mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
0025621: CAST analysis - Avoid constructors not supplying an initial value for all non-static data members
The constructors of classes from following files have been fixed to ensure that all non-static fields are initialized: Adaptor2d_Line2d.cxx Adaptor3d_IsoCurve.cxx Adaptor3d_OffsetCurve.cxx AdvApp2Var_ApproxAFunc2Var.cxx AIS_Dimension.cxx AIS_InteractiveContext.cxx Aspect_DisplayConnection.cxx BiTgte_CurveOnEdge.cxx BiTgte_CurveOnVertex.cxx BRepAdaptor_CompCurve.cxx BRepMesh_Circle.hxx BRepMesh_Delaun.cxx BRepToIGES_BREntity.cxx ChFi2d_AnaFilletAlgo.cxx ChFi2d_ChamferAPI.cxx ChFi2d_FilletAlgo.cxx ChFi2d_FilletAlgo.hxx Extrema_ExtPExtS.cxx Font_FTFont.cxx GccEnt_QualifiedCirc.cxx Geom2dAdaptor_Curve.cxx IGESData_IGESEntity.cxx IGESData_DefSwitch.cxx IGESToBRep_CurveAndSurface.cxx LDOM_XmlReader.cxx math_TrigonometricFunctionRoots.cxx NCollection_ListNode.hxx ProjLib_CompProjectedCurve.cxx ProjLib_ComputeApproxOnPolarSurface.cxx Select3D_Box2d.hxx Select3D_PointData.hxx
This commit is contained in:
@@ -31,7 +31,8 @@
|
||||
#include <math_NewtonFunctionRoot.hxx>
|
||||
|
||||
|
||||
class MyTrigoFunction: public math_FunctionWithDerivative {
|
||||
class MyTrigoFunction: public math_FunctionWithDerivative
|
||||
{
|
||||
Standard_Real AA;
|
||||
Standard_Real BB;
|
||||
Standard_Real CC;
|
||||
@@ -39,22 +40,20 @@ class MyTrigoFunction: public math_FunctionWithDerivative {
|
||||
Standard_Real EE;
|
||||
|
||||
public:
|
||||
MyTrigoFunction(const Standard_Real A, const Standard_Real B, const Standard_Real C, const Standard_Real D,
|
||||
const Standard_Real E);
|
||||
MyTrigoFunction(const Standard_Real A,
|
||||
const Standard_Real B,
|
||||
const Standard_Real C,
|
||||
const Standard_Real D,
|
||||
const Standard_Real E)
|
||||
: AA(A), BB(B), CC(C), DD(D), EE(E)
|
||||
{
|
||||
}
|
||||
|
||||
Standard_Boolean Value(const Standard_Real X, Standard_Real& F);
|
||||
Standard_Boolean Derivative(const Standard_Real X, Standard_Real& D);
|
||||
Standard_Boolean Values(const Standard_Real X, Standard_Real& F, Standard_Real& D);
|
||||
};
|
||||
|
||||
MyTrigoFunction::MyTrigoFunction(const Standard_Real A, const Standard_Real B, const Standard_Real C,
|
||||
const Standard_Real D, const Standard_Real E) {
|
||||
AA = A;
|
||||
BB = B;
|
||||
CC = C;
|
||||
DD = D;
|
||||
EE = E;
|
||||
}
|
||||
|
||||
Standard_Boolean MyTrigoFunction::Value(const Standard_Real X, Standard_Real& F) {
|
||||
Standard_Real CN= cos(X), SN = sin(X);
|
||||
//-- F= AA*CN*CN+2*BB*CN*SN+CC*CN+DD*SN+EE;
|
||||
@@ -86,37 +85,52 @@ class MyTrigoFunction: public math_FunctionWithDerivative {
|
||||
}
|
||||
|
||||
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real D,
|
||||
const Standard_Real E,
|
||||
const Standard_Real InfBound,
|
||||
const Standard_Real SupBound): Sol(1, 4) {
|
||||
|
||||
Standard_Real A = 0.0, B = 0.0, C = 0.0;
|
||||
Perform(A, B, C, D, E, InfBound, SupBound);
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
|
||||
(const Standard_Real theD,
|
||||
const Standard_Real theE,
|
||||
const Standard_Real theInfBound,
|
||||
const Standard_Real theSupBound)
|
||||
: NbSol (-1),
|
||||
Sol (1, 4),
|
||||
InfiniteStatus(Standard_False),
|
||||
Done (Standard_False)
|
||||
{
|
||||
const Standard_Real A(0.0), B(0.0), C(0.0);
|
||||
Perform(A, B, C, theD, theE, theInfBound, theSupBound);
|
||||
}
|
||||
|
||||
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real C,
|
||||
const Standard_Real D,
|
||||
const Standard_Real E,
|
||||
const Standard_Real InfBound,
|
||||
const Standard_Real SupBound): Sol(1, 4) {
|
||||
|
||||
Standard_Real A =0.0, B = 0.0;
|
||||
Perform(A, B, C, D, E, InfBound, SupBound);
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
|
||||
(const Standard_Real theC,
|
||||
const Standard_Real theD,
|
||||
const Standard_Real theE,
|
||||
const Standard_Real theInfBound,
|
||||
const Standard_Real theSupBound)
|
||||
: NbSol (-1),
|
||||
Sol (1, 4),
|
||||
InfiniteStatus(Standard_False),
|
||||
Done (Standard_False)
|
||||
{
|
||||
const Standard_Real A(0.0), B(0.0);
|
||||
Perform(A, B, theC, theD, theE, theInfBound, theSupBound);
|
||||
}
|
||||
|
||||
|
||||
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots(const Standard_Real A,
|
||||
const Standard_Real B,
|
||||
const Standard_Real C,
|
||||
const Standard_Real D,
|
||||
const Standard_Real E,
|
||||
const Standard_Real InfBound,
|
||||
const Standard_Real SupBound): Sol(1, 4) {
|
||||
|
||||
Perform(A, B, C, D, E, InfBound, SupBound);
|
||||
math_TrigonometricFunctionRoots::math_TrigonometricFunctionRoots
|
||||
(const Standard_Real theA,
|
||||
const Standard_Real theB,
|
||||
const Standard_Real theC,
|
||||
const Standard_Real theD,
|
||||
const Standard_Real theE,
|
||||
const Standard_Real theInfBound,
|
||||
const Standard_Real theSupBound)
|
||||
: NbSol (-1),
|
||||
Sol (1, 4),
|
||||
InfiniteStatus(Standard_False),
|
||||
Done (Standard_False)
|
||||
{
|
||||
Perform(theA, theB, theC, theD, theE, theInfBound, theSupBound);
|
||||
}
|
||||
|
||||
void math_TrigonometricFunctionRoots::Perform(const Standard_Real A,
|
||||
|
Reference in New Issue
Block a user