1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0030435: Improving performance of Approx_ComputeCLine

1. Approx_ComputeCLine.gxx, Approx_FitAndDivide.hxx, Approx_FitAndDivide2d.hxx, BRepFill_ComputeCLine.hxx
It is base modification, which allows improve performance of approximation with help of Approx_ComputeCLine. The main idea of improvement is using degree selection by inverse order - from maxdegree to mindegree. If tolerance for maxdegree is not reached, there is no sense to make approximation for current number of knots with lower degree, it is necessary to cut parametric interval.

2. ProjLib_ComputeApprox, ProjLib_ComputeApproxOnPolarSurface, ProjLib_ComputeApproxOnPolarSurface, ProjLib_ProjectOnPlane
It is additional modification of methods using Approx_ComputeCLine.
Mainly, modifications concern to more optimal choosing parameters for approximation algorithm.

3. BRepCheck_Face
Small improvement of method Intersect(...), which intersects two wires on face.

4. BRepTopAdaptor_FClass2d
Impovement of treatment infinitely narrow faces.

5. ChFi3d/ChFi3d_Builder_6.cxx
Small improvement, which forbids extension of singular boundary of surface.
It was TODO problem in tests/bugs/modalg_7/bug27711_3

6. IntTools_EdgeEdge.cxx
Improvement of performance for cases of searching common parts between line  and analytical curve

7. GeomliteTest_CurveCommands.cxx
Adding Draw command fitcurve. This command is analog of approxcurve, but uses Approx_FitAndDivide algorithm.
Mainly to have direct draw command for testing Approx_ComputeCLine.

8. Extrema_ExtElC.cxx

Treatment of case "infinite solutions" for extrema line-ellipse

9. Modification of some tests according to new behavior of algorithm.

10. tests/perf/moddata/bug30435
Test for new improved algorithm.

11. Implementation QAcommand OCC30435 in QABugs_20.cxx used in test bug30435
This commit is contained in:
ifv 2019-01-10 13:07:01 +03:00
parent 130bc3c097
commit ba7f665dce
21 changed files with 611 additions and 53 deletions

