1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0032214: Modeling Algorithms - 2d Offset produces wrong result

Add new option to convert input contours into ones consisting of 2D circular arcs and 2D linear segments only.

Update documentation
This commit is contained in:
jgv 2022-08-22 12:15:42 +03:00 committed by smoskvin
parent 05cfce4d83
commit b71cb85f67
18 changed files with 1830 additions and 12 deletions

View File

@ -326,7 +326,8 @@ The <i>Geom2dConvert</i> package provides the following:
* a global function which is used to construct a BSpline curve from a bounded curve based on a 2D curve from the Geom2d package,
* a splitting algorithm which computes the points at which a 2D BSpline curve should be cut in order to obtain arcs with the same degree of continuity,
* global functions used to construct the BSpline curves created by this splitting algorithm, or by other types of segmentation of the BSpline curve,
* an algorithm which converts a 2D BSpline curve into a series of adjacent Bezier curves.
* an algorithm which converts a 2D BSpline curve into a series of adjacent Bezier curves,
* an algorithm which converts an arbitrary 2D curve into a series of adjacent 2D circular arcs and 2D linear segments.
The <i>GeomConvert</i> package also provides the following:

View File

@ -15,8 +15,13 @@
// commercial license or contractual agreement.
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAlgo.hxx>
#include <BRepLib.hxx>
#include <BRepLib_MakeEdge.hxx>
@ -25,10 +30,13 @@
#include <ElCLib.hxx>
#include <Geom_Curve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dConvert_ApproxArcsSegments.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomConvert.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <GeomLProp.hxx>
#include <NCollection_Vector.hxx>
#include <gp_Pnt.hxx>
#include <Precision.hxx>
#include <ShapeFix_Shape.hxx>
@ -40,6 +48,7 @@
#include <TColStd_SequenceOfBoolean.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
@ -47,6 +56,166 @@
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
// The minimal tolerance of approximation (edges can be defined with yet smaller tolerance)
static const Standard_Real MINIMAL_TOLERANCE = 0.0001;
namespace {
struct OrientedCurve
{
Handle(Geom2d_TrimmedCurve) Curve;
Standard_Boolean IsReverse;
inline gp_Pnt2d Point (const Standard_Boolean isEnd) const
{
if (isEnd == IsReverse)
return Curve->StartPoint();
return Curve->EndPoint();
}
};
}
//=======================================================================
//function : ConvertWire
//purpose :
//=======================================================================
TopoDS_Wire BRepAlgo::ConvertWire(const TopoDS_Wire& theWire,
const Standard_Real theAngleTol,
const TopoDS_Face& theFace)
{
TopoDS_Wire aResult;
Standard_Real aMaxTol(0.);
const Handle(Geom_Surface) aSurf = BRep_Tool::Surface(theFace);
NCollection_Vector<OrientedCurve> vecCurve;
BRepTools_WireExplorer anExpE(theWire, theFace);
// Explore the edges in the current wire, in their connection order
for (; anExpE.More(); anExpE.Next()) {
const TopoDS_Edge& anEdge = anExpE.Current();
BRepAdaptor_Curve2d aCurve(anEdge, theFace);
Standard_Real aTol = BRep_Tool::Tolerance(anEdge);
if (aTol < MINIMAL_TOLERANCE)
aTol = MINIMAL_TOLERANCE;
if (aTol > aMaxTol)
aMaxTol = aTol;
Geom2dConvert_ApproxArcsSegments anAlgo(aCurve, aTol, theAngleTol);
const TColGeom2d_SequenceOfCurve& aResultApprox = anAlgo.GetResult();
// Form the array of approximated elementary curves
if (anEdge.Orientation() == TopAbs_REVERSED) {
for (Standard_Integer iCrv = aResultApprox.Length(); iCrv > 0 ; iCrv--) {
const Handle(Geom2d_Curve)& aCrv = aResultApprox(iCrv);
if (aCrv.IsNull() == Standard_False) {
OrientedCurve& anOCurve = vecCurve.Append(OrientedCurve());
anOCurve.Curve = Handle(Geom2d_TrimmedCurve)::DownCast(aCrv);
anOCurve.IsReverse = Standard_True;
}
}
} else {
for (Standard_Integer iCrv = 1; iCrv <= aResultApprox.Length(); iCrv++) {
const Handle(Geom2d_Curve)& aCrv = aResultApprox(iCrv);
if (aCrv.IsNull() == Standard_False) {
OrientedCurve& anOCurve = vecCurve.Append(OrientedCurve());
anOCurve.Curve = Handle(Geom2d_TrimmedCurve)::DownCast(aCrv);
anOCurve.IsReverse = Standard_False;
}
}
}
}
if (vecCurve.Length() > 0)
{
// Build the first vertex
BRep_Builder aVBuilder;
gp_Pnt2d aPnt[2] = {
vecCurve(0).Point(Standard_False),
vecCurve(vecCurve.Length() - 1).Point(Standard_True)
};
Standard_Real aDist = aPnt[0].Distance(aPnt[1]);
if (aDist > aMaxTol + Precision::Confusion())
aDist = Precision::Confusion();
else {
aDist = 0.5 * aDist + Precision::Confusion();
aPnt[0] = 0.5 * (aPnt[0].XY() + aPnt[1].XY());
}
gp_Pnt aPnt3d;
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
TopoDS_Vertex aFirstVertex;
aVBuilder.MakeVertex(aFirstVertex, aPnt3d, aDist);
// Loop creating edges
BRepBuilderAPI_MakeWire aMkWire;
TopoDS_Edge anEdgeRes;
TopoDS_Vertex aVertex = aFirstVertex;
for (Standard_Integer iCrv = 0; iCrv < vecCurve.Length(); iCrv++) {
const OrientedCurve& anOCurve = vecCurve(iCrv);
TopoDS_Vertex aNextVertex;
aPnt[0] = anOCurve.Point(Standard_True);
if (iCrv == vecCurve.Length() - 1) {
aPnt[1] = vecCurve(0).Point(Standard_False);
aDist = aPnt[0].Distance(aPnt[1]);
if (aDist > aMaxTol + Precision::Confusion()) {
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
aVBuilder.MakeVertex(aNextVertex, aPnt3d, Precision::Confusion());
} else {
aNextVertex = aFirstVertex;
}
} else {
aPnt[1] = vecCurve(iCrv + 1).Point(Standard_False);
aDist = 0.5 * (aPnt[0].Distance(aPnt[1])) + Precision::Confusion();
aPnt[0] = 0.5 * (aPnt[0].XY() + aPnt[1].XY());
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
aVBuilder.MakeVertex(aNextVertex, aPnt3d, aDist);
}
const Standard_Real aParam[2] = {
anOCurve.Curve->FirstParameter(),
anOCurve.Curve->LastParameter()
};
if (anOCurve.IsReverse) {
BRepBuilderAPI_MakeEdge aMkEdge(anOCurve.Curve, aSurf, aNextVertex,
aVertex, aParam[0], aParam[1]);
anEdgeRes = aMkEdge.Edge();
anEdgeRes.Orientation(TopAbs_REVERSED);
} else {
BRepBuilderAPI_MakeEdge aMkEdge(anOCurve.Curve, aSurf, aVertex,
aNextVertex, aParam[0], aParam[1]);
anEdgeRes = aMkEdge.Edge();
}
aVertex = aNextVertex;
aMkWire.Add(anEdgeRes);
}
if (aMkWire.IsDone())
aResult = aMkWire.Wire();
}
return aResult;
}
//=======================================================================
//function : ConvertFace
//purpose :
//=======================================================================
TopoDS_Face BRepAlgo::ConvertFace (const TopoDS_Face& theFace,
const Standard_Real theAngleTolerance)
{
TopoDS_Face aResult;
const Handle(Geom_Surface) aSurf = BRep_Tool::Surface(theFace);
BRepBuilderAPI_MakeFace aMkFace(aSurf,Precision::Confusion());
TopExp_Explorer anExp(theFace, TopAbs_WIRE);
for (; anExp.More(); anExp.Next()) {
const TopoDS_Wire& aWire = TopoDS::Wire(anExp.Current());
const TopoDS_Wire aNewWire = ConvertWire(aWire, theAngleTolerance, theFace);
aMkFace.Add(aNewWire);
}
if (aMkFace.IsDone()) {
aResult = aMkFace.Face();
}
return aResult;
}
//=======================================================================
//function : ConcatenateWire
//purpose :

