mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
0028196: Modeling Data - Algorithm 'Extrema_GenLocateExtPS' failed to find the extremum in a case
Extrema_GenLocateExtPS.cxx, Extrema_GenLocateExtPS.hxx: Adjusting tolerances according to surface sizes is added. Additional methods for searching solution are added for cases if basic method fails. Extrema_FuncPSDist.cxx - small bug fixing. BRepFill_TrimShellCorner.cxx - fixing regression ChFi3d_Builder_CnCrn.cxx setting parameters for Plate algorithm to improve stability of solution ProjLib_ComputeApproxOnPolarSurface.cxx - code optimization Some test cases are modified according to current state of Extrema algorithm
This commit is contained in:
@@ -107,8 +107,8 @@ Standard_Boolean Extrema_FuncPSDist::IsInside(const math_Vector& X)
|
||||
{
|
||||
if (X(1) < mySurf.FirstUParameter() ||
|
||||
X(1) > mySurf.LastUParameter() ||
|
||||
X(2) < mySurf.FirstUParameter() ||
|
||||
X(2) > mySurf.LastUParameter() )
|
||||
X(2) < mySurf.FirstVParameter() ||
|
||||
X(2) > mySurf.LastVParameter() )
|
||||
{
|
||||
// Point out of borders.
|
||||
return Standard_False;
|
||||
|
@@ -23,10 +23,84 @@
|
||||
#include <Extrema_POnSurf.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <math_FunctionSetRoot.hxx>
|
||||
#include <math_NewtonFunctionSetRoot.hxx>
|
||||
#include <math_BFGS.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <math_BFGS.hxx>
|
||||
#include <math_FRPR.hxx>
|
||||
#include <StdFail_NotDone.hxx>
|
||||
|
||||
static void CorrectTol(const Standard_Real theU0, const Standard_Real theV0,
|
||||
math_Vector& theTol)
|
||||
{
|
||||
//Correct tolerance for large values of UV parameters
|
||||
Standard_Real aTolRef = Precision::PConfusion();
|
||||
Standard_Real anEpsRef = Epsilon(1.);
|
||||
Standard_Real epsu = Epsilon(theU0);
|
||||
const Standard_Real tolog10 = 0.43429;
|
||||
if (epsu > anEpsRef)
|
||||
{
|
||||
Standard_Integer n = RealToInt(tolog10 * Log(epsu / anEpsRef) + 1) + 1;
|
||||
Standard_Integer i;
|
||||
Standard_Real tol = aTolRef;
|
||||
for (i = 1; i <= n; ++i)
|
||||
{
|
||||
tol *= 10.;
|
||||
}
|
||||
theTol(1) = Max(theTol(1), tol);
|
||||
}
|
||||
Standard_Real epsv = Epsilon(theV0);
|
||||
if (epsv > anEpsRef)
|
||||
{
|
||||
Standard_Integer n = RealToInt(tolog10 * Log(epsv / anEpsRef) + 1) + 1;
|
||||
Standard_Integer i;
|
||||
Standard_Real tol = aTolRef;
|
||||
for (i = 1; i <= n; ++i)
|
||||
{
|
||||
tol *= 10.;
|
||||
}
|
||||
theTol(2) = Max(theTol(2), tol);
|
||||
}
|
||||
}
|
||||
//=======================================================================
|
||||
//function : IsMinDist
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
Standard_Boolean Extrema_GenLocateExtPS::IsMinDist(const gp_Pnt& theP, const Adaptor3d_Surface& theS,
|
||||
const Standard_Real theU0, const Standard_Real theV0)
|
||||
{
|
||||
Standard_Real du = Max(theS.UResolution(10.*Precision::Confusion()), 10.*Precision::PConfusion());
|
||||
Standard_Real dv = Max(theS.VResolution(10.*Precision::Confusion()), 10.*Precision::PConfusion());
|
||||
Standard_Real u, v;
|
||||
gp_Pnt aP0 = theS.Value(theU0, theV0);
|
||||
Standard_Real d0 = theP.SquareDistance(aP0);
|
||||
Standard_Integer iu, iv;
|
||||
for (iu = -1; iu <= 1; ++iu)
|
||||
{
|
||||
u = theU0 + iu * du;
|
||||
if (!theS.IsUPeriodic())
|
||||
{
|
||||
u = Max(u, theS.FirstUParameter());
|
||||
u = Min(u, theS.LastUParameter());
|
||||
}
|
||||
for (iv = -1; iv <= 1; ++iv)
|
||||
{
|
||||
if (iu == 0 && iv == 0)
|
||||
continue;
|
||||
|
||||
v = theV0 + iv * dv;
|
||||
if (!theS.IsVPeriodic())
|
||||
{
|
||||
v = Max(v, theS.FirstVParameter());
|
||||
v = Min(v, theS.LastVParameter());
|
||||
}
|
||||
Standard_Real d = theP.SquareDistance(theS.Value(u, v));
|
||||
if (d < d0)
|
||||
return Standard_False;
|
||||
}
|
||||
}
|
||||
return Standard_True;
|
||||
}
|
||||
//=======================================================================
|
||||
//function : Extrema_GenLocateExtPS
|
||||
//purpose :
|
||||
@@ -69,36 +143,84 @@ void Extrema_GenLocateExtPS::Perform(const gp_Pnt& theP,
|
||||
aBoundSup(1) = mySurf.LastUParameter();
|
||||
aBoundSup(2) = mySurf.LastVParameter();
|
||||
|
||||
if (isDistanceCriteria == Standard_False)
|
||||
if (isDistanceCriteria)
|
||||
{
|
||||
// Normal projection criteria.
