
proc Unfolding:depends { } {
return {}
}
proc Unfolding:CompileWith { } {
}
proc Unfolding:LinksoWith { } {
}
proc Unfolding:Export { } {
return [list source runtime wokadm api]
}

View File

@@ -0,0 +1,3 @@
project(TKHelix)
OCCT_INCLUDE_CMAKE_FILE (adm/cmake/occt_toolkit)

7
src/TKHelix/EXTERNLIB Normal file
View File

@@ -0,0 +1,7 @@
TKBRep
TKMath
TKernel
TKG2d
TKG3d
TKDraw
TKTopAlgo

1
src/TKHelix/FILES Normal file
View File

@@ -0,0 +1 @@
EXTERNLIB

3
src/TKHelix/PACKAGES Normal file
View File

@@ -0,0 +1,3 @@
HelixGeom
HelixBRep
HelixTest

View File

@@ -0,0 +1,3 @@
project(TKOCCTools)
OCCT_INCLUDE_CMAKE_FILE (adm/cmake/occt_toolkit)

23
src/TKOCCTools/EXTERNLIB Normal file
View File

@@ -0,0 +1,23 @@
TKBRep
TKGeomAlgo
TKTopAlgo
TKernel
TKMath
TKBO
TKG2d
TKG3d
TKDraw
TKHLR
TKGeomBase
TKMesh
TKService
TKV3d
TKFillet
TKPrim
TKBool
TKOffset
TKFeat
TKShHealing
TKSTL
TKXSBase
TKSTEP

2
src/TKOCCTools/FILES Normal file
View File

@@ -0,0 +1,2 @@
EXTERNLIB
PACKAGES

2
src/TKOCCTools/PACKAGES Normal file
View File

@@ -0,0 +1,2 @@
OCCTools

View File

@@ -0,0 +1,3 @@
project(TKOCCToolsTest)
OCCT_INCLUDE_CMAKE_FILE (adm/cmake/occt_toolkit)

View File

@@ -0,0 +1,22 @@
TKBRep
TKGeomAlgo
TKTopAlgo
TKernel
TKMath
TKBO
TKG2d
TKG3d
TKDraw
TKHLR
TKGeomBase
TKMesh
TKService
TKV3d
TKFillet
TKPrim
TKBool
TKOffset
TKFeat
TKShHealing
TKSTL
TKOCCTools

2
src/TKOCCToolsTest/FILES Normal file
View File

@@ -0,0 +1,2 @@
EXTERNLIB
PACKAGES

View File

@@ -0,0 +1,2 @@
OCCToolsTest

View File

@@ -0,0 +1,3 @@
project(TKUnfolding)
OCCT_INCLUDE_CMAKE_FILE (adm/cmake/occt_toolkit)

10
src/TKUnfolding/EXTERNLIB Normal file
View File

@@ -0,0 +1,10 @@
TKBRep
TKMath
TKernel
TKG2d
TKG3d
TKDraw
TKTopAlgo
TKGeomAlgo
TKShHealing
TKGeomBase

1
src/TKUnfolding/FILES Normal file
View File

@@ -0,0 +1 @@
EXTERNLIB

1
src/TKUnfolding/PACKAGES Normal file
View File

@@ -0,0 +1 @@
Unfolding

View File

@@ -0,0 +1,3 @@
project(TKUnfoldingTest)
OCCT_INCLUDE_CMAKE_FILE (adm/cmake/occt_toolkit)

View File

@@ -0,0 +1,6 @@
TKBRep
TKMath
TKernel
TKG3d
TKDraw
TKUnfolding

View File

@@ -0,0 +1 @@
EXTERNLIB

View File

@@ -0,0 +1 @@
UnfoldingTest

22
src/Unfolding/FILES Normal file
View File

@@ -0,0 +1,22 @@
Unfolding.cxx
Unfolding.hxx
Unfolding.lxx
Unfolding_Array2OfPoint.hxx
Unfolding_ErrorStatus.hxx
Unfolding_FaceDataContainer.cxx
Unfolding_FaceDataContainer.hxx
Unfolding_FaceDataContainer.lxx
Unfolding_FaceDataMapHasher.hxx
Unfolding_FaceDataMapHasher.lxx
Unfolding_FunctionWithDerivative.cxx
Unfolding_FunctionWithDerivative.hxx
Unfolding_HArray2OfPoint.hxx
Unfolding_IndexedMapOfFaceDataContainer.hxx
Unfolding_Point.hxx
Unfolding_Point.lxx
Unfolding_Shell.cxx
Unfolding_Shell.hxx
Unfolding_Shell.lxx
Unfolding_Surface.cxx
Unfolding_Surface.hxx
Unfolding_Surface.lxx

162
src/Unfolding/Unfolding.cxx Normal file
View File

@@ -0,0 +1,162 @@
// File: Unfolding.cxx
// Created: Wed Sep 17 09:16:05 2008
// Author: Sergey KHROMOV
// <skv@kurox>
#include <Unfolding.hxx>
#include <BRepBuilderAPI_Sewing.hxx>
#include <BRep_Tool.hxx>
#include <GCPnts_AbscissaPoint.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shell.hxx>
#include <TopoDS.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
//=======================================================================
//function : ToShell
//purpose :
//=======================================================================
TopoDS_Shell Unfolding::ToShell(const TopoDS_Shape &theShape,
const Standard_Real theTolerance,
Unfolding_ErrorStatus &theStatus)
{
TopoDS_Shell aShell;
TopAbs_ShapeEnum aType = theShape.ShapeType();
if (aType != TopAbs_COMPOUND && aType != TopAbs_COMPSOLID &&
aType != TopAbs_SOLID && aType != TopAbs_SHELL) {
theStatus = Unfolding_InvalidInput;
return aShell;
}
if (aType == TopAbs_SHELL) {
// theShape is a shell. Nothing to be done.
theStatus = Unfolding_Done;
aShell = TopoDS::Shell(theShape);
return aShell;
}
BRepBuilderAPI_Sewing aSewing(theTolerance);
aSewing.Add(theShape);
aSewing.Perform();
const TopoDS_Shape &aShape = aSewing.SewedShape();
if (aShape.IsNull()) {
theStatus = Unfolding_Failure;
return aShell;
}
// Explore shape to extract a shell.
TopExp_Explorer anExp(aShape, TopAbs_SHELL);
if (!anExp.More()) {
theStatus = Unfolding_InvalidShape;
return aShell;
}
TopoDS_Shape aSingleShell = anExp.Current();
anExp.Next();
if (anExp.More()) {
theStatus = Unfolding_ComplexShape;
return aShell;
}
// Check if there is no other redundant shapes that are not in the shell.
anExp.Init(aShape, TopAbs_VERTEX, TopAbs_SHELL);
if (anExp.More()) {
theStatus = Unfolding_ComplexShape;
return aShell;
}
// Get the single shell.
theStatus = Unfolding_Done;
aShell = TopoDS::Shell(aSingleShell);
return aShell;
}
//=======================================================================
//function : ToShell
//purpose :
//=======================================================================
Standard_Integer Unfolding::NbSamples(const TopoDS_Edge &theEdge,
const TopTools_ListOfShape &theFaces,
const Standard_Real theTolerance)
{
Standard_Integer aNbPointsLimit = Unfolding::GetMaxNbSamples() / 2;
Standard_Integer aMaxNbPoints = 11;
Standard_Integer aNbPoints;
TopTools_ListIteratorOfListOfShape anIt( theFaces );
for ( ; anIt.More(); anIt.Next() ) {
TopoDS_Shape aCurShape = anIt.Value();
TopoDS_Face aFace = TopoDS::Face( aCurShape );
aFace.Orientation(TopAbs_FORWARD);
Standard_Integer aNbPnt = 2;
Standard_Real aParam[2];
Handle(Geom2d_Curve) aCurve =
BRep_Tool::CurveOnSurface(theEdge, aFace, aParam[0], aParam[1]);
Handle(Standard_Type) aType = aCurve->DynamicType();
while (aType == STANDARD_TYPE(Geom2d_TrimmedCurve)) {
Handle(Geom2d_TrimmedCurve) aTrCurve =
Handle(Geom2d_TrimmedCurve)::DownCast(aCurve);
aCurve = aTrCurve->BasisCurve();
aType = aCurve->DynamicType();
}
if (aType == STANDARD_TYPE(Geom2d_BezierCurve)) {
Handle(Geom2d_BezierCurve) aBezier =
Handle(Geom2d_BezierCurve)::DownCast(aCurve);
aNbPnt = 3 + aBezier->NbPoles();
if (aNbPnt < 11)
aNbPnt = 11;
} else if (aType == STANDARD_TYPE(Geom2d_BSplineCurve)) {
Handle(Geom2d_BSplineCurve) aBSpline =
Handle(Geom2d_BSplineCurve)::DownCast(aCurve);
aNbPnt = aBSpline->NbKnots()*aBSpline->Degree();
if (aNbPnt < 11)
aNbPnt = 11;
} else {
aNbPnt = 11;
}
aMaxNbPoints = ( aMaxNbPoints < aNbPnt ) ? aNbPnt : aMaxNbPoints;
Geom2dAdaptor_Curve aCurve1(aCurve);
Standard_Real L = GCPnts_AbscissaPoint::Length(aCurve1, aParam[0], aParam[1]) ;
// estimate number of points taking into account the curvature of radius myTolContour * 2.
Standard_Real sizeR = 0.125 * L / theTolerance + 2;
if ( aNbPointsLimit > sizeR )
aNbPointsLimit = (Standard_Integer) sizeR;
}
// Check if the number of points exceeds the maximum number of points.
if(aMaxNbPoints > aNbPointsLimit)
aMaxNbPoints = aNbPointsLimit;
aNbPoints = aMaxNbPoints;
return aNbPoints;
}

View File

@@ -0,0 +1,92 @@
// File: Unfolding.cdl
// Created: Tue Jul 22 12:48:05 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef _Unfolding_HeaderFile
#define _Unfolding_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <Unfolding_ErrorStatus.hxx>
#include <Standard_Integer.hxx>
#include <TopTools_ListOfShape.hxx>
class TopoDS_Shell;
class TopoDS_Shape;
class TopoDS_Edge;
class Unfolding_Surface;
class Unfolding_Point;
class Unfolding_FunctionWithDerivative;
class Unfolding_Shell;
class Unfolding_FaceDataContainer;
class Unfolding_FaceDataMapHasher;
//! This package contains a tool for unfolding a surface on a plane.
class Unfolding
{
public:
DEFINE_STANDARD_ALLOC
//! This method converts theShape to a shell. It sewes faces of the
//! shell if it is necessary and possible with the given tolerance.
//! If it is not possible to construct a single shell from theShape,
//! this method returns null shell and the corresponding error
//! status. The status can have the following values:
//! - Unfolding_Done: the operation succeeded
//! - Unfolding_InvalidInput: input shape type is less then
//! TopAbs_SHELL.
//! - Unfolding_Failure: sewing failure.
//! - Unfolding_InvalidShape: the shape after sewing does not
//! contain shells.
//! - Unfolding_ComplexShape: the shape after sewing contains
//! either more then one shell or one shell and other not
//! connected shapes.
Standard_EXPORT static TopoDS_Shell ToShell (const TopoDS_Shape& theShape, const Standard_Real theTolerance, Unfolding_ErrorStatus& theStatus);
//! This method returns the number of sample points for theEdge.
//! theFaces is a list of faces that contain theEdge.
//! This method returns the maximal number of points for sampling of
//! edges and/or faces.
static Standard_Integer NbSamples (const TopoDS_Edge& theEdge, const TopTools_ListOfShape& theFaces, const Standard_Real theTolerance);
Standard_EXPORT static Standard_Integer GetMaxNbSamples();
protected:
private:
friend class Unfolding_Surface;
friend class Unfolding_Point;
friend class Unfolding_FunctionWithDerivative;
friend class Unfolding_Shell;
friend class Unfolding_FaceDataContainer;
friend class Unfolding_FaceDataMapHasher;
};
#include <Unfolding.lxx>
#endif // _Unfolding_HeaderFile