View File

@ -25,6 +25,8 @@
#include <Approx_Status.hxx>
#include <Precision.hxx>
const static Standard_Integer MAXSEGM = 1000;
//=======================================================================
//function : Approx_ComputeCLine
//purpose : The MultiLine <Line> will be approximated until tolerances
@ -50,7 +52,8 @@ const AppParCurves_Constraint LastC)
mycut = cutting;
myfirstC = FirstC;
mylastC = LastC;
myMaxSegments = IntegerLast();
myMaxSegments = MAXSEGM;
myInvOrder = Standard_True;
alldone = Standard_False;
Perform(Line);
}
@ -77,7 +80,8 @@ const AppParCurves_Constraint LastC)
mycut = cutting;
myfirstC = FirstC;
mylastC = LastC;
myMaxSegments = IntegerLast();
myMaxSegments = MAXSEGM;
myInvOrder = Standard_True;
}
//=======================================================================
@ -244,33 +248,117 @@ Standard_Boolean Approx_ComputeCLine::Compute(const MultiLine& Line,
{
Standard_Integer deg, NbPoints = 24;
const Standard_Integer NbPointsMax = 24;
const Standard_Real aMinRatio = 0.05;
const Standard_Integer aMaxDeg = 8;
//
Standard_Integer deg, NbPoints;
Standard_Boolean mydone;
Standard_Real Fv;
for (deg = mydegremin; deg <= mydegremax; deg++) {
AppCont_LeastSquare LSquare(Line, Ufirst, Ulast, myfirstC, mylastC, deg, NbPoints);
mydone = LSquare.IsDone();
if (mydone) {
LSquare.Error(Fv, TheTol3d, TheTol2d);
if (TheTol3d <= mytol3d && TheTol2d <= mytol2d) {
AppParCurves_MultiCurve aPrevCurve;
Standard_Real aPrevTol3d = RealLast(), aPrevTol2d = RealLast();
Standard_Boolean aPrevIsOk = Standard_False;
Standard_Boolean anInvOrder = myInvOrder;
if (anInvOrder && mydegremax > aMaxDeg)
{
if ((Ulast - Ufirst) / (Line.LastParameter() - Line.FirstParameter()) < aMinRatio)
{
anInvOrder = Standard_False;
}
}
if (anInvOrder)
{
for (deg = mydegremax; deg >= mydegremin; deg--) {
NbPoints = Min(2 * deg + 1, NbPointsMax);
AppCont_LeastSquare LSquare(Line, Ufirst, Ulast, myfirstC, mylastC, deg, NbPoints);
mydone = LSquare.IsDone();
if (mydone)
{
LSquare.Error(Fv, TheTol3d, TheTol2d);
if (TheTol3d <= mytol3d && TheTol2d <= mytol2d)
{
if (deg == mydegremin)
{
// Stockage de la multicurve approximee.
tolreached = Standard_True;
myMultiCurves.Append(LSquare.Value());
myfirstparam.Append(Ufirst);
mylastparam.Append(Ulast);
Tolers3d.Append(TheTol3d);
Tolers2d.Append(TheTol2d);
return Standard_True;
}
aPrevTol3d = TheTol3d;
aPrevTol2d = TheTol2d;
aPrevCurve = LSquare.Value();
aPrevIsOk = Standard_True;
continue;
}
else if (aPrevIsOk)
{
// Stockage de la multicurve approximee.
tolreached = Standard_True;
TheTol3d = aPrevTol3d;
TheTol2d = aPrevTol2d;
myMultiCurves.Append(aPrevCurve);
myfirstparam.Append(Ufirst);
mylastparam.Append(Ulast);
Tolers3d.Append(aPrevTol3d);
Tolers2d.Append(aPrevTol2d);
return Standard_True;
}
}
else if (aPrevIsOk)
{
// Stockage de la multicurve approximee.
tolreached = Standard_True;
myMultiCurves.Append(LSquare.Value());
TheTol3d = aPrevTol3d;
TheTol2d = aPrevTol2d;
myMultiCurves.Append(aPrevCurve);
myfirstparam.Append(Ufirst);
mylastparam.Append(Ulast);
Tolers3d.Append(TheTol3d);
Tolers2d.Append(TheTol2d);
Tolers3d.Append(aPrevTol3d);
Tolers2d.Append(aPrevTol2d);
return Standard_True;
}
if (!aPrevIsOk && deg == mydegremax)
{
TheMultiCurve = LSquare.Value();
currenttol3d = TheTol3d;
currenttol2d = TheTol2d;
aPrevTol3d = TheTol3d;
aPrevTol2d = TheTol2d;
aPrevCurve = TheMultiCurve;
break;
}
}
if (deg == mydegremax) {
TheMultiCurve = LSquare.Value();
currenttol3d = TheTol3d;
currenttol2d = TheTol2d;
}
else
{
for (deg = mydegremin; deg <= mydegremax; deg++) {
NbPoints = Min(2 * deg + 1, NbPointsMax);
AppCont_LeastSquare LSquare(Line, Ufirst, Ulast, myfirstC, mylastC, deg, NbPoints);
mydone = LSquare.IsDone();
if (mydone) {
LSquare.Error(Fv, TheTol3d, TheTol2d);
if (TheTol3d <= mytol3d && TheTol2d <= mytol2d) {
// Stockage de la multicurve approximee.
tolreached = Standard_True;
myMultiCurves.Append(LSquare.Value());
myfirstparam.Append(Ufirst);
mylastparam.Append(Ulast);
Tolers3d.Append(TheTol3d);
Tolers2d.Append(TheTol2d);
return Standard_True;
}
}
if (deg == mydegremax) {
TheMultiCurve = LSquare.Value();
currenttol3d = TheTol3d;
currenttol2d = TheTol2d;
}
}
}
return Standard_False;
}
@ -335,6 +423,15 @@ void Approx_ComputeCLine::SetMaxSegments(const Standard_Integer theMaxSegments)
myMaxSegments = theMaxSegments;
}
//=======================================================================
//function : SetInvOrder
//purpose :
//=======================================================================
void Approx_ComputeCLine::SetInvOrder(const Standard_Boolean theInvOrder)
{
myInvOrder = theInvOrder;
}
//=======================================================================
//function : IsAllApproximated
//purpose : returns False if at a moment of the approximation,

View File

@ -64,6 +64,12 @@ public:
//! Changes the max number of segments, which is allowed for cutting.
Standard_EXPORT void SetMaxSegments (const Standard_Integer theMaxSegments);
//! Set inverse order of degree selection:
//! if theInvOrdr = true, current degree is chosen by inverse order -
//! from maxdegree to mindegree.
//! By default inverse order is used.
Standard_EXPORT void SetInvOrder(const Standard_Boolean theInvOrder);
//! returns False if at a moment of the approximation,
//! the status NoApproximation has been sent by the user
//! when more points were needed.
@ -118,6 +124,7 @@ private:
AppParCurves_Constraint myfirstC;
AppParCurves_Constraint mylastC;
Standard_Integer myMaxSegments;
Standard_Boolean myInvOrder;
};

View File

@ -64,6 +64,12 @@ public:
//! Changes the max number of segments, which is allowed for cutting.
Standard_EXPORT void SetMaxSegments (const Standard_Integer theMaxSegments);
//! Set inverse order of degree selection:
//! if theInvOrdr = true, current degree is chosen by inverse order -
//! from maxdegree to mindegree.
//! By default inverse order is used.
Standard_EXPORT void SetInvOrder(const Standard_Boolean theInvOrder);
//! returns False if at a moment of the approximation,
//! the status NoApproximation has been sent by the user
//! when more points were needed.
@ -118,7 +124,7 @@ private:
AppParCurves_Constraint myfirstC;
AppParCurves_Constraint mylastC;
Standard_Integer myMaxSegments;
Standard_Boolean myInvOrder;
};

View File

@ -685,7 +685,9 @@ static Standard_Boolean Intersect(const TopoDS_Wire& wir1,
for (Standard_Integer j = 1; j <= PntSeq.Length(); j++)
{
Standard_Real tolv = BRep_Tool::Tolerance( TopoDS::Vertex(CommonVertices(j)) );
if (P.IsEqual( PntSeq(j), tolv ))
tolv += 1.e-8; //possible tolerance of intersection point
Standard_Real dd = P.SquareDistance(PntSeq(j));
if (dd <= tolv * tolv)
{
NbCoinc++;
break;