View File

@ -21,6 +21,7 @@
#include <TopTools_ListOfShape.hxx>
class TopoDS_Wire;
class TopoDS_Edge;
class TopoDS_Face;
class TopoDS_Shape;
@ -43,6 +44,28 @@ public:
//! Junction points between edges of wire may be sharp,
//! resulting curve of the resulting edge may be C0.
Standard_EXPORT static TopoDS_Edge ConcatenateWireC0 (const TopoDS_Wire& Wire);
//! Method of wire conversion, calls BRepAlgo_Approx internally.
//! @param theWire
//! Input Wire object.
//! @param theAngleTolerance
//! Angle (in radians) defining the continuity of the wire: if two vectors
//! differ by less than this angle, the result will be smooth (zero angle of
//! tangent lines between curve elements).
//! @return
//! The new TopoDS_Wire object consisting of edges each representing an arc
//! of circle or a linear segment. The accuracy of conversion is defined
//! as the maximal tolerance of edges in theWire.
static Standard_EXPORT TopoDS_Wire ConvertWire
(const TopoDS_Wire& theWire,
const Standard_Real theAngleTolerance,
const TopoDS_Face& theFace);
//! Method of face conversion. The API corresponds to the method ConvertWire.
//! This is a shortcut for calling ConvertWire() for each wire in theFace.
static Standard_EXPORT TopoDS_Face ConvertFace
(const TopoDS_Face& theFace,
const Standard_Real theAngleTolerance);
//! Checks if the shape is "correct". If not, returns
//! <Standard_False>, else returns <Standard_True>.

View File

@ -17,9 +17,12 @@
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BRepAlgo.hxx>
#include <BRepAlgo_FaceRestrictor.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepLib.hxx>
#include <BRepOffsetAPI_MakeOffset.hxx>
#include <BRepTopAdaptor_FClass2d.hxx>
#include <Extrema_ExtPS.hxx>
@ -41,6 +44,49 @@
static Standard_Boolean AffichSpine = Standard_False;
#endif
static Standard_Boolean NeedsConvertion (const TopoDS_Wire& theWire)
{
TopoDS_Iterator anIter (theWire);
for (; anIter.More(); anIter.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge (anIter.Value());
BRepAdaptor_Curve aBAcurve (anEdge);
GeomAbs_CurveType aType = aBAcurve.GetType();
if (aType != GeomAbs_Line &&
aType != GeomAbs_Circle)
return Standard_True;
}
return Standard_False;
}
static TopoDS_Face ConvertFace (const TopoDS_Face& theFace,
const Standard_Real theAngleTolerance)
{
TopAbs_Orientation anOr = theFace.Orientation();
TopoDS_Face aFace = theFace;
aFace.Orientation (TopAbs_FORWARD);
TopoDS_Face aNewFace = TopoDS::Face (aFace.EmptyCopied());
BRep_Builder aBB;
TopoDS_Iterator anIter (aFace);
for (; anIter.More(); anIter.Next())
{
TopoDS_Wire aWire = TopoDS::Wire (anIter.Value());
if (NeedsConvertion (aWire))
{
TopAbs_Orientation anOrOfWire = aWire.Orientation();
aWire = BRepAlgo::ConvertWire (aWire, theAngleTolerance, aFace);
BRepLib::BuildCurves3d (aWire);
aWire.Orientation (anOrOfWire);
}
aBB.Add (aNewFace, aWire);
}
aNewFace.Orientation (anOr);
return aNewFace;
}
//=======================================================================
//function : BRepOffsetAPI_MakeOffset
//purpose :
@ -49,7 +95,8 @@ static Standard_Boolean AffichSpine = Standard_False;
BRepOffsetAPI_MakeOffset::BRepOffsetAPI_MakeOffset()
: myIsInitialized( Standard_False),
myJoin(GeomAbs_Arc),
myIsOpenResult(Standard_False)
myIsOpenResult(Standard_False),
myIsToApprox(Standard_False)
{
}
@ -80,6 +127,7 @@ void BRepOffsetAPI_MakeOffset::Init(const TopoDS_Face& Spine,
myIsInitialized = Standard_True;
myJoin = Join;
myIsOpenResult = IsOpenResult;
myIsToApprox = Standard_False;
TopExp_Explorer exp;
for (exp.Init(myFace,TopAbs_WIRE); exp.More();exp.Next()) {
myWires.Append(exp.Current());
@ -99,6 +147,7 @@ BRepOffsetAPI_MakeOffset::BRepOffsetAPI_MakeOffset(const TopoDS_Wire& Spine,
myIsInitialized = Standard_True;
myJoin = Join;
myIsOpenResult = IsOpenResult;
myIsToApprox = Standard_False;
}
//=======================================================================
@ -113,6 +162,18 @@ void BRepOffsetAPI_MakeOffset::Init(const GeomAbs_JoinType Join,
myIsOpenResult = IsOpenResult;
}
//=======================================================================
//function : SetApprox
//purpose : Set approximation flag
// for convertion input contours into ones consisting of
// 2D circular arcs and 2D linear segments only
//=======================================================================
void BRepOffsetAPI_MakeOffset::SetApprox(const Standard_Boolean ToApprox)
{
myIsToApprox = ToApprox;
}
//=======================================================================
//function : BRepOffsetAPI_MakeOffset
//purpose :
@ -289,6 +350,46 @@ void BRepOffsetAPI_MakeOffset::Perform(const Standard_Real Offset,
try
{
if (myIsToApprox)
{
Standard_Real aTol = 0.01;
if (myFace.IsNull())
{
TopoDS_Face aFace;
Standard_Boolean OnlyPlane = Standard_True;
TopTools_ListIteratorOfListOfShape anItl (myWires);
for (; anItl.More(); anItl.Next())
{
BRepBuilderAPI_MakeFace aFaceMaker (TopoDS::Wire(anItl.Value()), OnlyPlane);
if (aFaceMaker.Error() == BRepBuilderAPI_FaceDone)
{
aFace = aFaceMaker.Face();
break;
}
}
for (anItl.Initialize(myWires); anItl.More(); anItl.Next())
{
const TopoDS_Wire& aWire = TopoDS::Wire(anItl.Value());
if (NeedsConvertion (aWire))
{
TopoDS_Wire aNewWire = BRepAlgo::ConvertWire (aWire, aTol, aFace);
BRepLib::BuildCurves3d (aNewWire);
aNewWire.Orientation (aWire.Orientation());
anItl.ChangeValue() = aNewWire;
}
}
}
else
{
myFace = ConvertFace (myFace, aTol);
BRepLib::BuildCurves3d (myFace);
myWires.Clear();
TopoDS_Iterator anIter (myFace);
for (; anIter.More(); anIter.Next())
myWires.Append (anIter.Value());
}
}
Standard_Integer i = 1;
BRepFill_ListIteratorOfListOfOffsetWire itOW;
TopoDS_Compound Res;

View File

@ -63,6 +63,11 @@ public:
//! Initialize the evaluation of Offsetting.
Standard_EXPORT void Init (const GeomAbs_JoinType Join = GeomAbs_Arc, const Standard_Boolean IsOpenResult = Standard_False);
//! Set approximation flag
//! for convertion input contours into ones consisting of
//! 2D circular arcs and 2D linear segments only.
Standard_EXPORT void SetApprox (const Standard_Boolean ToApprox);
//! Initializes the algorithm to construct parallels to the wire Spine.
Standard_EXPORT void AddWire (const TopoDS_Wire& Spine);
@ -96,6 +101,7 @@ private:
Standard_Boolean myLastIsLeft;
GeomAbs_JoinType myJoin;
Standard_Boolean myIsOpenResult;
Standard_Boolean myIsToApprox;
TopoDS_Face myFace;
TopTools_ListOfShape myWires;
BRepFill_ListOfOffsetWire myLeft;