View File

@@ -0,0 +1,12 @@
// File: Unfolding.lxx
// Created: Tue Jul 22 13:12:24 2008
// Author: Sergey KHROMOV
// <skv@dimox>
inline Standard_Integer Unfolding::GetMaxNbSamples()
{
static Standard_Integer aMaxNbSamples = 1000;
return aMaxNbSamples;
}

View File

@@ -0,0 +1,16 @@
// File: Unfolding.cdl
// Created: Tue Jul 22 12:48:05 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef Unfolding_Array2OfPoint_HeaderFile
#define Unfolding_Array2OfPoint_HeaderFile
#include <Unfolding_Point.hxx>
#include <NCollection_Array2.hxx>
typedef NCollection_Array2<Unfolding_Point> Unfolding_Array2OfPoint;
#endif

View File

@@ -0,0 +1,22 @@
// File: Unfolding.cdl
// Created: Tue Jul 22 12:48:05 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef _Unfolding_ErrorStatus_HeaderFile
#define _Unfolding_ErrorStatus_HeaderFile
enum Unfolding_ErrorStatus
{
Unfolding_Done,
Unfolding_NotDone,
Unfolding_Failure,
Unfolding_InvalidSurface,
Unfolding_InvalidInput,
Unfolding_InvalidShape,
Unfolding_ComplexShape
};
#endif // _Unfolding_ErrorStatus_HeaderFile

View File

@@ -0,0 +1,116 @@
// File: Unfolding_FaceDataContainer.cxx
// Created: Tue Jul 22 13:12:24 2008
// Author: Sergey KHROMOV
// <skv@dimox>
#include <BRepBuilderAPI_Transform.hxx>
#include <gp_Trsf.hxx>
#include <Standard_Type.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopTools_DataMapIteratorOfDataMapOfShapeListOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <Unfolding_FaceDataContainer.hxx>
IMPLEMENT_STANDARD_RTTIEXT(Unfolding_FaceDataContainer,MMgt_TShared)
//=======================================================================
//function : SetFace
//purpose :
//=======================================================================
void Unfolding_FaceDataContainer::SetFace(const TopoDS_Face &theFace)
{
Standard_Boolean isSame = theFace.IsSame(myFace);
myFace = theFace;
if (!isSame) {
// Update the map myEdgeMap
myEdgeMap.Clear();
TopExp_Explorer anExp(myFace, TopAbs_EDGE);
TopTools_ListOfShape anEmptyList;
for (; anExp.More(); anExp.Next()) {
const TopoDS_Shape &anEdge = anExp.Current();
myEdgeMap.Bind(anEdge, anEmptyList);
}
}
}
//=======================================================================
//function : ApplyTrsf
//purpose :
//=======================================================================
void Unfolding_FaceDataContainer::ApplyTrsf(const gp_Trsf &theTrsf)
{
BRepBuilderAPI_Transform aTrsf(theTrsf);
if (!myUnfoldedFace.IsNull()) {
aTrsf.Perform(myUnfoldedFace);
if (aTrsf.IsDone())
myUnfoldedFace = TopoDS::Face(aTrsf.Shape());
}
TopTools_DataMapIteratorOfDataMapOfShapeListOfShape anEdgeIter(myEdgeMap);
TopTools_ListIteratorOfListOfShape aUEIter;
for (; anEdgeIter.More(); anEdgeIter.Next()) {
const TopoDS_Shape &anEdge = anEdgeIter.Key();
TopTools_ListOfShape &anEdges = myEdgeMap.ChangeFind(anEdge);
TopTools_ListOfShape aTrsfEdges;
for (aUEIter.Initialize(anEdges); aUEIter.More(); aUEIter.Next()) {
const TopoDS_Shape &aUEdge = aUEIter.Value();
aTrsf.Perform(aUEdge);
if (aTrsf.IsDone())
aTrsfEdges.Append(aTrsf.Shape());
}
anEdges.Clear();
anEdges.Append(aTrsfEdges);
}
}
//=======================================================================
//function : SetEdgesForEdge
//purpose :
//=======================================================================
void Unfolding_FaceDataContainer::SetEdgesForEdge
(const TopoDS_Edge &theEdge,
const TopTools_ListOfShape &theUnfoldedEdges)
{
if (myEdgeMap.IsBound(theEdge)) {
TopTools_ListOfShape &anEdges = myEdgeMap.ChangeFind(theEdge);
anEdges = theUnfoldedEdges;
}
}
//=======================================================================
//function : GetEdgesForEdge
//purpose :
//=======================================================================
const TopTools_ListOfShape &Unfolding_FaceDataContainer::GetEdgesForEdge
(const TopoDS_Edge &theEdge) const
{
if (myEdgeMap.IsBound(theEdge)) {
const TopTools_ListOfShape &anEdges = myEdgeMap.Find(theEdge);
return anEdges;
}
static TopTools_ListOfShape anEmptyList;
return anEmptyList;
}

View File

@@ -0,0 +1,101 @@
// File: Unfolding_FaceDataContainer.cdl
// Created: Fri Sep 19 16:52:05 2008
// Author: Sergey KHROMOV
// <skv@kurox>
//-Copyright: Matra Datavision 2008
#ifndef _Unfolding_FaceDataContainer_HeaderFile
#define _Unfolding_FaceDataContainer_HeaderFile
#include <Standard.hxx>
#include <Standard_Type.hxx>
#include <TopoDS_Face.hxx>
#include <TopTools_DataMapOfShapeListOfShape.hxx>
#include <Standard_Real.hxx>
#include <MMgt_TShared.hxx>
class TopoDS_Face;
class gp_Trsf;
class TopoDS_Edge;
class Unfolding_FaceDataContainer;
DEFINE_STANDARD_HANDLE(Unfolding_FaceDataContainer, MMgt_TShared)
//! This class represents a data container for data constructed
//! during unfolding operation.
class Unfolding_FaceDataContainer : public MMgt_TShared
{
public:
//! Empty constructor
Standard_EXPORT Unfolding_FaceDataContainer();
//! Sets the original face.
Standard_EXPORT void SetFace (const TopoDS_Face& theFace);
//! Returns the original face.
const TopoDS_Face& GetFace() const;
//! Sets the unfolded face for the original one.
void SetUnfoldedFace (const TopoDS_Face& theUnfoldedFace);
//! Returns the unfolded face for the original one.
const TopoDS_Face& GetUnfoldedFace() const;
//! Sets the distortion area.
void SetDistortionArea (const Standard_Real theDistortionArea);
//! Returns the distortion area.
Standard_Real GetDistortionArea() const;
//! Sets the maximal Gauss curvature.
void SetMaxGaussCurvature (const Standard_Real theCurvature);
//! Returns the maximal Gauss curvature.
Standard_Real GetMaxGaussCurvature() const;
//! Resets the data container.
void Reset();
//! Applies the transformation to all unfolded shapes.
Standard_EXPORT void ApplyTrsf (const gp_Trsf& theTrsf);
//! Associates unfolded edges with the source edge.
Standard_EXPORT void SetEdgesForEdge (const TopoDS_Edge& theEdge, const TopTools_ListOfShape& theUnfoldedEdges);
//! Returns unfolded edges associated to the source edge.
Standard_EXPORT const TopTools_ListOfShape& GetEdgesForEdge (const TopoDS_Edge& theEdge) const;
DEFINE_STANDARD_RTTIEXT(Unfolding_FaceDataContainer,MMgt_TShared)
protected:
private:
TopoDS_Face myFace;
TopoDS_Face myUnfoldedFace;
TopTools_DataMapOfShapeListOfShape myEdgeMap;
Standard_Real myDistortionArea;
Standard_Real myCurvature;
};
#include <Unfolding_FaceDataContainer.lxx>
#endif // _Unfolding_FaceDataContainer_HeaderFile

View File

@@ -0,0 +1,101 @@
// File: Unfolding_FaceDataContainer.lxx
// Created: Tue Jul 22 13:12:24 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//=======================================================================
//function : Empty constructor
//purpose :
//=======================================================================
inline Unfolding_FaceDataContainer::Unfolding_FaceDataContainer()
: myDistortionArea(0.),
myCurvature(0.)
{
}
//=======================================================================
//function : GetFace
//purpose :
//=======================================================================
inline const TopoDS_Face &Unfolding_FaceDataContainer::GetFace() const
{
return myFace;
}
//=======================================================================
//function : SetUnfoldedFace
//purpose :
//=======================================================================
inline void Unfolding_FaceDataContainer::SetUnfoldedFace
(const TopoDS_Face &theUnfoldedFace)
{
myUnfoldedFace = theUnfoldedFace;
}
//=======================================================================
//function : GetUnfoldedFace
//purpose :
//=======================================================================
inline const TopoDS_Face &Unfolding_FaceDataContainer::GetUnfoldedFace() const
{
return myUnfoldedFace;
}
//=======================================================================
//function : SetDistortionArea
//purpose :
//=======================================================================
inline void Unfolding_FaceDataContainer::SetDistortionArea
(const Standard_Real theDistortionArea)
{
myDistortionArea = theDistortionArea;
}
//=======================================================================
//function : GetDistortionArea
//purpose :
//=======================================================================
inline Standard_Real Unfolding_FaceDataContainer::GetDistortionArea() const
{
return myDistortionArea;
}
//=======================================================================
//function : SetMaxGaussCurvature
//purpose :
//=======================================================================
inline void Unfolding_FaceDataContainer::SetMaxGaussCurvature
(const Standard_Real theCurvature)
{
myCurvature = theCurvature;
}
//=======================================================================
//function : GetMaxGaussCurvature
//purpose :
//=======================================================================
inline Standard_Real Unfolding_FaceDataContainer::GetMaxGaussCurvature() const
{
return myCurvature;
}
//=======================================================================
//function : Reset
//purpose :
//=======================================================================
inline void Unfolding_FaceDataContainer::Reset()
{
myUnfoldedFace.Nullify();
myDistortionArea = 0.;
myCurvature = 0.;
}

View File

@@ -0,0 +1,60 @@
// File: Unfolding_FaceDataMapHasher.cdl
// Created: Fri Sep 19 16:52:05 2008
// Author: Sergey KHROMOV
// <skv@kurox>
//-Copyright: Matra Datavision 2008
#ifndef _Unfolding_FaceDataMapHasher_HeaderFile
#define _Unfolding_FaceDataMapHasher_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
class Unfolding_FaceDataContainer;
//! Hash tool, used for generating maps of face data containers.
class Unfolding_FaceDataMapHasher
{
public:
DEFINE_STANDARD_ALLOC
//! Returns a HasCode value for the Key <K> in the
//! range 0..theUpper.
static Standard_Integer HashCode (const Handle(Unfolding_FaceDataContainer)& theKey, const Standard_Integer theUpper);
//! Returns True when the two keys are the same. Two
//! same keys must have the same hashcode, the
//! contrary is not necessary.
static Standard_Boolean IsEqual (const Handle(Unfolding_FaceDataContainer)& theKey1, const Handle(Unfolding_FaceDataContainer)& theKey2);
protected:
private:
};
#include <Unfolding_FaceDataMapHasher.lxx>
#endif // _Unfolding_FaceDataMapHasher_HeaderFile