View File

@ -64,6 +64,12 @@ public:
//! Changes the max number of segments, which is allowed for cutting.
Standard_EXPORT void SetMaxSegments (const Standard_Integer theMaxSegments);
//! Set inverse order of degree selection:
//! if theInvOrdr = true, current degree is chosen by inverse order -
//! from maxdegree to mindegree.
//! By default inverse order is used.
Standard_EXPORT void SetInvOrder(const Standard_Boolean theInvOrder);
//! returns False if at a moment of the approximation,
//! the status NoApproximation has been sent by the user
//! when more points were needed.
@ -118,6 +124,7 @@ private:
AppParCurves_Constraint myfirstC;
AppParCurves_Constraint mylastC;
Standard_Integer myMaxSegments;
Standard_Boolean myInvOrder;
};

View File

@ -105,6 +105,8 @@ BRepTopAdaptor_FClass2d::BRepTopAdaptor_FClass2d(const TopoDS_Face& aFace,const
Umin = Vmin = 0.0; //RealLast();
Umax = Vmax = -Umin;
Standard_Integer aNbE = 0;
Standard_Real eps = 1.e-10;
Standard_Integer BadWire=0;
for( FaceExplorer.Init(Face,TopAbs_WIRE); (FaceExplorer.More() && BadWire==0); FaceExplorer.Next() )
{
@ -118,6 +120,7 @@ BRepTopAdaptor_FClass2d::BRepTopAdaptor_FClass2d(const TopoDS_Face& aFace,const
TopExp_Explorer Explorer;
for( Explorer.Init(FaceExplorer.Current(),TopAbs_EDGE); Explorer.More(); Explorer.Next() ) NbEdges++;
aNbE = NbEdges;
gp_Pnt Ancienpnt3d(0,0,0);
Standard_Boolean Ancienpnt3dinitialise = Standard_False;
@ -394,6 +397,15 @@ BRepTopAdaptor_FClass2d::BRepTopAdaptor_FClass2d(const TopoDS_Face& aFace,const
//-- FlecheU*=10.0;
//-- FlecheV*=10.0;
if (aNbE == 1 && FlecheU < eps && FlecheV < eps && Abs(square) < eps)
{
TabOrien.Append(1);
}
else
{
TabOrien.Append(((square < 0.0)? 1 : 0));
}
if(FlecheU<Toluv) FlecheU = Toluv;
if(FlecheV<Toluv) FlecheV = Toluv;
//-- cout<<" U:"<<FlecheU<<" V:"<<FlecheV<<endl;
@ -411,7 +423,6 @@ BRepTopAdaptor_FClass2d::BRepTopAdaptor_FClass2d(const TopoDS_Face& aFace,const
//#endif
// }
// else TabOrien.Append(((angle>0.0)? 1 : 0));
TabOrien.Append(((square < 0.0)? 1 : 0));
}//if(nbpoints>3
else
{

View File

@ -689,14 +689,36 @@ Standard_Boolean ChFi3d_Builder::StoreData(Handle(ChFiDS_SurfData)& Data,
length2=Data->LastExtensionValue();
Handle(Geom_BoundedSurface) aBndSurf = Surf;
if (length1 > Precision::Confusion())
GeomLib::ExtendSurfByLength(aBndSurf,length1,1,Standard_False,Standard_False);
if (length2 > Precision::Confusion())
GeomLib::ExtendSurfByLength(aBndSurf,length2,1,Standard_False,Standard_True);
Surf = Handle(Geom_BSplineSurface)::DownCast (aBndSurf);
Standard_Boolean ext1 = Standard_False, ext2 = Standard_False;
Standard_Real eps = Max(tolget3d, 2. * Precision::Confusion());
if (length1 > eps)
{
gp_Pnt P11, P21;
P11 = Surf->Pole(1, 1);
P21 = Surf->Pole(Surf->NbUPoles(), 1);
if (P11.Distance(P21) > eps)
{
//to avoid extending surface with singular boundary
GeomLib::ExtendSurfByLength(aBndSurf, length1, 1, Standard_False, Standard_False);
ext1 = Standard_True;
}
}
if (length2 > eps)
{
gp_Pnt P12, P22;
P12 = Surf->Pole(1, Surf->NbVPoles());
P22 = Surf->Pole(Surf->NbUPoles(), Surf->NbVPoles());
if (P12.Distance(P22) > eps)
{
//to avoid extending surface with singular boundary
GeomLib::ExtendSurfByLength(aBndSurf, length2, 1, Standard_False, Standard_True);
ext2 = Standard_True;
}
}
Surf = Handle(Geom_BSplineSurface)::DownCast(aBndSurf);
//Correction of surface on extremities
if (length1 <= Precision::Confusion())
if (!ext1)
{
gp_Pnt P11, P21;
P11 = lin->StartPointOnFirst().Value();
@ -704,7 +726,7 @@ Standard_Boolean ChFi3d_Builder::StoreData(Handle(ChFiDS_SurfData)& Data,
Surf->SetPole(1, 1, P11);
Surf->SetPole(Surf->NbUPoles(), 1, P21);
}
if (length2 <= Precision::Confusion())
if (!ext2)
{
gp_Pnt P12, P22;
P12 = lin->EndPointOnFirst().Value();