View File

@ -1530,10 +1530,23 @@ Standard_Integer mkoffset(Draw_Interpretor& di,
char name[100];
BRepOffsetAPI_MakeOffset Paral;
Standard_Boolean ToApprox = Standard_False;
GeomAbs_JoinType theJoinType = GeomAbs_Arc;
if (n >= 6 && strcmp(a[5], "i") == 0)
theJoinType = GeomAbs_Intersection;
Paral.Init(theJoinType);
Standard_Integer anIndArg = 6;
if (n >= 6)
{
if (strcmp(a[5], "-approx") == 0)
{
ToApprox = Standard_True;
anIndArg++;
}
if (n >= anIndArg && strcmp(a[anIndArg-1], "i") == 0)
theJoinType = GeomAbs_Intersection;
}
TopoDS_Shape Base = DBRep::Get(a[2],TopAbs_FACE);
if ( Base.IsNull())
@ -1553,6 +1566,7 @@ Standard_Integer mkoffset(Draw_Interpretor& di,
Base.Orientation(TopAbs_FORWARD);
Paral.Init(TopoDS::Face(Base), theJoinType);
}
Paral.SetApprox (ToApprox);
Standard_Real U, dU;
Standard_Integer Nb;
@ -1560,8 +1574,8 @@ Standard_Integer mkoffset(Draw_Interpretor& di,
Nb = Draw::Atoi(a[3]);
Standard_Real Alt = 0.;
if ( n == 7)
Alt = Draw::Atof(a[6]);
if (n > anIndArg)
Alt = Draw::Atof(a[anIndArg]);
Standard_Integer Compt = 1;
@ -1598,16 +1612,30 @@ Standard_Integer openoffset(Draw_Interpretor& di,
char name[100];
BRepOffsetAPI_MakeOffset Paral;
Standard_Boolean ToApprox = Standard_False;
GeomAbs_JoinType theJoinType = GeomAbs_Arc;
if (n == 6 && strcmp(a[5], "i") == 0)
theJoinType = GeomAbs_Intersection;
Paral.Init(theJoinType, Standard_True);
Standard_Integer anIndArg = 6;
if (n >= 6)
{
if (strcmp(a[5], "-approx") == 0)
{
ToApprox = Standard_True;
anIndArg++;
}
if (n >= anIndArg && strcmp(a[anIndArg-1], "i") == 0)
theJoinType = GeomAbs_Intersection;
}
TopoDS_Shape Base = DBRep::Get(a[2] ,TopAbs_FACE);
if ( Base.IsNull())
{
Base = DBRep::Get(a[2], TopAbs_WIRE);
if (Base.IsNull()) return 1;
Paral.Init(theJoinType, Standard_True);
Paral.AddWire(TopoDS::Wire(Base));
}
else
@ -1615,6 +1643,7 @@ Standard_Integer openoffset(Draw_Interpretor& di,
Base.Orientation(TopAbs_FORWARD);
Paral.Init(TopoDS::Face(Base), theJoinType, Standard_True);
}
Paral.SetApprox (ToApprox);
Standard_Real U, dU;
Standard_Integer Nb;
@ -1755,6 +1784,72 @@ Standard_Integer edgeintersector(Draw_Interpretor& di,
}
//=================================================================================
//function : arclinconvert
//purpose : Convert a single face to a face with contour made of arcs and segments
//=================================================================================
static Standard_Integer arclinconvert (Draw_Interpretor& /*dout*/, Standard_Integer n, const char** a)
{
// Check the command arguments
if (n < 3) {
std::cout<<"Error: "<<a[0]<<" - invalid number of arguments"<<std::endl;
std::cout<<"Usage: type help "<<a[0]<<std::endl;
return 1; //TCL_ERROR
}
//read shape
const TopoDS_Shape aShape = DBRep::Get(a[2]);
if (aShape.IsNull()) {
std::cout<<"Error: "<<a[2]<<" is null"<<std::endl;
return 1; //TCL_ERROR
}
TopAbs_ShapeEnum aType = aShape.ShapeType();
if (aType != TopAbs_WIRE &&
aType != TopAbs_FACE)
{
std::cout<<"Error: "<<a[2]<<" is neither wire no face"<<std::endl;
return 1; //TCL_ERROR
}
//read tolerance
Standard_Real aTol = 0.01;
if (n > 3)
aTol = Draw::Atof(a[3]);
std::cout<<"Info: tolerance is set to "<<aTol<<std::endl;
TopoDS_Shape aResult;
if (aType == TopAbs_WIRE)
{
Standard_Boolean OnlyPlane = Standard_False;
BRepBuilderAPI_MakeFace aFaceMaker (TopoDS::Wire(aShape), OnlyPlane);
if (aFaceMaker.Error() != BRepBuilderAPI_FaceDone)
{
std::cout<<"Error: failed to find a face for the wire "<<a[2]<<std::endl;
return 1; //TCL_ERROR
}
TopoDS_Face aFace = aFaceMaker.Face();
TopoDS_Iterator anIter (aFace);
TopoDS_Wire aWire = TopoDS::Wire (anIter.Value());
aResult = BRepAlgo::ConvertWire (aWire, aTol, aFace);
}
else if (aType == TopAbs_FACE)
{
TopoDS_Face aFace = TopoDS::Face(aShape);
aResult = BRepAlgo::ConvertFace (aFace, aTol);
}
if (aResult.IsNull()) {
std::cout<<"Error: could not convert "<<a[2]<<std::endl;
return 1; //TCL_ERROR
}
DBRep::Set(a[1], aResult);
return 0; //TCL_OK
}
//=======================================================================
//function : concatC0wire
//purpose :
@ -1908,11 +2003,11 @@ void BRepTest::CurveCommands(Draw_Interpretor& theCommands)
profile2d,g);
theCommands.Add("mkoffset",
"mkoffset result face/compound of wires nboffset stepoffset [jointype(a/i) [alt]]",__FILE__,
"mkoffset result face/compound of wires nboffset stepoffset [-approx] [jointype(a/i) [alt]]",__FILE__,
mkoffset,g);
theCommands.Add("openoffset",
"openoffset result face/wire nboffset stepoffset [jointype(a/i)]",__FILE__,
"openoffset result face/wire nboffset stepoffset [-approx] [jointype(a/i)]",__FILE__,
openoffset,g);
theCommands.Add("mkedge",
@ -1968,6 +2063,12 @@ void BRepTest::CurveCommands(Draw_Interpretor& theCommands)
"reducepcurves shape1 shape2 ...",__FILE__,
reducepcurves, g);
theCommands.Add("arclinconvert",
"arclinconvert result wire/face [tol]",
__FILE__,
arclinconvert,
g);
theCommands.Add("concatC0wire",
"concatC0wire result wire",
__FILE__,

View File

@ -1,5 +1,7 @@
Geom2dConvert.cxx
Geom2dConvert.hxx
Geom2dConvert_ApproxArcsSegments.cxx
Geom2dConvert_ApproxArcsSegments.hxx
Geom2dConvert_ApproxCurve.cxx
Geom2dConvert_ApproxCurve.hxx
Geom2dConvert_BSplineCurveKnotSplitting.cxx
@ -8,3 +10,6 @@ Geom2dConvert_BSplineCurveToBezierCurve.cxx
Geom2dConvert_BSplineCurveToBezierCurve.hxx
Geom2dConvert_CompCurveToBSplineCurve.cxx
Geom2dConvert_CompCurveToBSplineCurve.hxx
Geom2dConvert_PPoint.cxx
Geom2dConvert_PPoint.hxx
Geom2dConvert_SequenceOfPPoint.hxx