View File

@@ -0,0 +1,30 @@
// File: Unfolding_FaceDataMapHasher.lxx
// Created: Mon Sep 22 08:54:51 2008
// Author: Sergey KHROMOV
// <skv@kurox>
//=======================================================================
//function : HashCode
//purpose :
//=======================================================================
inline Standard_Integer Unfolding_FaceDataMapHasher::HashCode
(const Handle(Unfolding_FaceDataContainer) &theKey,
const Standard_Integer theUpper)
{
return (theKey.IsNull()) ? 0 : theKey->GetFace().HashCode(theUpper);
}
//=======================================================================
//function : IsEqual
//purpose :
//=======================================================================
inline Standard_Boolean Unfolding_FaceDataMapHasher::IsEqual
(const Handle(Unfolding_FaceDataContainer) &theKey1,
const Handle(Unfolding_FaceDataContainer) &theKey2)
{
return !theKey1.IsNull() && !theKey2.IsNull() &&
theKey1->GetFace().IsSame(theKey2->GetFace());
}

View File

@@ -0,0 +1,249 @@
// File: Unfolding_FunctionWithDerivative.cxx
// Created: Fri Sep 5 17:51:58 2008
// Author: Mikhail KLOKOV
// <mkk@kurox>
#include <gp_Dir2d.hxx>
#include <gp_Trsf2d.hxx>
#include <TColgp_Array1OfXY.hxx>
#include <Unfolding_FunctionWithDerivative.hxx>
static Standard_Boolean ComputeArea(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const gp_Dir2d& theShiftDir,
const Standard_Real& theShift,
const gp_Trsf2d theTrsf,
Standard_Real& theArea);
static Standard_Boolean ComputeAreaDeriv(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const gp_Dir2d& theShiftDir,
const Standard_Real& theShift,
const gp_Trsf2d theTrsf,
Standard_Real& theArea,
Standard_Real& theDeriv);
//=============================================================================
// function: Constructor
//=============================================================================
Unfolding_FunctionWithDerivative::Unfolding_FunctionWithDerivative(const TColgp_Array1OfXY& theMaster,
const TColgp_Array1OfXY& theSlave,
const gp_Dir2d& theDir,
const gp_Trsf2d& theTrsf):
myMasterPolyLine(theMaster.Lower(), theMaster.Upper()),
mySlavePolyLine(theSlave.Lower(), theSlave.Upper())
{
myMasterPolyLine.Assign(theMaster);
mySlavePolyLine.Assign(theSlave);
myTrsf = theTrsf;
myShiftDir = theDir;
myShift = 0.;
myArea = 0.;
}
//=============================================================================
// function: Value
//=============================================================================
Standard_Boolean Unfolding_FunctionWithDerivative::Value(const Standard_Real X,Standard_Real& F)
{
myShift = X;
F = 0.;
Standard_Real A = 0.;
Standard_Real D = 0.;
if ( !ComputeAreaDeriv(myMasterPolyLine, mySlavePolyLine, myShiftDir, myShift, myTrsf, A, D) )
return Standard_False;
myArea = A;
gp_XY aP1P2(0, A);
gp_XY vecD(1,D);
Standard_Real modD = vecD.Modulus();
if ( modD < gp::Resolution() ) {
Standard_Real delta = 1.e-7;
if ( !ComputeArea(myMasterPolyLine, mySlavePolyLine, myShiftDir, myShift - delta, myTrsf, A) )
return Standard_False;
gp_XY P1(0,A);
if ( !ComputeArea(myMasterPolyLine, mySlavePolyLine, myShiftDir, myShift + delta, myTrsf, A) )
return Standard_False;
gp_XY P2(0,A);
gp_XY V = P2-P1;
modD = V.Modulus();
if ( modD < gp::Resolution() )
return Standard_False;
}
F = aP1P2 * vecD;
F /= modD;
return Standard_True;
}
//=============================================================================
// function: Derivative
//=============================================================================
Standard_Boolean Unfolding_FunctionWithDerivative::Derivative(const Standard_Real X,Standard_Real& D)
{
Standard_Real F = 0.;
return Values(X,F,D);
}
//=============================================================================
// function: Values
//=============================================================================
Standard_Boolean Unfolding_FunctionWithDerivative::Values(const Standard_Real X,Standard_Real& F,Standard_Real& D)
{
Standard_Real F1 = 0., F2 = 0.;
Standard_Real aDelta = 1.e-05;
if ( fabs(X) > aDelta )
aDelta = fabs(X) * aDelta;
if ( !Value(X + aDelta, F2) )
return Standard_False;
if ( !Value(X, F1) )
return Standard_False;
myShift = X;
F = F1;
D = F2 - F1;
D /= aDelta;
return Standard_True;
}
//=============================================================================
// function: GetStateNumber
//=============================================================================
Standard_Integer Unfolding_FunctionWithDerivative::GetStateNumber()
{
ComputeArea(myMasterPolyLine, mySlavePolyLine, myShiftDir, myShift, myTrsf, myArea);
return 0;
}
//=============================================================================
// function: Area
//=============================================================================
Standard_Real Unfolding_FunctionWithDerivative::Area() const
{
return myArea;
}
//-----------------------------------------------------------------------------
// function: ComputeAreaDeriv
//-----------------------------------------------------------------------------
static Standard_Boolean ComputeAreaDeriv(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const gp_Dir2d& theShiftDir,
const Standard_Real& theShift,
const gp_Trsf2d theTrsf,
Standard_Real& theArea,
Standard_Real& theDeriv)
{
theArea = 0.;
theDeriv = 0.;
Standard_Real X = theShift;
Standard_Real F1 = 0., F2 = 0.;
if ( !ComputeArea(theMasterPolyLine, theSlavePolyLine, theShiftDir, X, theTrsf, F1) )
return Standard_False;
theArea = F1;
Standard_Real aDelta = 1.e-05;
if ( fabs(X) > aDelta )
aDelta = fabs(X) * aDelta;
if ( !ComputeArea(theMasterPolyLine, theSlavePolyLine, theShiftDir, X + aDelta, theTrsf, F2) )
return Standard_False;
theDeriv = F2 - F1;
theDeriv /= aDelta;
return Standard_True;
}
//-----------------------------------------------------------------------------
// function: ComputeArea
//-----------------------------------------------------------------------------
static Standard_Boolean ComputeArea(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const gp_Dir2d& theShiftDir,
const Standard_Real& theShift,
const gp_Trsf2d theTrsf,
Standard_Real& theArea)
{
if ( ( theMasterPolyLine.Length() < 2 ) || ( theSlavePolyLine.Length() < 2 ) ||
( theSlavePolyLine.Length() != theMasterPolyLine.Length() ) )
return Standard_False;
theArea = 0.;
gp_Vec2d aTranslation( theShiftDir.XY() * theShift );
gp_Trsf2d aTransTrsf;
aTransTrsf.SetTranslation( aTranslation );
gp_Trsf2d aTrans;
aTrans = aTransTrsf * theTrsf;
//
TColgp_Array1OfXY aTransformedSlave(theSlavePolyLine.Lower(), theSlavePolyLine.Upper());
Standard_Integer i = 0;
for ( i = aTransformedSlave.Lower(); i <= aTransformedSlave.Upper(); i++ ) {
gp_Pnt2d aP( theSlavePolyLine.Value( i ) );
aP.Transform( aTrans );
aTransformedSlave.SetValue( i, aP.XY() );
}
//
// compute area
// This method assumes that the polylines shape is similar
// if the shape is completely different, the compute area will be wrong.
// But it will grow, that can be considered as a condition of distortion.
// So, the method can be acceptable.
gp_XY aFirstPoint = aTransformedSlave( aTransformedSlave.Lower() );
aFirstPoint += theMasterPolyLine( theMasterPolyLine.Lower() );
aFirstPoint *= 0.5;
gp_XY aLastPoint = aTransformedSlave( aTransformedSlave.Upper() );
aLastPoint += theMasterPolyLine( theMasterPolyLine.Upper() );
aLastPoint *= 0.5;
Standard_Integer nIndexDif = theMasterPolyLine.Lower() - aTransformedSlave.Lower();
gp_XY aP1 = aFirstPoint;
gp_XY aP3 = aFirstPoint;
for ( i = theMasterPolyLine.Lower() + 1; i <= theMasterPolyLine.Upper(); i++ ) {
gp_XY aP2 = theMasterPolyLine(i);
gp_XY aP4 = aTransformedSlave(i-nIndexDif);
if ( i == theMasterPolyLine.Upper() ) {
aP2 = aLastPoint;
aP4 = aLastPoint;
}
gp_XY aP1P4 = aP4 - aP1;
gp_XY aP1P2 = aP2 - aP1;
gp_XY aP1P3 = aP3 - aP1;
Standard_Real aprod1 = aP1P4 ^ aP1P3;
Standard_Real aprod2 = aP1P4 ^ aP1P2;
if ( aprod1 * aprod2 <= 0. ) {
theArea += 0.5 * ( fabs( aprod1 ) + fabs( aprod2 ) );
}
else {
gp_XY aP3P2 = aP2 - aP3;
gp_XY aP3P4 = aP4 - aP3;
gp_XY aP3P1 = -aP1P3;
Standard_Real asum = 0.5 * ( fabs( aprod1 ) + fabs( aprod2 ) );
aprod1 = aP3P2 ^ aP3P4;
aprod2 = aP3P2 ^ aP3P1;
if ( aprod1 * aprod2 <= 0. ) {
theArea += 0.5 * ( fabs( aprod1 ) + fabs( aprod2 ) );
}
else {
asum += 0.5 * ( fabs( aprod1 ) + fabs( aprod2 ) );
asum *= 0.5;
theArea += asum;
}
}
aP1 = aP2;
aP3 = aP4;
}
return Standard_True;
}

View File

@@ -0,0 +1,87 @@
// File: Unfolding_FunctionWithDerivative.cdl
// Created: Fri Sep 5 17:44:29 2008
// Author: Mikhail KLOKOV
// <mkk@kurox>
//-Copyright: Open CASCADE 2008
#ifndef _Unfolding_FunctionWithDerivative_HeaderFile
#define _Unfolding_FunctionWithDerivative_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <TColgp_Array1OfXY.hxx>
#include <gp_Trsf2d.hxx>
#include <gp_Dir2d.hxx>
#include <Standard_Real.hxx>
#include <math_FunctionWithDerivative.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
#include <TColgp_Array1OfXY.hxx>
class gp_Dir2d;
class gp_Trsf2d;
class Unfolding_FunctionWithDerivative : public math_FunctionWithDerivative
{
public:
DEFINE_STANDARD_ALLOC
Standard_EXPORT Unfolding_FunctionWithDerivative(const TColgp_Array1OfXY& theMaster, const TColgp_Array1OfXY& theSlave, const gp_Dir2d& theDir, const gp_Trsf2d& theTrsf);
//! Computes the value <F>of the function for the variable <X>.
//! Returns True if the calculation were successfully done,
//! False otherwise.
Standard_EXPORT virtual Standard_Boolean Value (const Standard_Real X, Standard_Real& F) Standard_OVERRIDE;
//! Computes the derivative <D> of the function
//! for the variable <X>.
//! Returns True if the calculation were successfully done,
//! False otherwise.
Standard_EXPORT virtual Standard_Boolean Derivative (const Standard_Real X, Standard_Real& D) Standard_OVERRIDE;
//! Computes the value <F> and the derivative <D> of the
//! function for the variable <X>.
//! Returns True if the calculation were successfully done,
//! False otherwise.
Standard_EXPORT virtual Standard_Boolean Values (const Standard_Real X, Standard_Real& F, Standard_Real& D) Standard_OVERRIDE;
Standard_EXPORT virtual Standard_Integer GetStateNumber() Standard_OVERRIDE;
Standard_EXPORT Standard_Real Area() const;
protected:
private:
TColgp_Array1OfXY myMasterPolyLine;
TColgp_Array1OfXY mySlavePolyLine;
gp_Trsf2d myTrsf;
gp_Dir2d myShiftDir;
Standard_Real myShift;
Standard_Real myArea;
};
#endif // _Unfolding_FunctionWithDerivative_HeaderFile