View File

@ -674,6 +674,15 @@ Method:
//
ExtremaExtElC_TrigonometricRoots Sol(A1,A2,A3,A4,A5,0.,M_PI+M_PI);
if (!Sol.IsDone()) { return; }
//
if (Sol.InfiniteRoots()) {
myIsPar = Standard_True;
gp_Pnt aP = ElCLib::EllipseValue(0., C2.Position(), C2.MajorRadius(), C2.MinorRadius());
mySqDist[0] = C1.SquareDistance(aP);
myNbExt = 1;
myDone = Standard_True;
return;
}
// Storage of solutions ...
gp_Pnt P1,P2;

View File

@ -108,10 +108,61 @@
#include <Approx_CurvilinearParameter.hxx>
#include <Approx_CurveOnSurface.hxx>
#include <Geom_BSplineSurface.hxx>
#include <AppCont_Function.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <Approx_FitAndDivide.hxx>
#include <Convert_CompBezierCurvesToBSplineCurve.hxx>
#ifdef _WIN32
Standard_IMPORT Draw_Viewer dout;
#endif
//Class is used in fitcurve
class CurveEvaluator : public AppCont_Function
{
public:
Handle(Adaptor3d_HCurve) myCurve;
CurveEvaluator(const Handle(Adaptor3d_HCurve)& C)
: myCurve(C)
{
myNbPnt = 1;
myNbPnt2d = 0;
}
Standard_Real FirstParameter() const
{
return myCurve->FirstParameter();
}
Standard_Real LastParameter() const
{
return myCurve->LastParameter();
}
Standard_Boolean Value(const Standard_Real theT,
NCollection_Array1<gp_Pnt2d>& /*thePnt2d*/,
NCollection_Array1<gp_Pnt>& thePnt) const
{
thePnt(1) = myCurve->Value(theT);
return Standard_True;
}
Standard_Boolean D1(const Standard_Real theT,
NCollection_Array1<gp_Vec2d>& /*theVec2d*/,
NCollection_Array1<gp_Vec>& theVec) const
{
gp_Pnt aDummyPnt;
myCurve->D1(theT, aDummyPnt, theVec(1));
return Standard_True;
}
};
//=======================================================================
//function : anacurve
//purpose :
@ -1672,6 +1723,99 @@ static Standard_Integer approxcurve(Draw_Interpretor& di, Standard_Integer n, co
return 0;
}
//=======================================================================
//function : fitcurve
//purpose :
//=======================================================================
static Standard_Integer fitcurve(Draw_Interpretor& di, Standard_Integer n, const char** a)
{
if (n<3) return 1;
Handle(Geom_Curve) GC;
GC = DrawTrSurf::GetCurve(a[2]);
if (GC.IsNull())
return 1;
Standard_Integer Dmin = 3;
Standard_Integer Dmax = 14;
Standard_Real Tol3d = 1.e-5;
Standard_Boolean inverse = Standard_True;
if (n > 3)
{
Tol3d = Atof(a[3]);
}
if (n > 4)
{
Dmax = atoi(a[4]);
}
if (n > 5)
{
Standard_Integer inv = atoi(a[5]);
if (inv > 0)
{
inverse = Standard_True;
}
else
{
inverse = Standard_False;
}
}
Handle(GeomAdaptor_HCurve) aGAC = new GeomAdaptor_HCurve(GC);
CurveEvaluator aCE(aGAC);
Approx_FitAndDivide anAppro(Dmin, Dmax, Tol3d, 0., Standard_True);
anAppro.SetInvOrder(inverse);
anAppro.Perform(aCE);
if (!anAppro.IsAllApproximated())
{
di << "Approximation failed \n";
return 1;
}
Standard_Integer i;
Standard_Integer NbCurves = anAppro.NbMultiCurves();
Convert_CompBezierCurvesToBSplineCurve Conv;
Standard_Real tol3d, tol2d, tolreached = 0.;
for (i = 1; i <= NbCurves; i++) {
anAppro.Error(i, tol3d, tol2d);
tolreached = Max(tolreached, tol3d);
AppParCurves_MultiCurve MC = anAppro.Value(i);
TColgp_Array1OfPnt Poles(1, MC.Degree() + 1);
MC.Curve(1, Poles);
Conv.AddCurve(Poles);
}
Conv.Perform();
Standard_Integer NbPoles = Conv.NbPoles();
Standard_Integer NbKnots = Conv.NbKnots();
TColgp_Array1OfPnt NewPoles(1, NbPoles);
TColStd_Array1OfReal NewKnots(1, NbKnots);
TColStd_Array1OfInteger NewMults(1, NbKnots);
Conv.KnotsAndMults(NewKnots, NewMults);
Conv.Poles(NewPoles);
BSplCLib::Reparametrize(GC->FirstParameter(),
GC->LastParameter(),
NewKnots);
Handle(Geom_BSplineCurve) TheCurve = new Geom_BSplineCurve(NewPoles, NewKnots, NewMults, Conv.Degree());
DrawTrSurf::Set(a[1], TheCurve);
di << a[1] << ": tolreached = " << tolreached << "\n";
return 0;
}
//=======================================================================
//function : newbspline
//purpose : reduce the multiplicity of the knots to their minimum
@ -2060,6 +2204,8 @@ void GeomliteTest::CurveCommands(Draw_Interpretor& theCommands)
__FILE__,
approxcurveonsurf,g);
theCommands.Add("fitcurve", "fitcurve result curve [tol [maxdeg [inverse]]]", __FILE__, fitcurve, g);
theCommands.Add("length", "length curve [Tol]",
__FILE__,
length, g);