View File

@ -0,0 +1,911 @@
// Created: 2009-01-21
//
// Copyright (c) 2009-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#include <Geom2dConvert_ApproxArcsSegments.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <ElCLib.hxx>
#include <GCE2d_MakeArcOfCircle.hxx>
#include <GCE2d_MakeSegment.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <NCollection_IncAllocator.hxx>
#include <Precision.hxx>
#include <Standard_Version.hxx>
#include <gp.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Lin2d.hxx>
static const Standard_Integer MAXPOINTS = 100;
static const Standard_Real MyCurvatureTolerance = 0.0001;
static Standard_Boolean checkContinuity (const Handle(Geom2d_Curve)& theCurve1,
const Handle(Geom2d_Curve)& theCurve2,
const Standard_Real theAnglTol);
static Geom2dConvert_PPoint getParameter (const gp_XY& theXY1,
const Standard_Real theFirstPar,
const Standard_Real theLastPar,
const Adaptor2d_Curve2d& theCurve);
static Standard_Boolean isInflectionPoint (const Standard_Real theParam,
const Adaptor2d_Curve2d& theCurve);
static Standard_Boolean isInflectionPoint (const Standard_Real theParam,
const Geom2dConvert_PPoint& theFirstInf,
const Adaptor2d_Curve2d& theCurve,
const Standard_Real theAnglTol);
//=======================================================================
//function : Geom2dConvert_ApproxArcsSegments()
//purpose : Constructor
//=======================================================================
Geom2dConvert_ApproxArcsSegments::Geom2dConvert_ApproxArcsSegments
(const Adaptor2d_Curve2d& theCurve,
const Standard_Real theTolerance,
const Standard_Real theAngleTol)
: myCurve (theCurve),
myAlloc (new NCollection_IncAllocator(4000)),
myTolerance (theTolerance),
myAngleTolerance (theAngleTol),
mySeqParams (myAlloc),
myStatus (StatusNotDone)
{
myExt[0] = Geom2dConvert_PPoint(myCurve.FirstParameter(), myCurve);
myExt[1] = Geom2dConvert_PPoint(myCurve.LastParameter(), myCurve);
switch (myCurve.GetType())
{
case GeomAbs_Line:
{
// Create a single line segment.
const Standard_Real aDist = myExt[0].Dist(myExt[1]);
if (aDist > Precision::Confusion()) {
const gp_Ax2d anAx2d(myExt[0].Point(), gp_Vec2d(myExt[0].Point(),
myExt[1].Point()));
const Handle(Geom2d_Line) aLine = new Geom2d_Line(anAx2d);
mySeqCurves.Append(new Geom2d_TrimmedCurve(aLine, 0., aDist));
myStatus = StatusOK;
}
}
break;
case GeomAbs_Circle:
{
// Create a couple of arcs of equal size.
const Geom2dConvert_PPoint aPP(.5 *(myExt[0].Parameter() +
myExt[1].Parameter()), myCurve);
Handle(Geom2d_Curve) aCurve = makeCircle (myExt[0], aPP);
if (aCurve.IsNull() == Standard_False) {
mySeqCurves.Append(aCurve);
aCurve = makeCircle (aPP, myExt[1]);
if (aCurve.IsNull() == Standard_False)
mySeqCurves.Append(aCurve);
}
}
break;
default:
makeFreeform();
}
// Check status of the calculation
if (myStatus == StatusNotDone) {
if (mySeqCurves.IsEmpty() == Standard_False)
myStatus = StatusOK;
else {
//std::cout << "GeomConv2d_Approx: no geometry converted." << std::endl;
myStatus = StatusError;
}
}
}
//=======================================================================
//function : makeCircle
//purpose : method for creation of circle
//=======================================================================
Handle(Geom2d_Curve) Geom2dConvert_ApproxArcsSegments::makeCircle
(const Geom2dConvert_PPoint& theFirst,
const Geom2dConvert_PPoint& theLast) const
{
Handle(Geom2d_Curve) aResult;
gp_Pnt2d aPointM (0.0,0.0);
const Standard_Real aParaM = (theFirst.Parameter() + theLast.Parameter()) *.5;
myCurve.D0(aParaM, aPointM);
GCE2d_MakeArcOfCircle aMakeArc1(theFirst.Point(), aPointM, theLast.Point());
if (aMakeArc1.IsDone())
aResult = aMakeArc1.Value();
//else
//std::cout << "makeCircle(): Circle not built" << std::endl;
return aResult;
}
//=======================================================================
//function : makeArc
//purpose : creation arcs by two points and derivative in the first point
/// : parameter isFirst specified direction of the arc.
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeArc
(const Geom2dConvert_PPoint& theParam1,
Geom2dConvert_PPoint& theParam2,
const Standard_Boolean isFirst,
Handle(Geom2d_TrimmedCurve)& theCurve) const
{
const gp_XY aP1 (theParam1.Point());
const gp_XY aP2 (theParam2.Point());
const gp_XY aVec (isFirst? theParam1.D1() : -theParam1.D1());
// Detect the sense (CCW means positive)
const gp_XY aDelta = aP2 - aP1;
Standard_Real aSense = aVec ^ aDelta;
if (aSense > Precision::Angular())
aSense = 1.;
else if (aSense < -Precision::Angular())
aSense = -1.;
else {
//std::cout << "makeArc(): Arc Not Built" << std::endl;
return Standard_False;
}
// Find the centre of the circle
const gp_XY aMiddle = (aP2 + aP1) * 0.5;
const Standard_Real prodP1V = aP1 * aVec;
const Standard_Real prodDeM = aDelta * aMiddle;
const Standard_Real vprodVD = aVec ^ aDelta;
const Standard_Real aResolution = gp::Resolution();
if (vprodVD < -aResolution || vprodVD > aResolution) {
const gp_Pnt2d aCenter((prodP1V * aDelta.Y() - prodDeM * aVec.Y())/vprodVD,
(prodDeM * aVec.X() - prodP1V * aDelta.X())/vprodVD);
const Standard_Real aRad =
(aCenter.Distance(aP1) + aCenter.Distance(aP2)) * 0.5;
const gp_Ax22d ax22d (aCenter, gp_Dir2d(1., 0.), gp_Dir2d(0., 1.));
const gp_Circ2d aCir (ax22d, aRad);
const Handle(Geom2d_Circle) Circ = new Geom2d_Circle(aCir);
//calculation parameters first and last points of arc.
Standard_Real anAlpha1, anAlpha2;
if (isFirst) {
anAlpha1 = ElCLib::Parameter(aCir, aP1);
anAlpha2 = ElCLib::Parameter(aCir, aP2);
} else {
anAlpha1 = ElCLib::Parameter(aCir, aP2);
anAlpha2 = ElCLib::Parameter(aCir, aP1);
aSense = -aSense;
}
if (fabs (anAlpha1 - anAlpha2) < 1e-100)
// very small value, just to avoid exact match
return Standard_False;
// Reverse the circle if the sense is negative
if (aSense < 0.) {
anAlpha1 = Circ->ReversedParameter(anAlpha1);
anAlpha2 = Circ->ReversedParameter(anAlpha2);
Circ->Reverse();
}
theCurve = new Geom2d_TrimmedCurve(Circ, anAlpha1, anAlpha2);
// Correct the direction in the opposite point
const gp_XY aRadV = theParam2.Point() - aCenter.XY();
theParam2.SetD1(gp_XY(- aRadV.Y() * aSense, aRadV.X() * aSense));
return Standard_True;
}
// Algorithm failed, possibly because aVec is normal to the chorde
return Standard_False;
}
//=======================================================================
//function : makeLine
//purpose : method for creation of line
//=======================================================================
Handle(Geom2d_TrimmedCurve) Geom2dConvert_ApproxArcsSegments::makeLine
(Geom2dConvert_PPoint& theFirst,
Geom2dConvert_PPoint& theLast,
const Standard_Boolean isCheck) const
{
Handle(Geom2d_TrimmedCurve) aResult;
gp_XY aSlope = theLast.Point() - theFirst.Point();
if (fabs(aSlope.SquareModulus()) < gp::Resolution())
return aResult;
gp_Dir2d aDirLine(aSlope);
if (isCheck) {
if (theFirst.D1().SquareModulus() < gp::Resolution() ||
theLast.D1().SquareModulus() < gp::Resolution())