View File

@@ -0,0 +1,17 @@
// File: Unfolding.cdl
// Created: Tue Jul 22 12:48:05 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef Unfolding_HArray2OfPoint_HeaderFile
#define Unfolding_HArray2OfPoint_HeaderFile
#include <Unfolding_Point.hxx>
#include <Unfolding_Array2OfPoint.hxx>
#include <NCollection_DefineHArray2.hxx>
DEFINE_HARRAY2(Unfolding_HArray2OfPoint, Unfolding_Array2OfPoint)
#endif

View File

@@ -0,0 +1,17 @@
// File: Unfolding.cdl
// Created: Tue Jul 22 12:48:05 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef Unfolding_IndexedMapOfFaceDataContainer_HeaderFile
#define Unfolding_IndexedMapOfFaceDataContainer_HeaderFile
#include <Unfolding_FaceDataContainer.hxx>
#include <Unfolding_FaceDataMapHasher.hxx>
#include <NCollection_IndexedMap.hxx>
typedef NCollection_IndexedMap<Handle(Unfolding_FaceDataContainer),Unfolding_FaceDataMapHasher> Unfolding_IndexedMapOfFaceDataContainer;
#endif

View File

@@ -0,0 +1,92 @@
// File: Unfolding_Point.cdl
// Created: Mon Jul 28 14:56:12 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Matra Datavision 2008
#ifndef _Unfolding_Point_HeaderFile
#define _Unfolding_Point_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <gp_XY.hxx>
#include <gp_XYZ.hxx>
#include <Standard_Real.hxx>
class gp_XYZ;
class gp_XY;
//! This class represents a data container for a point. It contains
//! a point on a surface, its U and V parameters on a surface,
//! corresponding point on an unfolding plane.
class Unfolding_Point
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor.
Standard_EXPORT Unfolding_Point();
//! Sets the point on a surface.
void SetPointOnSurface (const gp_XYZ& thePOnSurface);
//! Returns the point on a surface.
const gp_XYZ& GetPointOnSurface() const;
//! Sets the U and V parameters of the point on a surface.
void SetParameters (const Standard_Real theU, const Standard_Real theV);
//! Returns the U and V parameters of the point on a surface.
void GetParameters (Standard_Real& theU, Standard_Real& theV) const;
//! Returns the U parameter of the point on a surface.
Standard_Real GetU() const;
//! Returns the V parameter of the point on a surface.
Standard_Real GetV() const;
//! Sets the angle between DU and DV directions.
void SetAngle (const Standard_Real theAngle);
//! Returns the angle between DU and DV directions.
Standard_Real GetAngle() const;
//! Sets the point on an unfolding plane.
void SetPointOnPlane (const gp_XY& thePOnPlane);
//! Returns the point on an unfolding plane.
const gp_XY& GetPointOnPlane() const;
protected:
private:
gp_XY myPoint2d;
gp_XYZ myPOnSurface;
gp_XY myPOnPlane;
Standard_Real myAngle;
};
#include <Unfolding_Point.lxx>
#endif // _Unfolding_Point_HeaderFile

View File

@@ -0,0 +1,116 @@
// File: Unfolding_Point.lxx
// Created: Mon Jul 28 15:18:15 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//=======================================================================
//function : Empty constructor
//purpose :
//=======================================================================
inline Unfolding_Point::Unfolding_Point()
: myAngle(-1.)
{
}
//=======================================================================
//function : SetPointOnSurface
//purpose :
//=======================================================================
inline void Unfolding_Point::SetPointOnSurface(const gp_XYZ &thePOnSurface)
{
myPOnSurface = thePOnSurface;
}
//=======================================================================
//function : GetPointOnSurface
//purpose :
//=======================================================================
inline const gp_XYZ &Unfolding_Point::GetPointOnSurface() const
{
return myPOnSurface;
}
//=======================================================================
//function : SetParameters
//purpose :
//=======================================================================
inline void Unfolding_Point::SetParameters(const Standard_Real theU,
const Standard_Real theV)
{
myPoint2d.SetCoord(theU, theV);
}
//=======================================================================
//function : GetParameters
//purpose :
//=======================================================================
inline void Unfolding_Point::GetParameters(Standard_Real &theU,
Standard_Real &theV) const
{
myPoint2d.Coord(theU, theV);
}
//=======================================================================
//function : GetU
//purpose :
//=======================================================================
inline Standard_Real Unfolding_Point::GetU() const
{
return myPoint2d.X();
}
//=======================================================================
//function : GetV
//purpose :
//=======================================================================
inline Standard_Real Unfolding_Point::GetV() const
{
return myPoint2d.Y();
}
//=======================================================================
//function : GetAngle
//purpose :
//=======================================================================
inline void Unfolding_Point::SetAngle(const Standard_Real theAngle)
{
myAngle = theAngle;
}
//=======================================================================
//function : GetAngle
//purpose :
//=======================================================================
inline Standard_Real Unfolding_Point::GetAngle() const
{
return myAngle;
}
//=======================================================================
//function : SetPointOnPlane
//purpose :
//=======================================================================
inline void Unfolding_Point::SetPointOnPlane(const gp_XY &thePOnPlane)
{
myPOnPlane = thePOnPlane;
}
//=======================================================================
//function : GetPointOnPlane
//purpose :
//=======================================================================
inline const gp_XY &Unfolding_Point::GetPointOnPlane() const
{
return myPOnPlane;
}