View File

@ -35,6 +35,7 @@
#include <IntTools_Tools.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Iterator.hxx>
#include <BRepExtrema_DistShapeShape.hxx>
static
void BndBuildBox(const BRepAdaptor_Curve& theBAC,
@ -224,6 +225,24 @@ void IntTools_EdgeEdge::Perform()
}
}
//
if ((myCurve1.GetType() <= GeomAbs_Parabola && myCurve2.GetType() <= GeomAbs_Parabola) &&
(myCurve1.GetType() == GeomAbs_Line || myCurve2.GetType() == GeomAbs_Line))
{
//Improvement of performance for cases of searching common parts between line
//and analytical curve. This code allows to define that edges have no
//common parts more fast, then regular algorithm (FindSolution(...))
//Check minimal distance between edges
BRepExtrema_DistShapeShape aMinDist(myEdge1, myEdge2, Extrema_ExtFlag_MIN);
if (aMinDist.IsDone())
{
Standard_Real d = aMinDist.Value();
if (d > 1.1 * myTol)
{
return;
}
}
}
IntTools_SequenceOfRanges aRanges1, aRanges2;
//
//3.2. Find ranges containig solutions

View File

@ -1011,6 +1011,15 @@ void ProjLib_ComputeApprox::Perform
(CType != GeomAbs_OtherCurve) ;
Standard_Boolean simplecase = SurfIsAnal && CurvIsAnal;
if (CType == GeomAbs_BSplineCurve || CType == GeomAbs_BezierCurve)
{
Standard_Integer aNbKnots = 1;
if (CType == GeomAbs_BSplineCurve)
{
aNbKnots = C->NbKnots();
}
simplecase = simplecase && C->Degree() <= 2 && aNbKnots <= 2;
}
if (CType == GeomAbs_BSplineCurve &&
SType == GeomAbs_Plane ) {
@ -1111,12 +1120,12 @@ void ProjLib_ComputeApprox::Perform
#endif
//-----------
Standard_Integer Deg1 = 8, Deg2;
if(simplecase) {
Deg2 = 10;
Standard_Integer Deg1 = 5, Deg2;
if (simplecase) {
Deg2 = 8;
}
else {
Deg2 = 12;
Deg2 = 10;
}
if(myDegMin > 0)
{
@ -1188,6 +1197,10 @@ void ProjLib_ComputeApprox::Perform
C->LastParameter(),
NewKnots);
// Set NewKnots(NbKnots) exactly C->LastParameter()
// to avoid problems if trim is used.
NewKnots(NbKnots) = C->LastParameter();
// il faut recadrer les poles de debut et de fin:
// ( Car pour les problemes de couture, on a du ouvrir l`intervalle
// de definition de la courbe.)