return aResult;
// Angular continuity (G1) is only checked when the end of the line is not
// on the extremity of the curve
Standard_Real absAngle[2] = { 0., 0. };
if (theFirst != myExt[0]) {
const Standard_Real anAng = aDirLine.Angle(theFirst.D1());
absAngle[0] = (anAng > 0. ? anAng : -anAng);
}
if (theLast != myExt[1]) {
const Standard_Real anAng = aDirLine.Angle(theLast.D1());
absAngle[1] = (anAng > 0. ? anAng : -anAng);
}
// if the derivatives in the end points differ from the derivative line
// more than value of the specified continuity tolerance
// then a biarc should be build instead of a line.
const Standard_Real aContTolerance = ::Max(myAngleTolerance, 0.01);
if (absAngle[0] > aContTolerance || absAngle[1] > aContTolerance) {
//std::cout << "makeLine(): Line not built" << std::endl;
return aResult;
}
} // end if (isCheck)
//bulding segment of line
GCE2d_MakeSegment aMakeSeg (theFirst.Point(), theLast.Point());
if (aMakeSeg.IsDone()) {
Handle(Geom2d_TrimmedCurve) aCurve = aMakeSeg.Value();
if (checkCurve (aCurve, theFirst.Parameter(), theLast.Parameter())) {
aResult = aCurve;
// correct the derivatives fields in both arguments
const gp_XY aNewD1 (theLast.Point() - theFirst.Point());
theFirst.SetD1(aNewD1);
theLast.SetD1(aNewD1);
}
}
//else
//std::cout << "makeLine(): Line not built" << std::endl;
return aResult;
}
//=======================================================================
//function : makeFreeform
//purpose : get a sequence of Geom curves from one curve
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeFreeform()
{
Geom2dConvert_SequenceOfPPoint seqParamPoints(myAlloc);
Geom2dConvert_PPoint* aPrevParam = &myExt[0];
//calculation of the inflection points.
getLinearParts(seqParamPoints);
const Standard_Boolean isNoInfPoints = seqParamPoints.IsEmpty();
TColGeom2d_SequenceOfCurve aSeqLinearParts;
Standard_Boolean isDone (Standard_True);
Standard_Integer i;
for (i = 1; i < seqParamPoints.Length(); i += 2)
{
Handle(Geom2d_Curve) aLineCurve;
Geom2dConvert_PPoint& aParam0 = seqParamPoints.ChangeValue(i);
Geom2dConvert_PPoint& aParam1 = seqParamPoints.ChangeValue(i+1);
if (aParam0 != aParam1)
//linear part of the curve lies between odd and even values of i.
//parameters from parameter's sequence.
aLineCurve = makeLine (aParam0, aParam1, Standard_False);
aSeqLinearParts.Append(aLineCurve);
}
for (i = 1; i < seqParamPoints.Length(); i += 2)
{
//approximation for non-linear part preceding the linear part
if (seqParamPoints(i) != * aPrevParam) {
const Standard_Integer aLastInd = mySeqCurves.Length();
isDone = makeApproximation (* aPrevParam, seqParamPoints(i));
if (isDone && aLastInd && mySeqCurves.Length() > aLastInd)
isDone = checkContinuity(mySeqCurves.Value(aLastInd),
mySeqCurves.Value(aLastInd+1),
myAngleTolerance);
if (!isDone) {
myStatus = StatusError;
break;
}
}
const Handle(Geom2d_Curve)& aCurve = aSeqLinearParts.Value((i+1)/2);
if (aCurve.IsNull() == Standard_False)
mySeqCurves.Append(aCurve);
else {
Geom2dConvert_PPoint& aParam0 = seqParamPoints.ChangeValue(i);
Geom2dConvert_PPoint& aParam1 = seqParamPoints.ChangeValue(i+1);
const Standard_Integer aLastInd = mySeqCurves.Length();
isDone = makeApproximation (aParam0, aParam1);
if (isDone && aLastInd && mySeqCurves.Length() > aLastInd)
isDone = checkContinuity(mySeqCurves.Value(aLastInd),
mySeqCurves.Value(aLastInd+1),
myAngleTolerance);
if (!isDone) {
myStatus = StatusError;
//std::cout << "makeOther: Line not built" << std::endl;
break;
}
}
aPrevParam = &seqParamPoints(i+1);
}
//approximation for non-linear part following the last linear part
if (isDone && (* aPrevParam != myExt[1]))
{
// Case of a closed edge like an ellipse
if (isNoInfPoints &&
(myExt[0].Point() - myExt[1].Point()).Modulus() < myTolerance)
{
Geom2dConvert_PPoint aPPoint(0.5 * (myExt[0].Parameter() +
myExt[1].Parameter()), myCurve);
isDone = makeApproximation (myExt[0], aPPoint);
if (isDone)
isDone = makeApproximation (aPPoint, myExt[1]);
} else {
isDone = makeApproximation (* aPrevParam, myExt[1]);
}
if (!isDone) {
myStatus = StatusError;
//std::cout << "makeOther: Line not built" << std::endl;
}
}
return (mySeqCurves.Length() && myStatus != StatusError);
}
//=======================================================================
//function : getLinearParts
//purpose : method for geting inflection points
//=======================================================================
void Geom2dConvert_ApproxArcsSegments::getLinearParts (Geom2dConvert_SequenceOfPPoint& theSeqPar)
{
Standard_Integer i;
// Fill the sequences with values along the curve
mySeqParams.Clear();
Adaptor2d_Curve2d& myCurveMut = const_cast<Adaptor2d_Curve2d&>(myCurve);
GCPnts_QuasiUniformDeflection aQUDefAlgo (myCurveMut, myTolerance * 0.5);
Standard_Boolean isUniformDone = aQUDefAlgo.IsDone();
gp_XY aLastPnt(myExt[0].Point());
if (isUniformDone) {
for (i = 1; i <= aQUDefAlgo.NbPoints(); i++) {
const Geom2dConvert_PPoint aPP (aQUDefAlgo.Parameter(i), myCurve);
mySeqParams.Append(aPP);
aLastPnt = aPP.Point();
}
} else {
const Standard_Real aParamStep =
(myExt[1].Parameter() - myExt[0].Parameter()) / MAXPOINTS;
for (i = 1; i <= MAXPOINTS; i++) {
const Standard_Real aParam = myExt[0].Parameter() + aParamStep * i;
const Geom2dConvert_PPoint aPP (aParam, myCurve);
mySeqParams.Append(aPP);
aLastPnt = aPP.Point();
}
}
//check if the curve may be linearised
gp_XY aDir = myExt[1].Point() - myExt[0].Point();
const Standard_Real aMod2 = aDir.SquareModulus();
if (aMod2 > Precision::Confusion())
{
Standard_Boolean isLinear = Standard_True;
aDir /= sqrt(aMod2);
for (i = 1; i <= mySeqParams.Length(); i++) {
// Distance from point "i" to the segment between two extremities
const Standard_Real aDist = aDir ^ (mySeqParams(i).Point() -
myExt[0].Point());
if (aDist > myTolerance * 0.5 || aDist < -myTolerance * 0.5) {
isLinear = Standard_False;
break;
}
}
if (isLinear) {
theSeqPar.Append(myExt[0]);
theSeqPar.Append(myExt[1]);
return;
}
}
//check if point for First Parameter is inflection point.
Standard_Integer indStartLinear (0);
Geom2dConvert_PPoint aLastInflParam = myExt[0];
Geom2dConvert_PPoint aFirstInflParam = myExt[0];
// Getting further inflection points with step by parameter.
// The point with index 1 is the same as myExt[0]
for (i = 1; i <= mySeqParams.Length(); i++)
{
const Geom2dConvert_PPoint& aCurParam = mySeqParams(i);
if (indStartLinear) {
Standard_Boolean isStillInflectionFirst =
isInflectionPoint (aFirstInflParam.Parameter(), aCurParam,
myCurve, myAngleTolerance);
if (isInflectionPoint (aCurParam.Parameter(), aFirstInflParam,
myCurve, myAngleTolerance))
{
aLastInflParam = mySeqParams(i);
while (isStillInflectionFirst == Standard_False) {
if (++indStartLinear >= i) {
indStartLinear = 0;
break;
}
aFirstInflParam = mySeqParams(indStartLinear);
isStillInflectionFirst =
isInflectionPoint (aFirstInflParam.Parameter(), aCurParam,
myCurve, myAngleTolerance);
}
} else {
// Add the interval in the output sequence