|
||||
Extrema_FuncPSNorm F(theP,mySurf);
|
||||
// Distance criteria.
|
||||
Standard_Real aRelTol = 1.e-8;
|
||||
math_Vector aResPnt(1, 2);
|
||||
|
||||
math_FunctionSetRoot SR (F, aTol);
|
||||
SR.Perform(F, aStart, aBoundInf, aBoundSup);
|
||||
if (!SR.IsDone())
|
||||
return;
|
||||
Extrema_FuncPSDist F(mySurf, theP);
|
||||
|
||||
mySqDist = F.SquareDistance(1);
|
||||
myPoint = F.Point(1);
|
||||
math_BFGS aSolver(2, aRelTol);
|
||||
aSolver.Perform(F, aStart);
|
||||
|
||||
if (!aSolver.IsDone())
|
||||
{
|
||||
//Try another method
|
||||
math_FRPR aSolver1(F, aRelTol);
|
||||
aSolver1.Perform(F, aStart);
|
||||
if(!aSolver1.IsDone())
|
||||
return;
|
||||
aSolver1.Location(aResPnt);
|
||||
mySqDist = aSolver1.Minimum();
|
||||
}
|
||||
else
|
||||
{
|
||||
aSolver.Location(aResPnt);
|
||||
mySqDist = aSolver.Minimum();
|
||||
}
|
||||
|
||||
myPoint.SetParameters(aResPnt(1), aResPnt(2), mySurf.Value(aResPnt(1), aResPnt(2)));
|
||||
myDone = Standard_True;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Distance criteria.
|
||||
Extrema_FuncPSDist F(mySurf, theP);
|
||||
math_BFGS aSolver(2);
|
||||
aSolver.Perform(F, aStart);
|
||||
// Normal projection criteria.
|
||||
Extrema_FuncPSNorm F(theP, mySurf);
|
||||
|
||||
if (!aSolver.IsDone())
|
||||
return;
|
||||
if (mySurf.GetType() == GeomAbs_BSplineSurface)
|
||||
{
|
||||
aTol(1) = myTolU;
|
||||
aTol(2) = myTolV;
|
||||
CorrectTol(theU0, theV0, aTol);
|
||||
}
|
||||
|
||||
math_Vector aResPnt(1,2);
|
||||
aSolver.Location(aResPnt);
|
||||
mySqDist = aSolver.Minimum();
|
||||
myPoint.SetParameters(aResPnt(1), aResPnt(2), mySurf.Value(aResPnt(1), aResPnt(2)));
|
||||
Standard_Boolean isCorrectTol = (Abs(aTol(1) - myTolU) > Precision::PConfusion() ||
|
||||
Abs(aTol(2) - myTolV) > Precision::PConfusion());
|
||||
|
||||
math_FunctionSetRoot aSR(F, aTol);
|
||||
aSR.Perform(F, aStart, aBoundInf, aBoundSup);
|
||||
|
||||
if (!aSR.IsDone() || isCorrectTol)
|
||||
{
|
||||
if (isCorrectTol)
|
||||
{
|
||||
aTol(1) = myTolU;
|
||||
aTol(2) = myTolV;
|
||||
}
|
||||
math_NewtonFunctionSetRoot aNSR(F, aTol, Precision::Confusion());
|
||||
aNSR.Perform(F, aStart, aBoundInf, aBoundSup);
|
||||
if (!aSR.IsDone() && !aNSR.IsDone())
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Standard_Real aNbExt = F.NbExt();
|
||||
mySqDist = F.SquareDistance(1);
|
||||
myPoint = F.Point(1);
|
||||
Standard_Integer i;
|
||||
for (i = 2; i <= aNbExt; ++i)
|
||||
{
|
||||
if (F.SquareDistance(i) < mySqDist)
|
||||
{
|
||||
mySqDist = F.SquareDistance(i);
|
||||
myPoint = F.Point(i);
|
||||
}
|
||||
}
|
||||
myDone = Standard_True;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
|
@@ -63,6 +63,11 @@ public:
|
||||
//! Returns the point of the extremum distance.
|
||||
Standard_EXPORT const Extrema_POnSurf& Point() const;
|
||||
|
||||
//! Returns True if UV point theU0, theV0 is point of local minimum of square distance between
|
||||
//! point theP and points theS(U, V), U, V are in small area around theU0, theV0
|
||||
Standard_EXPORT static Standard_Boolean IsMinDist(const gp_Pnt& theP, const Adaptor3d_Surface& theS,
|
||||
const Standard_Real theU0, const Standard_Real theV0);
|
||||
|
||||
private:
|
||||
|
||||
const Extrema_GenLocateExtPS& operator=(const Extrema_GenLocateExtPS&);
|
||||
|
Reference in New Issue
Block a user