View File

@ -482,7 +482,8 @@ ProjLib_ComputeApproxOnPolarSurface::ProjLib_ComputeApproxOnPolarSurface()
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
myBndPnt(AppParCurves_TangencyPoint),
myDist(0.)
{
}
@ -502,7 +503,8 @@ ProjLib_ComputeApproxOnPolarSurface::ProjLib_ComputeApproxOnPolarSurface
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
myBndPnt(AppParCurves_TangencyPoint),
myDist(0.)
{
myBSpline = Perform(theInitialCurve2d, theCurve, theSurface);
}
@ -522,7 +524,8 @@ ProjLib_ComputeApproxOnPolarSurface::ProjLib_ComputeApproxOnPolarSurface
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
myBndPnt(AppParCurves_TangencyPoint),
myDist(0.)
{
const Handle(Adaptor2d_HCurve2d) anInitCurve2d;
myBSpline = Perform(anInitCurve2d, theCurve, theSurface);
@ -545,7 +548,8 @@ ProjLib_ComputeApproxOnPolarSurface::ProjLib_ComputeApproxOnPolarSurface
myDegMin(-1), myDegMax(-1),
myMaxSegments(-1),
myMaxDist(-1.),
myBndPnt(AppParCurves_TangencyPoint)
myBndPnt(AppParCurves_TangencyPoint),
myDist(0.)
{
// InitialCurve2d and InitialCurve2dBis are two pcurves of the sewing
Handle(Geom2d_BSplineCurve) bsc =
@ -1079,6 +1083,7 @@ Handle(Adaptor2d_HCurve2d)
else {
myProjIsDone = Standard_False;
Standard_Real Dist2Min = 1.e+200, u = 0., v = 0.;
myDist = 0.;
gp_Pnt pntproj;
TColgp_SequenceOfPnt2d Sols;
@ -1253,7 +1258,7 @@ Handle(Adaptor2d_HCurve2d)
// U0 and V0 are the points in the initialized period
// (period with u and v),
// U1 and V1 are the points for construction of poles
myDist = Dist2Min;
for ( i = 2 ; i <= NbOfPnts ; i++)
if(myProjIsDone) {
myProjIsDone = Standard_False;
@ -1267,6 +1272,10 @@ Handle(Adaptor2d_HCurve2d)
if (aLocateExtPS.SquareDistance() < DistTol3d2)
{ //OCC217
//if (aLocateExtPS.SquareDistance() < Tol3d * Tol3d) {
if (aLocateExtPS.SquareDistance() > myDist)
{
myDist = aLocateExtPS.SquareDistance();
}
(aLocateExtPS.Point()).Parameter(U0,V0);
U1 = U0 + usens*uperiod;
V1 = V0 + vsens*vperiod;
@ -1291,6 +1300,10 @@ Handle(Adaptor2d_HCurve2d)
}
if (LocalMinSqDist < DistTol3d2)
{
if (LocalMinSqDist > myDist)
{
myDist = LocalMinSqDist;
}
Standard_Real LocalU, LocalV;
aGlobalExtr.Point(imin).Parameter(LocalU, LocalV);
if (uperiod > 0. && Abs(U0 - LocalU) >= uperiod/2.)
@ -1363,6 +1376,10 @@ Handle(Adaptor2d_HCurve2d)
if (locext.IsDone())
if (locext.SquareDistance() < DistTol3d2) { //OCC217
//if (locext.SquareDistance() < Tol3d * Tol3d) {
if (locext.SquareDistance() > myDist)
{
myDist = locext.SquareDistance();
}
(locext.Point()).Parameter(u,v);
if((aUsup - U0) > (U0 - aUinf))
usens--;
@ -1390,7 +1407,11 @@ Handle(Adaptor2d_HCurve2d)
if (locext.IsDone())
if (locext.SquareDistance() < DistTol3d2) { //OCC217
//if (locext.SquareDistance() < Tol3d * Tol3d) {
(locext.Point()).Parameter(u,v);
if (locext.SquareDistance() > myDist)
{
myDist = locext.SquareDistance();
}
(locext.Point()).Parameter(u, v);
if((aVsup - V0) > (V0 - aVinf))
vsens--;
else
@ -1419,7 +1440,11 @@ Handle(Adaptor2d_HCurve2d)
if (locext.IsDone())
if (locext.SquareDistance() < DistTol3d2) {
//if (locext.SquareDistance() < Tol3d * Tol3d) {
(locext.Point()).Parameter(u,v);
if (locext.SquareDistance() > myDist)
{
myDist = locext.SquareDistance();
}
(locext.Point()).Parameter(u, v);
if((Usup - U0) > (U0 - Uinf))
usens--;
else
@ -1447,7 +1472,11 @@ Handle(Adaptor2d_HCurve2d)
}
if (Dist2Min < DistTol3d2) {
//if (Dist2Min < Tol3d * Tol3d) {
(ext.Point(aGoodValue)).Parameter(u,v);
if (Dist2Min > myDist)
{
myDist = Dist2Min;
}
(ext.Point(aGoodValue)).Parameter(u, v);
if(uperiod) {
if((U0 - u) > (2*uperiod/3)) {
usens++;
@ -1862,8 +1891,18 @@ Handle(Geom2d_BSplineCurve)
aLastC = myBndPnt;
}
if (myDist > 10.*Tol3d)
{
aFistC = AppParCurves_PassPoint;
aLastC = AppParCurves_PassPoint;
}
Approx_FitAndDivide2d Fit(Deg1, Deg2, Tol3d, Tol2d, Standard_True, aFistC, aLastC);
Fit.SetMaxSegments(aMaxSegments);
if (InitCurve2d->GetType() == GeomAbs_Line)
{
Fit.SetInvOrder(Standard_False);
}
Fit.Perform(F);
Standard_Real anOldTol2d = Tol2d;
@ -1936,6 +1975,10 @@ Handle(Geom2d_BSplineCurve)
Standard_Boolean OK = Standard_True;
Standard_Real aSmoothTol = Max(Precision::Confusion(), aNewTol2d);
if (myBndPnt == AppParCurves_PassPoint)
{
aSmoothTol *= 10.;
}
for (Standard_Integer ij = 2; ij < NbKnots; ij++) {
OK = OK && Dummy->RemoveKnot(ij,MaxDeg-1, aSmoothTol);
}

View File

@ -142,7 +142,7 @@ private:
Standard_Integer myMaxSegments;
Standard_Real myMaxDist;
AppParCurves_Constraint myBndPnt;
Standard_Real myDist;
};

View File

@ -317,8 +317,14 @@ static void PerformApprox (const Handle(Adaptor3d_HCurve)& C,
Standard_Integer Deg1, Deg2;
Deg1 = 8; Deg2 = 8;
Approx_FitAndDivide Fit(F,Deg1,Deg2,Precision::Approximation(),
Approx_FitAndDivide Fit(Deg1,Deg2,Precision::Approximation(),
Precision::PApproximation(),Standard_True);
Fit.SetMaxSegments(100);
Fit.Perform(F);
if (!Fit.IsAllApproximated())
{
return;
}
Standard_Integer i;
Standard_Integer NbCurves = Fit.NbMultiCurves();
Standard_Integer MaxDeg = 0;
@ -347,9 +353,8 @@ static void PerformApprox (const Handle(Adaptor3d_HCurve)& C,
MC.Curve(1, LocalPoles);
//Augmentation eventuelle du degre
Standard_Integer Inc = MaxDeg - MC.Degree();
if ( Inc > 0) {
BSplCLib::IncreaseDegree(Inc, Poles, BSplCLib::NoWeights(),
if (MaxDeg > MC.Degree() ) {
BSplCLib::IncreaseDegree(MaxDeg, LocalPoles, BSplCLib::NoWeights(),
TempPoles, BSplCLib::NoWeights());
//mise a jour des poles de la PCurve
for (Standard_Integer j = 1 ; j <= MaxDeg + 1; j++) {