// The interval is added only if it is more than 10 times the tolerance
aLastInflParam = findInflection (aLastInflParam, aCurParam);
if (!isInflectionPoint (aFirstInflParam.Parameter(), aLastInflParam,
myCurve, myAngleTolerance))
{
aFirstInflParam = findInflection (aLastInflParam, aFirstInflParam);
}
const Standard_Real aDist((aFirstInflParam.Point() -
aLastInflParam.Point()).Modulus());
if (aFirstInflParam.Parameter() < aLastInflParam.Parameter() &&
aDist > 10 * myTolerance)
{
theSeqPar.Append(aFirstInflParam);
theSeqPar.Append(aLastInflParam);
}
indStartLinear = 0;
}
} else
if (isInflectionPoint (aCurParam.Parameter(), myCurve)) {
aLastInflParam = aCurParam;
if (i > 1)
aFirstInflParam = findInflection (aCurParam, mySeqParams(i-1));
indStartLinear = i;
}
}
const Standard_Real aDist((aFirstInflParam.Point() -
myExt[1].Point()).Modulus());
if (indStartLinear && aDist > 10 * myTolerance)
{
theSeqPar.Append(aFirstInflParam);
theSeqPar.Append(myExt[1]);
}
}
//=======================================================================
//function : findInflection
//purpose : Dichotomic search of the boundary of inflection interval, between
// two parameters on the Curve
//=======================================================================
Geom2dConvert_PPoint Geom2dConvert_ApproxArcsSegments::findInflection
(const Geom2dConvert_PPoint& theParamIsInfl,
const Geom2dConvert_PPoint& theParamNoInfl) const
{
Standard_Real aLower (theParamIsInfl.Parameter());
Standard_Real anUpper (theParamNoInfl.Parameter());
Standard_Real aTest(0.);
for (Standard_Integer i = 0; i < 3; i++) { // 3 iterations
aTest = (aLower + anUpper) * 0.5;
if (isInflectionPoint (aTest, theParamIsInfl, myCurve, myAngleTolerance))
aLower = aTest;
else
anUpper = aTest;
}
return Geom2dConvert_PPoint(aTest, myCurve);
}
//=======================================================================
//function : makeApproximation
//purpose : make approximation non-linear part of the other curve
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeApproximation
(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam)
{
// if difference between parameters is less than Precision::PConfusion
//approximation was not made.
Standard_Boolean isDone = Standard_False;
if (theLastParam != theFirstParam) {
const Standard_Real aDistance =
(theFirstParam.Point() - theLastParam.Point()).Modulus();
if (aDistance < myTolerance)
{
const Handle(Geom2d_Curve) aCurve = makeLine(theFirstParam, theLastParam,
Standard_True);
isDone = !aCurve.IsNull();
if (isDone && mySeqCurves.Length())
isDone = checkContinuity(mySeqCurves.Last(), aCurve, myAngleTolerance);
if (isDone || aDistance < Precision::Confusion()) {
mySeqCurves.Append(aCurve);
return isDone;
}
}
//calculate biarc
isDone = calculateBiArcs (theFirstParam, theLastParam);
// if biarc was not calculated calculation is repeated on half the interval.
if (!isDone)
{
Geom2dConvert_PPoint aParaM
(theFirstParam.Parameter() +
(theLastParam.Parameter() - theFirstParam.Parameter()) * 0.55,
myCurve);
isDone = makeApproximation (theFirstParam, aParaM);
if (isDone)
isDone = makeApproximation (aParaM, theLastParam);
}
}
return isDone;
}
//=======================================================================
//function : calculateBiArcs
//purpose : method for calculation of the biarcs.
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::calculateBiArcs
(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam)
{
const Standard_Real aResolution = gp::Resolution();
if (theFirstParam.D1().SquareModulus() < aResolution ||
theLastParam.D1().SquareModulus() < aResolution)
{
//std::cout << "calculateBiArcs(): bad initial data" << std::endl;
return Standard_False;
}
const gp_XY aPnt[2] = {
theFirstParam.Point(),
theLastParam.Point()
};
gp_Dir2d aDir[2] = {
theFirstParam.D1(),
theLastParam.D1()
};
// Try to approximate the curve by a single arc. The criterion for that is
// more rigid if the curve is the entire input curve
// (possible pb. connecting with other boundaries)
const gp_Vec2d aDelta (aPnt[1] - aPnt[0]);
Standard_Real anAngle1 = aDelta.Angle(gp_Vec2d(aDir[0]));
if (anAngle1 < 0.)
anAngle1 = -anAngle1;
Standard_Real anAngle2 = aDelta.Angle(gp_Vec2d(aDir[1]));
if (anAngle2 < 0.)
anAngle2 = -anAngle2;
//in the case when two angles are equal one arc can be built.
Standard_Real anAngleThreshold (Precision::Angular() * 10.);
if (theFirstParam != myExt[0] || theLastParam != myExt[1])
anAngleThreshold = myAngleTolerance * 0.1;
if (fabs(anAngle1 - anAngle2) < anAngleThreshold)
{
Handle(Geom2d_TrimmedCurve) aCurve;
// protect the theLastParam from modification of D1, when
// the created arc is rejected.
Geom2dConvert_PPoint aLastParam (theLastParam);
if (!makeArc (theFirstParam, aLastParam, Standard_True, aCurve))
return Standard_False;
if (checkCurve(aCurve, theFirstParam.Parameter(), aLastParam.Parameter()))
{
theLastParam = aLastParam;
mySeqCurves.Append(aCurve);
return Standard_True;
}
}
// if one arc was not built or for other cases biarc will be built
// method for building biarc was taken from article Ahmad H. Nasri et al.
// "A Recursive Subdivision Algorithm for Piecewise Circular Spline",
// Computer Graphics Forum, 2001.
// definition of point of intersection two tangent directions in the points
// corresponding FirstParameter and LastParameter.
aDir[1].Reverse();
// Direct calculation of intersection point, replaces a class call below
const Standard_Real aProd [3] = {
aPnt[0] ^ aDir[0].XY(),
aPnt[1] ^ aDir[1].XY(),
aDir[1] ^ aDir[0].XY()
};
gp_XY aIntPoint((aProd[0] * aDir[1].X() - aProd[1] * aDir[0].X()) / aProd[2],
(aProd[0] * aDir[1].Y() - aProd[1] * aDir[0].Y()) / aProd[2]);
const gp_XY aDiff[2] = {
aIntPoint - aPnt[0],
aIntPoint - aPnt[1]
};
if (aDiff[0] * aDir[0].XY() < 0. || aDiff[1] * aDir[1].XY() < 0.)
{
return Standard_False;
}
//calculation middle point for building biarc.
const Standard_Real ad1 = aDiff[0].Modulus();
const Standard_Real ad2 = aDiff[1].Modulus();
const Standard_Real ad12 = aDelta.Magnitude();
const Standard_Real aB1 = ad1 / (ad1 + ad2);
if (fabs(aB1 - 0.5) < 0.0001)
return Standard_False;
gp_XY aXY[2] = {
aPnt[0] + aDir[0].XY() * ad12 * ad1 / (ad12 + ad1 + ad2),
aPnt[1] + aDir[1].XY() * ad12 * ad2 / (ad12 + ad1 + ad2)
};
const gp_XY aXYmidArc (aXY[0] + aB1*(aXY[1] - aXY[0]));
Geom2dConvert_PPoint aParamMidArc =
getParameter (aXYmidArc, theFirstParam.Parameter(),
theLastParam.Parameter(), myCurve);
//building first arc from biarc.
Handle(Geom2d_TrimmedCurve) aCurve1, aCurve2;
if (!makeArc (theFirstParam, aParamMidArc, Standard_True, aCurve1))
return Standard_False;
if (!checkCurve (aCurve1, theFirstParam.Parameter(),
aParamMidArc.Parameter()))
return Standard_False;
//building second arc from biarc.
if (makeArc (theLastParam, aParamMidArc, Standard_False, aCurve2)) {
if (checkCurve (aCurve2, aParamMidArc.Parameter(),
theLastParam.Parameter())) {
mySeqCurves.Append(aCurve1);
mySeqCurves.Append(aCurve2);
return Standard_True;
}
}
return Standard_False;