View File

@@ -0,0 +1,781 @@
// File: Unfolding_Shell.cxx
// Created: Tue Sep 9 17:14:33 2008
// Author: Mikhail KLOKOV
// <mkk@kurox>
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepCheck_Analyzer.hxx>
#include <Geom_Plane.hxx>
#include <gp_Pln.hxx>
#include <math_FunctionRoot.hxx>
#include <math_NewtonFunctionRoot.hxx>
#include <ShapeAnalysis_FreeBoundData.hxx>
#include <ShapeAnalysis_FreeBoundsProperties.hxx>
#include <TColgp_Array1OfXY.hxx>
#include <TColgp_HArray1OfXY.hxx>
#include <TColgp_SequenceOfXY.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TColStd_MapOfInteger.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS_Compound.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shell.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#include <TopTools_DataMapIteratorOfDataMapOfShapeListOfShape.hxx>
#include <TopTools_DataMapOfShapeInteger.hxx>
#include <TopTools_IndexedDataMapOfShapeListOfShape.hxx>
#include <TopTools_IndexedMapOfShape.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <TopTools_ListOfShape.hxx>
#include <TopTools_MapOfShape.hxx>
#include <Unfolding.hxx>
#include <Unfolding_FaceDataContainer.hxx>
#include <Unfolding_FunctionWithDerivative.hxx>
#include <Unfolding_Shell.hxx>
#include <Unfolding_Surface.hxx>
static Standard_Boolean CombineCurves(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const Standard_Boolean IsFixed,
const Standard_Real theConfTolerance,
const Standard_Real theAreaTolerance,
gp_Trsf2d& theTransformation,
Standard_Real& theDistortionArea);
// ==============================================================================
// function: GetCommonEdges
// purpose : This function returns the list of common edges of two faces.
// ==============================================================================
static void GetCommonEdges(const TopoDS_Face &theFace1,
const TopoDS_Face &theFace2,
TopTools_ListOfShape &theCommonEdges)
{
TopTools_IndexedMapOfShape aMapEdges1;
TopExp_Explorer anExp2(theFace2, TopAbs_EDGE);
TopExp::MapShapes(theFace1, TopAbs_EDGE, aMapEdges1);
theCommonEdges.Clear();
for (; anExp2.More(); anExp2.Next()) {
const TopoDS_Shape &anEdge2 = anExp2.Current();
if (aMapEdges1.Contains(anEdge2))
theCommonEdges.Append(anEdge2);
}
}
// ==============================================================================
// function: GetWires
// purpose : This function returns a list of wires edges composed from theEdges.
// ==============================================================================
static Standard_Boolean GetWires(const TopTools_ListOfShape &theEdges,
TopTools_ListOfShape &theWires)
{
TopTools_ListIteratorOfListOfShape anEdgeIter(theEdges);
TopTools_DataMapOfShapeListOfShape aMapVE;
TopExp_Explorer anExp;
TopTools_MapOfShape aMapUsed;
for (; anEdgeIter.More(); anEdgeIter.Next()) {
const TopoDS_Shape &anEdge = anEdgeIter.Value();
if (!aMapUsed.Add(anEdge) || BRep_Tool::Degenerated(TopoDS::Edge(anEdge)))
continue;
for (anExp.Init(anEdge, TopAbs_VERTEX); anExp.More(); anExp.Next()) {
const TopoDS_Shape &aVertex = anExp.Current();
if (!aMapVE.IsBound(aVertex)) {
TopTools_ListOfShape aList;
aMapVE.Bind(aVertex, aList);
}
TopTools_ListOfShape &aListAncEdges = aMapVE.ChangeFind(aVertex);
aListAncEdges.Append(anEdge);
}
}
// Construct wires as chains of edges.
Standard_Boolean isToTreat = Standard_True;
TopoDS_Vertex aFirstVtx;
TopoDS_Edge aCurEdge;
TopoDS_Vertex aV[2];
BRep_Builder aBuilder;
for(;;) {
isToTreat = Standard_False;
// Get the bounding vertex, i.e. the vertex that contains only one edge in
// the list of ancestors.
TopTools_DataMapIteratorOfDataMapOfShapeListOfShape aMapIter(aMapVE);
for (; aMapIter.More(); aMapIter.Next()) {
const TopTools_ListOfShape &anEdges = aMapIter.Value();
if (anEdges.Extent() == 1) {
isToTreat = Standard_True;
break;
}
}
if (!isToTreat) {
// Get a closed loop.
for (aMapIter.Initialize(aMapVE); aMapIter.More(); aMapIter.Next()) {
const TopTools_ListOfShape &anEdges = aMapIter.Value();
if (anEdges.Extent() == 1) {
isToTreat = Standard_True;
break;
}
}
}
// Stop treatment if there is no more edges.
if (!isToTreat)
break;
// Treat the list of edges starting from the current iterator.
TopoDS_Wire aWire;
aBuilder.MakeWire(aWire);
aFirstVtx = TopoDS::Vertex(aMapIter.Key());
while (!aFirstVtx.IsNull()) {
const TopTools_ListOfShape &anEdges = aMapVE.ChangeFind(aFirstVtx);
aCurEdge = TopoDS::Edge(anEdges.First());
TopExp::Vertices(aCurEdge, aV[0], aV[1], Standard_True);
if (aFirstVtx.IsSame(aV[1])) {
aV[1] = aV[0];
aV[0] = aFirstVtx;
aCurEdge.Reverse();
}
aBuilder.Add(aWire, aCurEdge);
TopTools_ListOfShape &anEdges1 = aMapVE.ChangeFind(aV[0]);
TopTools_ListOfShape &anEdges2 = aMapVE.ChangeFind(aV[1]);
// Remove the current edge from aMapVE.
anEdges1.RemoveFirst();
if (anEdges1.IsEmpty())
aMapVE.UnBind(aV[0]);
if (anEdges2.IsEmpty() || anEdges2.Extent() > 2)
return Standard_False;
if (aCurEdge.IsSame(anEdges2.First())) {
// Remove first element.
anEdges2.RemoveFirst();
} else if (aCurEdge.IsSame(anEdges2.Last())) {
// Remove last element.
TopTools_ListIteratorOfListOfShape anEdgeIt(anEdges2);
anEdgeIt.Next();
anEdges2.Remove(anEdgeIt);
} else {
return Standard_False;
}
if (anEdges2.IsEmpty()) {
aMapVE.UnBind(aV[1]);
aFirstVtx.Nullify();
} else {
aFirstVtx = aV[1];
}
}
theWires.Append(aWire);
}
return Standard_True;
}
// ==============================================================================
// function: Constructor
// ==============================================================================
Unfolding_Shell::Unfolding_Shell()
: myTolContour(0.001),
myTolCurvature(0.001),
myDeflection(0.001),
myDistortionArea(0.),
myCurvature(0.)
{
Reset();
}
// ==============================================================================
// function: Constructor
// ==============================================================================
Unfolding_Shell::Unfolding_Shell(const TopoDS_Shell& theShell,
const gp_Pln& thePlane,
const Standard_Real theContourTolerance,
const Standard_Real theCurvatureTolerance,
const Standard_Real theDeflection)
: myShell(theShell),
myPlane(thePlane),
myTolContour(theContourTolerance),
myTolCurvature(theCurvatureTolerance),
myDeflection(theDeflection),
myDistortionArea(0.),
myCurvature(0.)
{
Reset();
}
// ==============================================================================
// function: Perform
// ==============================================================================
Standard_Boolean Unfolding_Shell::Perform()
{
// Check if the operation is already performed and there is nothing to do.
if (myErrorStatus != Unfolding_NotDone)
return (myErrorStatus == Unfolding_Done);
// Check input data validity.
if (myShell.IsNull() ||
( myTolContour <= RealEpsilon() ) ||
( myTolCurvature <= RealEpsilon() ) ||
( myDeflection <= RealEpsilon() ) ) {
myErrorStatus = Unfolding_InvalidInput;
return Standard_False;
}
// Compute number of samples for each edge of the shell.
TopTools_DataMapOfShapeInteger aMapEdgeNbSamples;
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
Standard_Integer i;
Standard_Integer aNbEdges;
TopExp::MapShapesAndAncestors(myShell, TopAbs_EDGE, TopAbs_FACE, aMapEF);
aNbEdges = aMapEF.Extent();
for (i = 1; i <= aNbEdges; i++) {
TopoDS_Edge anEdge = TopoDS::Edge(aMapEF.FindKey(i));
const TopTools_ListOfShape &aFaces = aMapEF.FindFromIndex(i);
Standard_Integer aNbPoints = Unfolding::NbSamples(anEdge, aFaces,
myTolContour);
aMapEdgeNbSamples.Bind(anEdge, aNbPoints);
}
// Perform unfolding of each face.
TopTools_ListOfShape aList2Sew;
myDistortionArea = 0.;
myCurvature = 0.;
TopExp_Explorer anExp( myShell, TopAbs_FACE );
Standard_Boolean isFirstReversed = Standard_False;
for ( ; anExp.More(); anExp.Next() ) {
TopoDS_Face aFaceOriginal = TopoDS::Face( anExp.Current() );
TopoDS_Face aFace = aFaceOriginal;
aFace.Orientation( TopAbs_FORWARD );
Unfolding_Surface anUnfoldFace(aFace, myPlane, myTolContour,
myTolCurvature, myDeflection);
Standard_Boolean isDone =
anUnfoldFace.Perform(aMapEdgeNbSamples);
Handle(Unfolding_FaceDataContainer) aFaceData = anUnfoldFace.GetDataContainer();
// Keep the original orientation of unfolding data container.
aFaceData->SetFace(aFaceOriginal);
if ( myCurvature < aFaceData->GetMaxGaussCurvature() )
myCurvature = aFaceData->GetMaxGaussCurvature();
myDistortionArea += aFaceData->GetDistortionArea();
if ( !isDone ) {
myErrorStatus = anUnfoldFace.ErrorStatus();
return Standard_False;
}
if ( myMapFaceData.IsEmpty() ) {
isFirstReversed = ( aFaceOriginal.Orientation() == TopAbs_REVERSED );
}
TopoDS_Face aNewFace = aFaceData->GetUnfoldedFace();
Standard_Boolean toReverse = ( aFaceOriginal.Orientation() == TopAbs_REVERSED );
if ( isFirstReversed )
toReverse = !toReverse;
gp_Trsf aTrsfPln;
if ( toReverse ) {
// Take into account the faces of different orientation are unfolded
// as mirror compared to the first unfolded face representation
aTrsfPln.SetMirror( gp_Ax1( myPlane.Location(), myPlane.Position().XDirection() ) );
aFaceData->ApplyTrsf(aTrsfPln);
}
myMapFaceData.Add(aFaceData);
}
//
if ( !ComputeTransformed( aList2Sew ) ) {
return Standard_False;
}
//
BRep_Builder aBuilder;
TopoDS_Compound aCompound;
TopTools_ListIteratorOfListOfShape anIt( aList2Sew );
aBuilder.MakeCompound(aCompound);
for ( ; anIt.More(); anIt.Next() )
aBuilder.Add(aCompound, anIt.Value());
Unfolding_ErrorStatus aStatus;
TopoDS_Shell aShell = Unfolding::ToShell(aCompound,
myTolContour, aStatus);
if (aShell.IsNull()) {
switch (aStatus) {
case Unfolding_ComplexShape:
myErrorStatus = Unfolding_ComplexShape;
break;
case Unfolding_InvalidShape:
myErrorStatus = Unfolding_InvalidShape;
break;
default:
myErrorStatus = Unfolding_Failure;
break;
}
return Standard_False;
}
ShapeAnalysis_FreeBoundsProperties aFreeBoundAlgo(aShell);
if ( !aFreeBoundAlgo.Perform() ) {
myErrorStatus = Unfolding_Failure;
return Standard_False;
}
Handle(ShapeAnalysis_HSequenceOfFreeBounds) aSeqWire;
aSeqWire = aFreeBoundAlgo.ClosedFreeBounds();
BRepBuilderAPI_MakeFace aFaceMaker(myPlane);
if ( !aSeqWire.IsNull() ) {
for ( Standard_Integer w = 1; w <= aSeqWire->Length(); w++ ) {
aFaceMaker.Add( aSeqWire->Value(w)->FreeBound() );
}
}
myResult = aFaceMaker.Face();
#ifdef DEB
cout << "Checking the result..." << endl;
#endif
BRepCheck_Analyzer aChecker( myResult, Standard_True );
if ( !aChecker.IsValid() ) {
myErrorStatus = Unfolding_ComplexShape;
return Standard_False;
}
return Standard_True;
}
// ==============================================================================
// function: ComputeTransformed
// ==============================================================================
Standard_Boolean Unfolding_Shell::ComputeTransformed(TopTools_ListOfShape& theResult)
{
theResult.Clear();
// If the map of face data is empty, nothing to do.
if (myMapFaceData.IsEmpty())
return Standard_True;
TopTools_MapOfShape aMapTreated;