View File

@ -3098,6 +3098,132 @@ static Standard_Integer QAEndsWith(Draw_Interpretor& di, Standard_Integer n, con
return 1;
}
//Class is used in OCC30435
#include <AppCont_Function.hxx>
#include <Adaptor3d_HCurve.hxx>
class CurveEvaluator : public AppCont_Function
{
public:
Handle(Adaptor3d_HCurve) myCurve;
CurveEvaluator(const Handle(Adaptor3d_HCurve)& C)
: myCurve(C)
{
myNbPnt = 1;
myNbPnt2d = 0;
}
Standard_Real FirstParameter() const
{
return myCurve->FirstParameter();
}
Standard_Real LastParameter() const
{
return myCurve->LastParameter();
}
Standard_Boolean Value(const Standard_Real theT,
NCollection_Array1<gp_Pnt2d>& /*thePnt2d*/,
NCollection_Array1<gp_Pnt>& thePnt) const
{
thePnt(1) = myCurve->Value(theT);
return Standard_True;
}
Standard_Boolean D1(const Standard_Real theT,
NCollection_Array1<gp_Vec2d>& /*theVec2d*/,
NCollection_Array1<gp_Vec>& theVec) const
{
gp_Pnt aDummyPnt;
myCurve->D1(theT, aDummyPnt, theVec(1));
return Standard_True;
}
};
#include <GeomAdaptor_HCurve.hxx>
#include <Approx_FitAndDivide.hxx>
#include <Convert_CompBezierCurvesToBSplineCurve.hxx>
static Standard_Integer OCC30435(Draw_Interpretor& di, Standard_Integer, const char** a)
{
Handle(Geom_Curve) GC;
GC = DrawTrSurf::GetCurve(a[2]);
if (GC.IsNull())
return 1;
Standard_Integer Dmin = 3;
Standard_Integer Dmax = 12;
Standard_Real Tol3d = 1.e-7;
Standard_Boolean inverse = Standard_True;
Standard_Integer inv = atoi(a[3]);
if (inv > 0)
{
inverse = Standard_True;
}
else
{
inverse = Standard_False;
}
Standard_Integer maxit = atoi(a[4]);
Handle(GeomAdaptor_HCurve) aGAC = new GeomAdaptor_HCurve(GC);
CurveEvaluator aCE(aGAC);
Approx_FitAndDivide anAppro(Dmin, Dmax, Tol3d, 0., Standard_True);
anAppro.SetInvOrder(inverse);
Standard_Integer i;
for (i = 1; i <= maxit; ++i)
anAppro.Perform(aCE);
if (!anAppro.IsAllApproximated())
{
di << "Approximation failed \n";
return 1;
}
Standard_Integer NbCurves = anAppro.NbMultiCurves();
Convert_CompBezierCurvesToBSplineCurve Conv;
Standard_Real tol3d, tol2d, tolreached = 0.;
for (i = 1; i <= NbCurves; i++) {
anAppro.Error(i, tol3d, tol2d);
tolreached = Max(tolreached, tol3d);
AppParCurves_MultiCurve MC = anAppro.Value(i);
TColgp_Array1OfPnt Poles(1, MC.Degree() + 1);
MC.Curve(1, Poles);
Conv.AddCurve(Poles);
}
Conv.Perform();
Standard_Integer NbPoles = Conv.NbPoles();
Standard_Integer NbKnots = Conv.NbKnots();
TColgp_Array1OfPnt NewPoles(1, NbPoles);
TColStd_Array1OfReal NewKnots(1, NbKnots);
TColStd_Array1OfInteger NewMults(1, NbKnots);
Conv.KnotsAndMults(NewKnots, NewMults);
Conv.Poles(NewPoles);
BSplCLib::Reparametrize(GC->FirstParameter(),
GC->LastParameter(),
NewKnots);
Handle(Geom_BSplineCurve) TheCurve = new Geom_BSplineCurve(NewPoles, NewKnots, NewMults, Conv.Degree());
DrawTrSurf::Set(a[1], TheCurve);
di << a[1] << ": tolreached = " << tolreached << "\n";
return 0;
}
void QABugs::Commands_20(Draw_Interpretor& theCommands) {
const char *group = "QABugs";
@ -3138,6 +3264,7 @@ void QABugs::Commands_20(Draw_Interpretor& theCommands) {
theCommands.Add("OCC29807", "OCC29807 surface1 surface2 u1 v1 u2 v2", __FILE__, OCC29807, group);
theCommands.Add("OCC29311", "OCC29311 shape counter nbiter: check performance of OBB calculation", __FILE__, OCC29311, group);
theCommands.Add("OCC30391", "OCC30391 result face LenBeforeUfirst LenAfterUlast LenBeforeVfirst LenAfterVlast", __FILE__, OCC30391, group);
theCommands.Add("OCC30435", "OCC30435 result curve inverse nbit", __FILE__, OCC30435, group);
theCommands.Add("QAStartsWith",
"QAStartsWith string startstring",