}
//=======================================================================
//function : calculateLines
//purpose : method for calculation of the linear interpolation.
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::calculateLines
(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam)
{
Geom2dConvert_PPoint* aPrevParam = &theFirstParam;
for (int i = 1; i <= mySeqParams.Length(); i++)
{
Geom2dConvert_PPoint& aCurParam = mySeqParams.ChangeValue(i);
if (aCurParam.Parameter() < (*aPrevParam).Parameter()) {
continue;
}
if (aCurParam.Parameter() > theLastParam.Parameter()) {
break;
}
// build line segment
if (aCurParam != *aPrevParam)
{
const Standard_Real aDistance =
(aCurParam.Point() - (*aPrevParam).Point()).Modulus();
if (aDistance > myTolerance)
{
const Handle(Geom2d_Curve) aCurve =
makeLine(*aPrevParam, aCurParam, Standard_False);
if (aCurve.IsNull()) {
return Standard_False;
}
mySeqCurves.Append(aCurve);
aPrevParam = &mySeqParams(i);
}
}
}
return Standard_True;
}
//=======================================================================
//function : checkCurve
//purpose : method for checking max deflection Geom curve from Adaptor Curve
//=======================================================================
Standard_Boolean Geom2dConvert_ApproxArcsSegments::checkCurve
(const Handle(Geom2d_Curve)& aCurve,
const Standard_Real theFirstParam,
const Standard_Real theLastParam) const
{
if (aCurve.IsNull())
return Standard_False; // check fails on empty input
Standard_Boolean isUniformDone = !mySeqParams.IsEmpty();
//calcualtion sequence of the parameters or step by parameter.
Standard_Integer aNbPnts = (isUniformDone ? mySeqParams.Length() :MAXPOINTS);
Standard_Real aParamStep = (theLastParam - theFirstParam)/MAXPOINTS;
Handle(Geom2d_Curve) aCurve1 = aCurve;
Handle(Geom2d_TrimmedCurve) aTrCurve =
Handle(Geom2d_TrimmedCurve)::DownCast(aCurve);
if (!aTrCurve.IsNull())
aCurve1 = aTrCurve->BasisCurve();
gp_Lin2d aLin2d;
gp_Circ2d aCirc2d;
Handle(Geom2d_Line) aGeomLine = Handle(Geom2d_Line)::DownCast(aCurve1);
Standard_Boolean isLine = (!aGeomLine.IsNull());
Standard_Boolean isCircle = (!isLine);
if (isLine)
aLin2d = aGeomLine->Lin2d();
else {
Handle(Geom2d_Circle) aGeomCircle =
Handle(Geom2d_Circle)::DownCast(aCurve1);
isCircle = (!aGeomCircle.IsNull());
if (isCircle)
aCirc2d = aGeomCircle->Circ2d();
else
return Standard_False;
}
//calculation of the max deflection points from CurveAdaptor from Geom curve.
Standard_Boolean isLess = Standard_True;
Standard_Integer i = 1;
for (; i <= aNbPnts && isLess; i++)
{
Standard_Real aParam = (isUniformDone ? mySeqParams.Value(i).Parameter() :
(theFirstParam + i*aParamStep));
if (aParam < (theFirstParam - Precision::PConfusion()) ||
aParam > (theLastParam + Precision::PConfusion())) continue;
//getting point from adaptor curve by specified parameter.
gp_Pnt2d aPointAdaptor(0., 0.);
gp_Pnt2d aProjPoint(0., 0.);
myCurve.D0(aParam, aPointAdaptor);
Standard_Real aParameterCurve = 0.0;
//getting point from geom curve by specified parameter.
if (isLine)
{
aParameterCurve = ElCLib::Parameter(aLin2d, aPointAdaptor);
aProjPoint = ElCLib::Value(aParameterCurve, aLin2d);
}
else if (isCircle)
{
aParameterCurve = ElCLib::Parameter(aCirc2d, aPointAdaptor);
aProjPoint = ElCLib::Value(aParameterCurve, aCirc2d);
}
else isLess = Standard_False;
isLess = (aProjPoint.Distance(aPointAdaptor) <
myTolerance + Precision::PConfusion());
}
return isLess;
}
//=======================================================================
//function : checkContinuity
//purpose : check continuty first derivative between two curves.
//=======================================================================
Standard_Boolean checkContinuity (const Handle(Geom2d_Curve)& theCurve1,
const Handle(Geom2d_Curve)& theCurve2,
const Standard_Real theAngleTol)
{
gp_Vec2d v11,v21;
gp_Pnt2d p1, p2;
theCurve1->D1(theCurve1->LastParameter(), p1, v11);
theCurve2->D1(theCurve2->FirstParameter(), p2, v21);
//check continuity with the specified tolerance.
return (v11.IsParallel(v21, theAngleTol));
}
//=======================================================================
//function : getParameter
//purpose : getting the nearest point on AdaptorCurve to the specified point.
//=======================================================================
Geom2dConvert_PPoint getParameter (const gp_XY& theXY1,
const Standard_Real theFirstParam,
const Standard_Real theLastParam,
const Adaptor2d_Curve2d& theCurve)
{
Geom2dConvert_PPoint aResult;
Standard_Real prevParam = theFirstParam;
Standard_Real af1 = theFirstParam;
Standard_Real af2 = theLastParam;
// for finding nearest point use method half division.
Standard_Real aMinDist = RealLast();
Standard_Integer i = 1;
for (; i <= MAXPOINTS; i++)
{
aResult = Geom2dConvert_PPoint(af1, theCurve);
Standard_Real adist1 = (theXY1 - aResult.Point()).Modulus();
if (adist1 < Precision::Confusion())
{
return aResult;
}
aResult = Geom2dConvert_PPoint(af2, theCurve);
Standard_Real adist2 = (theXY1 - aResult.Point()).Modulus();
if (adist2 < Precision::Confusion())
{
return aResult;
}
if (aMinDist <= adist2 -Precision::Confusion() &&
aMinDist <= adist1 -Precision::Confusion())
{
break;
}
if (adist1 < adist2 -Precision::Confusion())
{
prevParam = af1;
aMinDist = adist1;
af2 = (af1 + af2) * 0.5;
}
else
{
prevParam = af2;
aMinDist = adist2;
af1 = (af1 + af2) * 0.5;
}
}
aResult = Geom2dConvert_PPoint(prevParam, theCurve);
return aResult;
}
//=======================================================================
//function : isInflectionPoint
//purpose : method calculating that point specified by parameter
// is inflection point
//=======================================================================
Standard_Boolean isInflectionPoint (const Standard_Real theParam,
const Adaptor2d_Curve2d& theCurve)
{
gp_Pnt2d aP1;
gp_Vec2d aD1, aD2;
theCurve.D2(theParam, aP1, aD1, aD2);
const Standard_Real aSqMod = aD1.XY().SquareModulus();
const Standard_Real aCurvature =
fabs (aD1.XY() ^ aD2.XY()) / (aSqMod * sqrt(aSqMod));
return (aCurvature < MyCurvatureTolerance);
}
//=======================================================================
//function : isInflectionPoint
//purpose : method calculating that point specified by parameter
// is inflection point
//=======================================================================
Standard_Boolean isInflectionPoint (const Standard_Real theParam,
const Geom2dConvert_PPoint& theFirstInfl,
const Adaptor2d_Curve2d& theCurve,
const Standard_Real theAngleTol)
{
gp_Pnt2d aP1;
gp_Vec2d aD1, aD2;
theCurve.D2(theParam, aP1, aD1, aD2);
const Standard_Real aSqMod = aD1.XY().SquareModulus();
const Standard_Real aCurvature =
fabs (aD1.XY() ^ aD2.XY()) / (aSqMod * sqrt(aSqMod));
Standard_Real aContAngle =
fabs(gp_Vec2d(aP1.XY() - theFirstInfl.Point()).Angle(aD1));
aContAngle = ::Min(aContAngle, fabs(M_PI - aContAngle));
return (aCurvature < MyCurvatureTolerance && aContAngle < theAngleTol);
}