TColStd_MapOfInteger aMapTreatedIndices;
TopTools_IndexedDataMapOfShapeListOfShape aMapEF;
Standard_Integer i;
Standard_Integer aNbFaces = myMapFaceData.Extent();
TColStd_ListOfInteger aListToTreat;
Handle(Unfolding_FaceDataContainer) aDummyFaceData;
aDummyFaceData = new Unfolding_FaceDataContainer;
TopExp::MapShapesAndAncestors( myShell, TopAbs_EDGE, TopAbs_FACE, aMapEF );
for (i = 1; i <= aNbFaces; i++) {
// Skip index already treated.
if (aMapTreatedIndices.Contains(i))
continue;
aListToTreat.Append(i);
while (!aListToTreat.IsEmpty()) {
Standard_Integer anIndex = aListToTreat.First();
if (!aMapTreatedIndices.Add(anIndex))
continue;
aListToTreat.RemoveFirst();
const Handle(Unfolding_FaceDataContainer) &aFaceData =
myMapFaceData.FindKey(anIndex);
const TopoDS_Face &aFace =
aFaceData->GetFace();
aMapTreated.Add(aFace);
TopExp_Explorer anEdgeExp(aFace, TopAbs_EDGE);
for ( ; anEdgeExp.More(); anEdgeExp.Next() ) {
const TopoDS_Shape &anEdge = anEdgeExp.Current();
if (!aMapTreated.Add(anEdge) || !aMapEF.Contains(anEdge)) {
// This edge is already treated or it is absent in aMapEF. Skip it.
continue;
}
// Treat faces share the edge anEdge with the face aFace.
const TopTools_ListOfShape &aFaces = aMapEF.FindFromKey(anEdge);
TopTools_ListIteratorOfListOfShape aFaceIter(aFaces);
for (; aFaceIter.More(); aFaceIter.Next()) {
const TopoDS_Shape &aNeighborFace = aFaceIter.Value();
// Skip aFace
if (aFace.IsSame(aNeighborFace))
continue;
aDummyFaceData->SetFace(TopoDS::Face(aNeighborFace));
Standard_Boolean isFixed = !aMapTreated.Add(aNeighborFace);
Standard_Integer aNeighborIndex = myMapFaceData.FindIndex(aDummyFaceData);
if (aNeighborIndex == 0) {
myErrorStatus = Unfolding_Failure;
return Standard_False; // This is an invalid case.
}
const Handle(Unfolding_FaceDataContainer) &aNeighborFaceData =
myMapFaceData.FindKey(aNeighborIndex);
TopTools_ListOfShape aCommonEdges;
GetCommonEdges(aFace, aNeighborFaceData->GetFace(), aCommonEdges);
if (!MoveFace2ToFace1(aFaceData, aNeighborFaceData,
aCommonEdges, isFixed))
return Standard_False;
// Add common edge to the map of treated shapes.
TopTools_ListIteratorOfListOfShape anEdgeIter(aCommonEdges);
for (; anEdgeIter.More(); anEdgeIter.Next())
aMapTreated.Add(anEdgeIter.Value());
if (!isFixed)
aListToTreat.Append(aNeighborIndex);
}
}
theResult.Append(aFaceData->GetUnfoldedFace());
}
}
return Standard_True;
}
// ==============================================================================
// function: MoveFace2ToFace1
// ==============================================================================
Standard_Boolean Unfolding_Shell::MoveFace2ToFace1
(const Handle(Unfolding_FaceDataContainer) &theFaceData1,
const Handle(Unfolding_FaceDataContainer) &theFaceData2,
const TopTools_ListOfShape &theCommonEdges,
const Standard_Boolean theIsFixed)
{
TopTools_ListOfShape aWires;
if (!GetWires(theCommonEdges, aWires)) {
myErrorStatus = Unfolding_Failure;
return Standard_False;
}
// Get a wire with the greatest distance between first and last vertices.
TopoDS_Wire aRefWire;
TopoDS_Wire aWire;
TopTools_ListIteratorOfListOfShape anIter(aWires);
Standard_Real aMaxDist = -1;
Standard_Real aDist;
TopoDS_Vertex aV[2];
for (; anIter.More(); anIter.Next()) {
aWire = TopoDS::Wire(anIter.Value());
TopExp::Vertices(aWire, aV[0], aV[1]);
gp_Pnt aP1 = BRep_Tool::Pnt(aV[0]);
gp_Pnt aP2 = BRep_Tool::Pnt(aV[1]);
aDist = aP1.Distance(aP2);
if (aDist > aMaxDist) {
aMaxDist = aDist;
aRefWire = aWire;
}
}
if (aRefWire.IsNull()) {
myErrorStatus = Unfolding_Failure;
return Standard_False;
}
// Compute points.
Standard_Boolean isReversedOn1 = Standard_False;
Standard_Boolean isReversedOn2 = Standard_False;
TopExp_Explorer anExp(aRefWire, TopAbs_EDGE);
if (anExp.More()) {
TopoDS_Edge aFirstEdge = TopoDS::Edge(anExp.Current());
TopoDS_Face aFace1 = theFaceData1->GetFace();
TopoDS_Face aFace2 = theFaceData2->GetFace();
TopExp_Explorer aFaceExp(aFace1, TopAbs_EDGE);
for (; aFaceExp.More(); aFaceExp.Next()) {
const TopoDS_Shape &anEdgeOnF1 = aFaceExp.Current();
if (aFirstEdge.IsSame(anEdgeOnF1)) {
if (aFirstEdge.Orientation() != anEdgeOnF1.Orientation())
isReversedOn1 = Standard_True;
break;
}
}
// If aFirstEdge is not found on the face1. It is not possible by construction.
// Return with error status.
if (!aFaceExp.More()) {
myErrorStatus = Unfolding_Failure;
return Standard_False;
}
if (aFace1.Orientation() == aFace2.Orientation())
isReversedOn2 = !isReversedOn1;
else
isReversedOn2 = isReversedOn1;
}
// Collect points.
TopoDS_Shape aFace1 = theFaceData1->GetUnfoldedFace();
TopoDS_Shape aFace2 = theFaceData2->GetUnfoldedFace();
TColgp_SequenceOfXY aMasterPoints;
TColgp_SequenceOfXY aSlavePoints;
gp_Pnt2d aUV[2];
Handle(Geom_Surface) aSurface = new Geom_Plane(myPlane);
TopLoc_Location aLoc;
for (; anExp.More(); anExp.Next()) {
TopoDS_Edge anEdge = TopoDS::Edge(anExp.Current());
const TopTools_ListOfShape &anUnfld1 = theFaceData1->GetEdgesForEdge(anEdge);
const TopTools_ListOfShape &anUnfld2 = theFaceData2->GetEdgesForEdge(anEdge);
// Fill aMasterPoints.
for (anIter.Initialize(anUnfld1); anIter.More(); anIter.Next()) {
TopoDS_Edge anUnfoldEdge = TopoDS::Edge(anIter.Value());
if (isReversedOn1)
BRep_Tool::UVPoints(anUnfoldEdge, aSurface, aLoc, aUV[1], aUV[0]);
else
BRep_Tool::UVPoints(anUnfoldEdge, aSurface, aLoc, aUV[0], aUV[1]);
// Add the first point if the collection is empty.
if (aMasterPoints.IsEmpty())
aMasterPoints.Append(aUV[0].XY());
// Add the last point.
if (isReversedOn1)
aMasterPoints.Prepend(aUV[1].XY());
else
aMasterPoints.Append(aUV[1].XY());
}
// Fill aSlavePoints.
for (anIter.Initialize(anUnfld2); anIter.More(); anIter.Next()) {
TopoDS_Edge anUnfoldEdge = TopoDS::Edge(anIter.Value());
if (isReversedOn2)
BRep_Tool::UVPoints(anUnfoldEdge, aSurface, aLoc, aUV[1], aUV[0]);
else
BRep_Tool::UVPoints(anUnfoldEdge, aSurface, aLoc, aUV[0], aUV[1]);
// Add the first point if the collection is empty.
if (aSlavePoints.IsEmpty())
aSlavePoints.Append(aUV[0].XY());
// Add the last point.
if (isReversedOn2)
aSlavePoints.Prepend(aUV[1].XY());
else
aSlavePoints.Append(aUV[1].XY());
}
}
// Construct array of points.
Handle(TColgp_HArray1OfXY) aMasterPolyLine;
Handle(TColgp_HArray1OfXY) aSlavePolyLine;
Standard_Integer i = 0;
aMasterPolyLine = new TColgp_HArray1OfXY( 1, aMasterPoints.Length() );
aSlavePolyLine = new TColgp_HArray1OfXY( 1, aSlavePoints.Length() );
for ( i = aMasterPolyLine->Lower(); i <= aMasterPolyLine->Upper(); i++ )
aMasterPolyLine->SetValue( i, aMasterPoints(i) );
for ( i = aSlavePolyLine->Lower(); i <= aSlavePolyLine->Upper(); i++ )
aSlavePolyLine->SetValue( i, aSlavePoints(i) );
// Compute transformation
gp_Trsf2d aTransformation2d;
Standard_Real aDistortionArea;
if ( !CombineCurves(aMasterPolyLine->Array1(), aSlavePolyLine->Array1(),
theIsFixed, myTolContour, myTolContour*myTolContour,
aTransformation2d, aDistortionArea) ) {
myDistortionArea += aDistortionArea;
myErrorStatus = Unfolding_InvalidSurface;
return Standard_False;
}
myDistortionArea += aDistortionArea;
// Trasform face
if (!theIsFixed) {
gp_Trsf aTrsf2dTo3d( aTransformation2d );
gp_Trsf aTrsfPln1, aTrsfPln2;
gp_Ax3 anAx3( gp_Pnt(0,0,0), gp_Dir(0,0,1), gp_Dir(1,0,0));
aTrsfPln1.SetDisplacement( myPlane.Position(), anAx3 );
aTrsfPln2.SetDisplacement( anAx3, myPlane.Position() );
gp_Trsf aTransformation = aTrsf2dTo3d * aTrsfPln1;
aTransformation = aTrsfPln2 * aTransformation;
theFaceData2->ApplyTrsf(aTransformation);
}
return Standard_True;
}
//-----------------------------------------------------------------------
//function : CombineCurves
//purpose :
//-----------------------------------------------------------------------
static Standard_Boolean CombineCurves(const TColgp_Array1OfXY& theMasterPolyLine,
const TColgp_Array1OfXY& theSlavePolyLine,
const Standard_Boolean IsFixed,
const Standard_Real theConfTolerance,
const Standard_Real theAreaTolerance,
gp_Trsf2d& theTransformation,
Standard_Real& theDistortionArea)
{
theDistortionArea = 0.;
if ( ( theMasterPolyLine.Length() < 2 ) || ( theSlavePolyLine.Length() < 2 ) )
return Standard_False;
gp_XY aPMasterFirst = theMasterPolyLine.Value(theMasterPolyLine.Lower());
gp_XY aPMasterLast = theMasterPolyLine.Value(theMasterPolyLine.Upper());
gp_XY aPSlaveFirst = theSlavePolyLine.Value(theSlavePolyLine.Lower());
gp_XY aPSlaveLast = theSlavePolyLine.Value(theSlavePolyLine.Upper());
if (aPMasterFirst.IsEqual(aPMasterLast, theConfTolerance) ||
aPSlaveFirst.IsEqual(aPSlaveLast, theConfTolerance)) {
// One of polylines is closed. Get the points previous to the last ones.
aPMasterLast = theMasterPolyLine.Value(theMasterPolyLine.Upper() - 1);
aPSlaveLast = theSlavePolyLine.Value(theSlavePolyLine.Upper() - 1);
if (aPMasterFirst.IsEqual(aPMasterLast, theConfTolerance) ||
aPSlaveFirst.IsEqual(aPSlaveLast, theConfTolerance))
return Standard_False;
}
Standard_Real aRotation = 0.;
gp_XY aTranslation;
gp_Vec2d aLineDir1(aPMasterLast - aPMasterFirst);
gp_Vec2d aLineDir2(aPSlaveLast - aPSlaveFirst);
aTranslation = aPMasterFirst - aPSlaveFirst;
Standard_Real aLen1 = aLineDir1.Magnitude();
Standard_Real aLen2 = aLineDir2.Magnitude();
Standard_Real aShift = ( aLen2 - aLen1 ) * 0.5;
if ( aLen1 > gp::Resolution() ) {
aTranslation = aTranslation - aLineDir1.XY() * (aShift / aLen1);
if ( aLen2 > gp::Resolution() )
aRotation = aLineDir1.Angle( aLineDir2 );
}
// compute base transformation
gp_Trsf2d aRotTrsf;
aRotTrsf.SetRotation(aPSlaveFirst, -aRotation);
gp_Trsf2d aTransTrsf;
aTransTrsf.SetTranslation( gp_Vec2d(aTranslation) );
theTransformation = aTransTrsf * aRotTrsf;
//
// Compute transformation of shift to minimize the area of
// poly-lines difference
gp_Dir2d aDir(1,0);
if ( aLen1 > gp::Resolution() )
aDir = gp_Dir2d( gp_XY(-aLineDir1.Y(), aLineDir1.X() ) ) ;
Unfolding_FunctionWithDerivative aFunc( theMasterPolyLine, theSlavePolyLine, aDir, theTransformation );
if (IsFixed) {
Standard_Real aVal;
aFunc.Value(0, aVal);
theDistortionArea = aFunc.Area();
return Standard_True;
} else {
Standard_Real aBoundary = aShift * 20.;
const Standard_Real aTolX = 1.e-05;
if ( fabs(aBoundary) < aTolX * 2. ) {
Standard_Real aVal = 0.;
aFunc.Value(0, aVal);
theDistortionArea = aFunc.Area();
return Standard_True;
}
const Standard_Real aTolF = ( theAreaTolerance < 1.e-06 ) ? 1.e-06 : theAreaTolerance;
math_NewtonFunctionRoot R( aFunc, 0., aTolX, aTolF, -aBoundary, aBoundary, 10 );
if ( R.IsDone() ) {
gp_Trsf2d aTransTrsfAdd;
aTransTrsfAdd.SetTranslation( gp_Vec2d(aDir.XY() * R.Root() ) );
theTransformation = aTransTrsfAdd * theTransformation;
theDistortionArea = aFunc.Area();
}
else {
math_FunctionRoot R2( aFunc, 0., aTolX, -aBoundary, aBoundary );
if ( R2.IsDone() ) {
gp_Trsf2d aTransTrsfAdd;
aTransTrsfAdd.SetTranslation( gp_Vec2d(aDir.XY() * R2.Root() ) );
theTransformation = aTransTrsfAdd * theTransformation;
theDistortionArea = aFunc.Area();
}
}
}
return Standard_True;
}