View File

@ -19,7 +19,7 @@ nurbsconvert result result
incmesh result 0.15 -a 20
tricheck result
checktrinfo result -tri 193 -nod 147 -defl 0.042090809832482222 -tol_abs_defl 1.0e-7
checktrinfo result -tri 193 -nod 147 -defl 0.04209 -tol_abs_defl 1.0e-6
vinit

View File

@ -1,6 +1,3 @@
puts "TODO CR27711 Linux: Tcl Exception: tolerance ang : 0.01"
puts "TODO CR27711 Linux: TEST INCOMPLETE"
puts "========"
puts "OCC27711"
puts "========"

View File

@ -6,11 +6,11 @@ set filename test-m020306-v1.stp
set ref_data {
DATA : Faulties = 0 ( 0 ) Warnings = 0 ( 0 ) Summary = 0 ( 0 )
TPSTAT : Faulties = 0 ( 0 ) Warnings = 151 ( 114 ) Summary = 151 ( 114 )
TPSTAT : Faulties = 0 ( 0 ) Warnings = 153 ( 114 ) Summary = 153 ( 114 )
CHECKSHAPE : Wires = 0 ( 0 ) Faces = 0 ( 0 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 742 ( 742 )
STATSHAPE : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 742 ( 742 ) FreeWire = 0 ( 0 )
TOLERANCE : MaxTol = 0.008481946718 ( 0.01609778278 ) AvgTol = 0.000132185171 ( 0.0003164960473 )
TOLERANCE : MaxTol = 0.008481946718 ( 0.01167623167 ) AvgTol = 0.000132472064 ( 0.0003097606769 )
LABELS : N0Labels = 1 ( 1 ) N1Labels = 0 ( 0 ) N2Labels = 0 ( 0 ) TotalLabels = 1 ( 1 ) NameLabels = 1 ( 1 ) ColorLabels = 0 ( 0 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 0 ( 0 ) Volume = 0 ( 0 ) Area = 0 ( 0 )
NCOLORS : NColors = 0 ( 0 )

View File

@ -7,7 +7,7 @@ TPSTAT : Faulties = 0 ( 0 ) Warnings = 61 ( 157 ) Summary = 61 ( 157
CHECKSHAPE : Wires = 0 ( 0 ) Faces = 0 ( 0 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 956 ( 956 )
STATSHAPE : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 956 ( 956 ) FreeWire = 0 ( 0 )
TOLERANCE : MaxTol = 0.008481946718 ( 0.01609778278 ) AvgTol = 0.0001239210368 ( 0.0003823229569 )
TOLERANCE : MaxTol = 0.008481946718 ( 0.05394823207 ) AvgTol = 0.0001239210367 ( 0.0004089750747 )
LABELS : N0Labels = 1 ( 1 ) N1Labels = 0 ( 0 ) N2Labels = 0 ( 0 ) TotalLabels = 1 ( 1 ) NameLabels = 1 ( 1 ) ColorLabels = 0 ( 0 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 0 ( 0 ) Volume = 0 ( 0 ) Area = 0 ( 0 )
NCOLORS : NColors = 0 ( 0 )

View File

@ -7,7 +7,7 @@ puts ""
#######################################################################
set MaxTol 1.e-7
set GoodNbCurv 1
set GoodNbCurv 2
restore [locate_data_file bug27262_cmpd.brep] b
explode b
@ -30,5 +30,6 @@ if {${NbCurv} != ${GoodNbCurv}} {
}
checklength c_1 -l 2.9620641619623407
checklength c_2 -l 3.1050603628884668
checkview -screenshot -2d -path ${imagedir}/${test_image}.png

View File

@ -0,0 +1,46 @@
puts "========"
puts "BUG30435"
puts "Improving performance of Approx_ComputeCLine"
puts "========"
puts ""
pload QAcommands
cone con 0 0 0 0 0 -1 1 0 0 -30 0
2dbeziercurve b 4 0 0 15 15 35 -15 50 1.
approxcurveonsurf cc b con 1.e-7 1 12 1000
clear con
clpoles cc
set time0 ""
set time1 ""
dchrono t0 restart
OCC30435 r0 cc 0 50
dchrono t0 stop
set inf0 [dchrono t0 counter OCC30435]
regexp {COUNTER OCC30435: ([-0-9.+eE]+)} $inf0 full0 time0
dchrono t1 restart
OCC30435 r1 cc 1 50
dchrono t1 stop
set inf1 [dchrono t1 counter OCC30435_1]
regexp {COUNTER OCC30435_1: ([-0-9.+eE]+)} $inf1 full1 time1
if { $time1 > $time0 } {
puts "Error : optimized algorithm works slowly then initial one"
} else {
puts "Performance ratio is [expr $time0/$time1]"
}
clpoles r0
clpoles r1
smallview
fit
xwd $imagedir/${test_image}.png