View File

@@ -0,0 +1,153 @@
// File: Unfolding_Shell.cdl
// Created: Tue Sep 9 16:56:09 2008
// Author: Mikhail KLOKOV
// <mkk@kurox>
//-Copyright: Open CASCADE 2008
#ifndef _Unfolding_Shell_HeaderFile
#define _Unfolding_Shell_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <TopoDS_Shell.hxx>
#include <gp_Pln.hxx>
#include <Standard_Real.hxx>
#include <Unfolding_IndexedMapOfFaceDataContainer.hxx>
#include <TopoDS_Face.hxx>
#include <Unfolding_ErrorStatus.hxx>
#include <Standard_Boolean.hxx>
class TopoDS_Shell;
class gp_Pln;
class TopoDS_Face;
#include <TopTools_ListOfShape.hxx>
class Unfolding_FaceDataContainer;
//! This class is used to perform unfolding of a shell onto a plane.
//! To perform this operation it is necessary to initialize the
//! object by a shell to be unfolded, a plane and a tolerance for
//! operation. Then to call the method Perform. The result planar
//! shell can be obtained using the method GetResult. Error status
//! can be obtained by the method ErrorStatus.
class Unfolding_Shell
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT Unfolding_Shell();
//! Constructor. Initializes the object with the shell, the plane and
//! the tolerances for operation.
Standard_EXPORT Unfolding_Shell(const TopoDS_Shell& theShell, const gp_Pln& thePlane, const Standard_Real theContourTolerance, const Standard_Real theCurvatureTolerance = 0.001, const Standard_Real theDeflection = 0.001);
//! Sets the face.
void SetShell (const TopoDS_Shell& theShell);
//! Returns the shell.
const TopoDS_Shell& GetShell() const;
//! Sets the plane.
void SetPlane (const gp_Pln& thePlane);
//! Returns the plane.
const gp_Pln& GetPlane() const;
//! Sets the tolerance for the operation.
void SetCurvatureTolerance (const Standard_Real theTolerance);
//! Returns the tolerance for the operation.
Standard_Real GetCurvatureTolerance() const;
//! Sets the tolerance for the operation.
void SetContourTolerance (const Standard_Real theTolerance);
//! Returns the tolerance for the operation.
Standard_Real GetContourTolerance() const;
//! Sets the tolerance for the operation.
void SetDeflection (const Standard_Real theDeflection);
//! Returns the tolerance for the operation.
Standard_Real GetDeflection() const;
//! Performs computation of the unfolded surface. It returns
//! Standard_True if the operation succeeds otherwise returns
//! Standard_False. It is possible to get the error status of
//! the performed operation using the method ErrorStatus().
Standard_EXPORT Standard_Boolean Perform();
//! Returns error status of the operation. The error status can have
//! one of the following values:
//! - Unfolding_Done: operation is succeeded;
//! - Unfolding_NotDone: the method Perform() is not called yet;
//! - Unfolding_Failure: the operation is failed;
//! - Unfolding_InvalidSurface: the surface cannot be unfolded
//! without distortion;
//! - Unfolding_InvalidInput: invalid input for the operation;
//! - Unfolding_InvalidShape: can be returned by
//! Unfolding::ToShape method;
//! - Unfolding_ComplexShape: can be returned by
//! Unfolding::ToShape method;
Unfolding_ErrorStatus ErrorStatus() const;
//! Returns the result of the operation. If the operation is failed,
//! it returns a null shape.
const TopoDS_Face& GetResult() const;
//! Returns the area cumulated during primitive patches mergin.
//! It shows computed distortion.
Standard_Real GetAreaError() const;
//! Returns the gauss curvature computed in the mesh points.
Standard_Real GetMaxGaussCurvature() const;
protected:
//! Resets data to the initial state.
void Reset();
private:
Standard_EXPORT Standard_Boolean ComputeTransformed (TopTools_ListOfShape& theResult);
//! Perform transformation of unfolded face2 to glue with unfolded
//! face1. If theIsFixed is Standard_True, the face 2 is not
//! transformed only estimations of distortions are performed.
Standard_EXPORT Standard_Boolean MoveFace2ToFace1 (const Handle(Unfolding_FaceDataContainer)& theFaceData1, const Handle(Unfolding_FaceDataContainer)& theFaceData2, const TopTools_ListOfShape& theCommonEdges, const Standard_Boolean theIsFixed);
TopoDS_Shell myShell;
gp_Pln myPlane;
Standard_Real myTolContour;
Standard_Real myTolCurvature;
Standard_Real myDeflection;
Unfolding_IndexedMapOfFaceDataContainer myMapFaceData;
TopoDS_Face myResult;
Unfolding_ErrorStatus myErrorStatus;
Standard_Real myDistortionArea;
Standard_Real myCurvature;
};
#include <Unfolding_Shell.lxx>
#endif // _Unfolding_Shell_HeaderFile

View File

@@ -0,0 +1,99 @@
// File: Unfolding_Shell.lxx
// Created: Tue Sep 9 17:14:56 2008
// Author: Mikhail KLOKOV
// <mkk@kurox>
inline void Unfolding_Shell::SetShell(const TopoDS_Shell& theShell)
{
myShell = theShell;
}
inline const TopoDS_Shell& Unfolding_Shell::GetShell() const
{
return myShell;
}
inline void Unfolding_Shell::SetPlane(const gp_Pln& thePlane)
{
myPlane = thePlane;
}
inline const gp_Pln& Unfolding_Shell::GetPlane() const
{
return myPlane;
}
inline void Unfolding_Shell::SetCurvatureTolerance(const Standard_Real theTolerance)
{
myTolCurvature = theTolerance;
}
inline Standard_Real Unfolding_Shell::GetCurvatureTolerance() const
{
return myTolCurvature;
}
inline void Unfolding_Shell::SetContourTolerance(const Standard_Real theTolerance)
{
myTolContour = theTolerance;
}
inline Standard_Real Unfolding_Shell::GetContourTolerance() const
{
return myTolContour;
}
inline void Unfolding_Shell::SetDeflection(const Standard_Real theDeflection)
{
myDeflection = theDeflection;
}
inline Standard_Real Unfolding_Shell::GetDeflection() const
{
return myDeflection;
}
inline Unfolding_ErrorStatus Unfolding_Shell::ErrorStatus() const
{
return myErrorStatus;
}
inline const TopoDS_Face& Unfolding_Shell::GetResult() const
{
return myResult;
}
inline Standard_Real Unfolding_Shell::GetAreaError() const
{
return myDistortionArea;
}
inline Standard_Real Unfolding_Shell::GetMaxGaussCurvature() const
{
return myCurvature;
}
inline void Unfolding_Shell::Reset()
{
myDistortionArea = 0.;
myCurvature = 0.;
myErrorStatus = Unfolding_NotDone;
myMapFaceData.Clear();
myResult.Nullify();
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,167 @@
// File: Unfolding_Surface.cdl
// Created: Tue Jul 22 12:50:10 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Open CASCADE 2008
#ifndef _Unfolding_Surface_HeaderFile
#define _Unfolding_Surface_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <gp_Pln.hxx>
#include <Standard_Real.hxx>
#include <Unfolding_HArray2OfPoint.hxx>
#include <Unfolding_ErrorStatus.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
#include <TopTools_ListOfShape.hxx>
class Unfolding_FaceDataContainer;
class TopoDS_Face;
class gp_Pln;
#include <TopTools_DataMapOfShapeInteger.hxx>
class TopoDS_Wire;
class TopoDS_Edge;
class TopoDS_Vertex;
class gp_XY;
//! This class is used to perform unfolding of a face onto a plane.
//! To perform this operation it is necessary to initialize the
//! object by a face to be unfolded, a plane and a tolerance for
//! operation. Then to call the method Perform. The result planar
//! face can be obtained using the method GetResult. Error status
//! can be obtained by the method ErrorStatus.
class Unfolding_Surface
{
public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT Unfolding_Surface();
//! Constructor. Initializes the object with the face, the plane and
//! the tolerance for operation.
Standard_EXPORT Unfolding_Surface(const TopoDS_Face& theFace, const gp_Pln& thePlane, const Standard_Real theContourTolerance, const Standard_Real theCurvatureTolerance = 0.001, const Standard_Real theDeflection = 0.001);
//! Sets the face.
void SetFace (const TopoDS_Face& theFace);
//! Returns the face.
const TopoDS_Face& GetFace() const;
//! Sets the plane.
void SetPlane (const gp_Pln& thePlane);
//! Returns the plane.
const gp_Pln& GetPlane() const;
//! Sets the tolerance for the operation.
void SetCurvatureTolerance (const Standard_Real theTolerance);
//! Returns the tolerance for the operation.
Standard_Real GetCurvatureTolerance() const;
//! Sets the tolerance for the operation.
void SetContourTolerance (const Standard_Real theTolerance);
//! Returns the tolerance for the operation.
Standard_Real GetContourTolerance() const;
//! Sets the tolerance for the operation.
void SetDeflection (const Standard_Real theDeflection);
//! Returns the tolerance for the operation.
Standard_Real GetDeflection() const;
//! Performs computation of the unfolded surface. It returns
//! Standard_True if the operation succeeds otherwise returns
//! Standard_False. It is possible to get the error status of
//! the performed operation using the method ErrorStatus().
//! theMapEdgeNbSamples is the map of edges as keys and
//! number of samples for this edge as item. It is required
//! for predefined sampling of edges of a face. If an edge is
//! absent in this map its sampling is automatically computed.
//! This feature is used to get same sampling for shared edges
//! on different faces.
Standard_EXPORT Standard_Boolean Perform (const TopTools_DataMapOfShapeInteger& theMapEdgeNbSamples);
//! Returns error status of the operation. The error status can have
//! one of the following values:
//! - Unfolding_Done: operation is succeeded;
//! - Unfolding_NotDone: the method Perform() is not called yet;
//! - Unfolding_Failure: the operation is failed;
//! - Unfolding_InvalidSurface: the surface cannot be unfolded
//! without distortion;
//! - Unfolding_InvalidInput: invalid input for the operation.
Unfolding_ErrorStatus ErrorStatus() const;
//! Returns data container. That stores all results of the operation.
Handle(Unfolding_FaceDataContainer) GetDataContainer() const;
protected:
//! Resets data to the initial state.
void Reset();
private:
//! Initializes the grid on surface. Computes a rectangular grid in
//! the parametric space of the face and computes the corresponding
//! 3d points on the surface.
Standard_EXPORT Standard_Boolean InitGrid();
//! Computes and returns the numbers of sampling points
//! for U and V directions.
Standard_EXPORT void NbPoints (const Standard_Real theUMin, const Standard_Real theUMax, const Standard_Real theVMin, const Standard_Real theVMax, Standard_Integer& theNbPointsU, Standard_Integer& theNbPointsV) const;
//! Performs unfolding of the grid of points onto the plane. Returns
//! Standard_True in case of success and Standard_False otherwise.
//! Initializes the error status of the operation.
Standard_EXPORT Standard_Boolean Unfolding();
//! Constructs and returns a planar face.
Standard_EXPORT Standard_Boolean BuildPlanarFace (const TopTools_DataMapOfShapeInteger& theMapEdgeNbSamples);
//! Constructs and returns planar unfolded wire from original one.
Standard_EXPORT Standard_Boolean BuildPlanarWire (const TopoDS_Wire& theWire, const TopTools_DataMapOfShapeInteger& theMapEdgeNbSamples, TopoDS_Wire& thePlanarWire);
//! Constructs and returns a set of planar unfolded edges
//! from theEdge.
Standard_EXPORT Standard_Boolean UnfoldEdge (const TopoDS_Edge& theEdge, const TopoDS_Vertex& theStartVtx, const TopoDS_Vertex& theEndVtx, const TopTools_DataMapOfShapeInteger& theMapEdgeNbSamples, gp_XY& theStartPnt, gp_XY& theEndPnt, TopTools_ListOfShape& thePlnEdges) const;
//! Computes and returns a point on plane that corresponds
//! to a point on a surface.
Standard_EXPORT Standard_Boolean ComputePointOnPlane (const gp_XY& thePoint, const Standard_Real theEdgeTol, gp_XY& thePointOnPlane) const;
Handle(Unfolding_FaceDataContainer) myDataContainer;
gp_Pln myPlane;
Standard_Real myTolContour;
Standard_Real myTolCurvature;
Standard_Real myDeflection;
Handle(Unfolding_HArray2OfPoint) myGrid;
Unfolding_ErrorStatus myErrorStatus;
};
#include <Unfolding_Surface.lxx>
#endif // _Unfolding_Surface_HeaderFile

View File

@@ -0,0 +1,132 @@
// File: Unfolding_Surface.lxx
// Created: Tue Jul 22 16:13:39 2008
// Author: Sergey KHROMOV
// <skv@dimox>
#include <Unfolding_FaceDataContainer.hxx>
//=======================================================================
//function : SetFace
//purpose :
//=======================================================================
inline void Unfolding_Surface::SetFace (const TopoDS_Face &theFace)
{
myDataContainer->SetFace(theFace);
Reset();
}
//=======================================================================
//function : GetFace
//purpose :
//=======================================================================
inline const TopoDS_Face &Unfolding_Surface::GetFace () const
{
return myDataContainer->GetFace();
}
//=======================================================================
//function : SetPlane
//purpose :
//=======================================================================
inline void Unfolding_Surface::SetPlane (const gp_Pln &thePlane)
{
myPlane = thePlane;
Reset();
}
//=======================================================================
//function : GetPlane
//purpose :
//=======================================================================
inline const gp_Pln &Unfolding_Surface::GetPlane () const
{
return myPlane;
}
//=======================================================================
//function : SetTolerance
//purpose :
//=======================================================================
inline void Unfolding_Surface::SetContourTolerance (const Standard_Real theTolerance)
{
myTolContour = theTolerance;
Reset();
}
//=======================================================================
//function : GetTolerance
//purpose :
//=======================================================================
inline Standard_Real Unfolding_Surface::GetContourTolerance () const
{
return myTolContour;
}
inline void Unfolding_Surface::SetCurvatureTolerance(const Standard_Real theTolerance)
{
myTolCurvature = theTolerance;
Reset();
}
inline Standard_Real Unfolding_Surface::GetCurvatureTolerance() const
{
return myTolCurvature;
}
inline void Unfolding_Surface::SetDeflection(const Standard_Real theDeflection)
{
myDeflection = theDeflection;
Reset();
}
inline Standard_Real Unfolding_Surface::GetDeflection() const
{
return myDeflection;
}
//=======================================================================
//function : ErrorStatus
//purpose :
//=======================================================================
inline Unfolding_ErrorStatus Unfolding_Surface::ErrorStatus () const
{
return myErrorStatus;
}
//=======================================================================
//function : GetDataContainer
//purpose :
//=======================================================================
inline Handle(Unfolding_FaceDataContainer)
Unfolding_Surface::GetDataContainer() const
{
return myDataContainer;
}
//=======================================================================
//function : Reset
//purpose :
//=======================================================================
inline void Unfolding_Surface::Reset()
{
myDataContainer->Reset();
myErrorStatus = Unfolding_NotDone;
if (!myGrid.IsNull())
myGrid.Nullify();
}

2
src/UnfoldingTest/FILES Normal file
View File

@@ -0,0 +1,2 @@
UnfoldingTest.cxx
UnfoldingTest.hxx

View File

@@ -0,0 +1,272 @@
// File: UnfoldingTest.cxx
// Created: Tue Jul 22 18:35:23 2008
// Author: Sergey KHROMOV
// <skv@dimox>
#include <UnfoldingTest.hxx>
#include <Draw.hxx>
#include <Draw_PluginMacro.hxx>
#include <Draw_Interpretor.hxx>
#include <TopoDS_Shape.hxx>
#include <DBRep.hxx>
#include <TopoDS_Shell.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS.hxx>
#include <Geom_Surface.hxx>
#include <DrawTrSurf.hxx>
#include <Geom_Plane.hxx>
#include <Unfolding_Surface.hxx>
#include <Unfolding_Shell.hxx>
#include <Unfolding.hxx>
#include <TopTools_DataMapOfShapeInteger.hxx>
//=======================================================================
//function : dumpError
//purpose :
//=======================================================================
static void dumpError (Draw_Interpretor &di,
const Standard_Integer theStatus)
{
di << " Status: ";
switch (theStatus) {
case Unfolding_Done:
di << "Done";
break;
case Unfolding_NotDone:
di << "NotDone";
break;
case Unfolding_Failure:
di << "Failure";
break;
case Unfolding_InvalidSurface:
di << "InvalidSurface";
break;
case Unfolding_InvalidInput:
di << "InvalidInput";
break;
case Unfolding_InvalidShape:
di << "InvalidShape";
break;
case Unfolding_ComplexShape:
di << "ComplexShape";
break;
default:
di << "Unknown";
break;
}
di << " \n";
}
//=======================================================================
//function : unfolding
//purpose :
//=======================================================================
static Standard_Integer unfolding (Draw_Interpretor &di,
Standard_Integer n, const char** a)
{
if (n < 4 || n > 7) {
di << "Usage: " << a[0] << " result face|shell plane [tol_contour] [tol_curvature] [deflection]" << "\n";
return 1;
}
// Get a shape from a[2].
TopoDS_Shape aShape = DBRep::Get(a[2]);
if (aShape.IsNull()) {
di << a[2] << " is not a shape!" << "\n";
return 1;
}
// Check if the shape is a face.
if (aShape.ShapeType() != TopAbs_FACE &&
aShape.ShapeType() != TopAbs_SHELL) {
di << a[2] << " is not a face or shell!" << "\n";
return 1;
}
TopoDS_Shell aShell;
TopoDS_Face aFace;
if (aShape.ShapeType() == TopAbs_FACE) {
aFace = TopoDS::Face( aShape );
if (aFace.IsNull()) {
di << a[2] << " is not a face!" << "\n";
return 1;
}
}
else {
aShell = TopoDS::Shell( aShape );
}
// Get a surface from a[3].
Handle(Geom_Surface) aSurface = DrawTrSurf::GetSurface(a[3]);
if (aSurface.IsNull()) {
di << a[3] << " is not a surface!" << "\n";
return 1;
}
// Cast the surface to a plane.
Handle(Geom_Plane) aPlane = Handle(Geom_Plane)::DownCast(aSurface);
if (aPlane.IsNull()) {
di << a[3] << " is not a plane!" << "\n";
return 1;
}
// Get the tolerance value.
Standard_Real aTolContour = 0.001;
if (n >= 5) {
aTolContour = Draw::Atof(a[4]);
} else {
di << "tolerance value is not provided. The default value " << aTolContour << " is used" << "\n";
}
// Get the curvature tolerance value.
Standard_Real aTolCurv = 0.001;
if (n >= 6) {
aTolCurv = Draw::Atof(a[5]);
} else {
di << "curvature value is not provided. The default value " << aTolCurv << " is used" << "\n";
}
// Get the curvature tolerance value.
Standard_Real aDefl = 0.001;
if (n == 7) {
aDefl = Draw::Atof(a[6]);
} else {
di << "deflection value is not provided. The default value " << aDefl << " is used" << "\n";
}
// Initialization of the unfolding algorithm
Standard_Boolean isOK = Standard_False;
TopoDS_Shape aResult;
Standard_Integer aErrorStatus = 0;
if ( !aFace.IsNull() ) {
TopTools_DataMapOfShapeInteger anEmptyMap;
Unfolding_Surface anUnfold(aFace, aPlane->Pln(), aTolContour, aTolCurv, aDefl);
isOK = anUnfold.Perform(anEmptyMap);
Handle(Unfolding_FaceDataContainer) aData = anUnfold.GetDataContainer();
di << "Gauss curvature =" << aData->GetMaxGaussCurvature() << "\n";
di << "Area of error =" << aData->GetDistortionArea() << "\n";
if ( isOK )
aResult = aData->GetUnfoldedFace();
aErrorStatus = anUnfold.ErrorStatus();
}
else if ( !aShell.IsNull() ) {
Unfolding_Shell anUnfold(aShell, aPlane->Pln(), aTolContour, aTolCurv, aDefl);
isOK = anUnfold.Perform();
di << "Gauss curvature =" << anUnfold.GetMaxGaussCurvature() << "\n";
di << "Area of error =" << anUnfold.GetAreaError() << "\n";
if ( isOK )
aResult = anUnfold.GetResult();
aErrorStatus = anUnfold.ErrorStatus();
}
if (isOK) {
DBRep::Set(a[1], aResult);
} else {
di << "Unfolding failure!" << "\n";
dumpError(di, aErrorStatus);
return 1;
}
return 0;
}
//=======================================================================
//function : toshell
//purpose :
//=======================================================================
static Standard_Integer toshell (Draw_Interpretor &di,
Standard_Integer n, const char** a)
{
if (n != 3 && n != 4) {
di << "Usage: " << a[0] << " result shape [tolerance]" << "\n";;
return 1;
}
// Get a shape from a[2].
TopoDS_Shape aShape = DBRep::Get(a[2]);
if (aShape.IsNull()) {
di << a[2] << " is not a shape!" << "\n";
return 1;
}
// Get the tolerance value.
Standard_Real aTolerance = 1.e-6;
if (n == 4) {
aTolerance = Draw::Atof(a[3]);
} else {
di << "tolerance value is not provided. The default value " << aTolerance << " is used" << "\n";
}
Unfolding_ErrorStatus aStatus;
TopoDS_Shell aResult = Unfolding::ToShell(aShape, aTolerance, aStatus);
if (aResult.IsNull()) {
di << "toshell failure!" << "\n";
dumpError(di, aStatus);
return 1;
}
DBRep::Set(a[1], aResult);
return 0;
}
//=======================================================================
//function : Commands
//purpose :
//=======================================================================
void UnfoldingTest::Commands(Draw_Interpretor &theDI)
{
static Standard_Boolean done = Standard_False;
if (done)
return;
done = Standard_True;
// Chapter's name
const char* group = "Unfolding commands";
theDI.Add("unfolding","unfolding result face|shell plane [tol_contour] [tol_curvature] [deflection]",
__FILE__, unfolding, group);
theDI.Add("toshell","toshell result shape [tolerance]",
__FILE__, toshell, group);
}
//=======================================================================
//function : Factory
//purpose :
//=======================================================================
void UnfoldingTest::Factory(Draw_Interpretor &theDI)
{
UnfoldingTest::Commands(theDI);
#ifdef DEB
theDI << "Draw Plugin : Unfolding commands are loaded" << "\n";
#endif
}
// Declare entry point PLUGINFACTORY
DPLUGIN(UnfoldingTest)

View File

@@ -0,0 +1,55 @@
// File: UnfoldingTest.cdl
// Created: Tue Jul 22 18:15:41 2008
// Author: Sergey KHROMOV
// <skv@dimox>
//-Copyright: Matra Datavision 2008
#ifndef _UnfoldingTest_HeaderFile
#define _UnfoldingTest_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Draw_Interpretor.hxx>
//! This package defines a set of Draw commands for testing of
//! functionality of the package Unfolding.
class UnfoldingTest
{
public:
DEFINE_STANDARD_ALLOC
//! Adds Draw commands to the draw interpretor.
Standard_EXPORT static void Commands (Draw_Interpretor& theDI);
//! Plugin entry point function.
Standard_EXPORT static void Factory (Draw_Interpretor& theDI);
protected:
private:
};
#endif // _UnfoldingTest_HeaderFile