View File

@ -0,0 +1,113 @@
// Created: 2009-01-20
//
// Copyright (c) 2009-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#ifndef _Geom2dConvert_ApproxArcsSegments_HeaderFile
#define _Geom2dConvert_ApproxArcsSegments_HeaderFile
#include <TColGeom2d_SequenceOfCurve.hxx>
#include <Geom2dConvert_PPoint.hxx>
#include <Geom2dConvert_SequenceOfPPoint.hxx>
#include <Geom2d_TrimmedCurve.hxx>
//! Approximation of a free-form curve by a sequence of arcs+segments.
class Geom2dConvert_ApproxArcsSegments
{
public:
// ---------- PUBLIC METHODS ----------
enum Status {
StatusOK = 0,
StatusNotDone,
StatusError
};
//! Constructor.
Standard_EXPORT Geom2dConvert_ApproxArcsSegments (const Adaptor2d_Curve2d& theCurve,
const Standard_Real theTolerance,
const Standard_Real theAngleTol);
//! Get the result curve after approximation.
const TColGeom2d_SequenceOfCurve& GetResult() const
{ return mySeqCurves; }
private:
//! Create arc of circle by three points (knowing that myCurve is circle).
Handle(Geom2d_Curve)
makeCircle (const Geom2dConvert_PPoint& theFirst,
const Geom2dConvert_PPoint& theLast) const;
//! Create an arc of circle using 2 points and a derivative in the first point.
Standard_Boolean makeArc (const Geom2dConvert_PPoint& theParam1,
Geom2dConvert_PPoint& theParam2,
const Standard_Boolean isFirst,
Handle(Geom2d_TrimmedCurve)& theCurve) const;
//! Make a line from myCurve in the limits by parameter from theFirst to theLast
Handle(Geom2d_TrimmedCurve)
makeLine (Geom2dConvert_PPoint& theFirst,
Geom2dConvert_PPoint& theLast,
const Standard_Boolean isCheck) const;
//! Create a sequence of elementary curves from a free-form adaptor curve.
Standard_Boolean makeFreeform ();
//! Obtain the linear intervals on the curve using as criteria
//! curvature tolerance (indicating either linear part or inflection)
void getLinearParts (Geom2dConvert_SequenceOfPPoint& theSeqParam);
//! Dichotomic search of the boundary of inflection interval, between
//! two parameters on the Curve
Geom2dConvert_PPoint findInflection(const Geom2dConvert_PPoint& theParamIsIn,
const Geom2dConvert_PPoint& theParamNoIn) const;
//! Make approximation non-linear part of the other curve.
Standard_Boolean makeApproximation
(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam);
//! Method for calculation of a biarc.
Standard_Boolean calculateBiArcs(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam);
//! Method for calculation of a linear interpolation.
Standard_Boolean calculateLines(Geom2dConvert_PPoint& theFirstParam,
Geom2dConvert_PPoint& theLastParam);
//! Checking max deflection Geom curve from Adaptor Curve
Standard_Boolean checkCurve (const Handle(Geom2d_Curve)& aCurve,
const Standard_Real theFirstParam,
const Standard_Real theLastParam) const;
private:
// ---------- PRIVATE FIELDS ----------
const Adaptor2d_Curve2d& myCurve;
Geom2dConvert_PPoint myExt[2];
Handle(NCollection_BaseAllocator) myAlloc;
Standard_Real myTolerance;
Standard_Real myAngleTolerance;
Geom2dConvert_SequenceOfPPoint mySeqParams;
TColGeom2d_SequenceOfCurve mySeqCurves;
Status myStatus;
//! Protection against compiler warning
void operator= (const Geom2dConvert_ApproxArcsSegments&);
};
#endif

View File

@ -0,0 +1,54 @@
// Created: 2009-02-02
//
// Copyright (c) 2009-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#include <Geom2dConvert_PPoint.hxx>
#include <Adaptor2d_Curve2d.hxx>
#include <Precision.hxx>
//=======================================================================
//function : Geom2dConvert_PPoint
//purpose : Constructor
//=======================================================================
Geom2dConvert_PPoint::Geom2dConvert_PPoint (const Standard_Real theParameter,
const Adaptor2d_Curve2d& theAdaptor)
: myParameter (theParameter)
{
theAdaptor.D1(theParameter, myPoint, myD1);
}
//=======================================================================
//function : Geom2dConvert_PPoint::operator ==
//purpose : Compare two values of this type.
//=======================================================================
Standard_Boolean Geom2dConvert_PPoint::operator ==
(const Geom2dConvert_PPoint& theOther) const
{
return (fabs(myParameter - theOther.Parameter()) <= Precision::PConfusion());
}
//=======================================================================
//function : Geom2dConvert_PPoint::operator !=
//purpose : Compare two values of this type.
//=======================================================================
Standard_Boolean Geom2dConvert_PPoint::operator !=
(const Geom2dConvert_PPoint& theOther) const
{
return (fabs(myParameter - theOther.Parameter()) > Precision::PConfusion());
}

View File

@ -0,0 +1,76 @@
// Created: 2009-01-21
//
// Copyright (c) 2009-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#ifndef _Geom2dConvert_PPoint_HeaderFile
#define _Geom2dConvert_PPoint_HeaderFile
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
class Adaptor2d_Curve2d;
//! Class representing a point on curve, with 2D coordinate and the tangent
class Geom2dConvert_PPoint
{
public:
//! Empty constructor.
Standard_EXPORT inline Geom2dConvert_PPoint ()
: myParameter (::RealLast()),
myPoint (0., 0.),
myD1 (0., 0.) {}
//! Constructor.
Standard_EXPORT inline Geom2dConvert_PPoint (const Standard_Real theParameter,
const gp_XY& thePoint,
const gp_XY& theD1)
: myParameter (theParameter),
myPoint (thePoint),
myD1 (theD1) {}
//! Constructor.
Standard_EXPORT Geom2dConvert_PPoint (const Standard_Real theParameter,
const Adaptor2d_Curve2d& theAdaptor);
//! Compute the distance betwwen two 2d points.
inline Standard_Real Dist (const Geom2dConvert_PPoint& theOth) const
{ return myPoint.Distance(theOth.myPoint); }
//! Query the parmeter value.
inline Standard_Real Parameter () const { return myParameter; }
//! Query the point location.
inline const gp_XY& Point () const { return myPoint.XY(); }
//! Query the first derivatives.
inline const gp_XY& D1 () const { return myD1.XY(); }
//! Change the value of the derivative at the point.
inline void SetD1 (const gp_XY& theD1)
{ myD1.SetXY (theD1); }
//! Compare two values of this type.
Standard_EXPORT Standard_Boolean operator == (const Geom2dConvert_PPoint&) const;
//! Compare two values of this type.
Standard_EXPORT Standard_Boolean operator != (const Geom2dConvert_PPoint&) const;
private:
Standard_Real myParameter; //! Parameter value
gp_Pnt2d myPoint; //! Point location
gp_Vec2d myD1; //! derivatives by parameter (components of the tangent).
};
#endif

View File

@ -0,0 +1,25 @@
// Created: 2009-01-09
//
// Copyright (c) 2009-2013 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS,
// furnished in accordance with the terms and conditions of the contract
// and with the inclusion of this copyright notice.
// This file or any part thereof may not be provided or otherwise
// made available to any third party.
//
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#ifndef _Geom2dConvert_SequenceOfPPoint_HeaderFile
#define _Geom2dConvert_SequenceOfPPoint_HeaderFile
#include <NCollection_Sequence.hxx>
class Geom2dConvert_PPoint;
typedef NCollection_Sequence<Geom2dConvert_PPoint> Geom2dConvert_SequenceOfPPoint;
#endif

View File

@ -0,0 +1,23 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
restore [locate_data_file bug32214.brep] a
wire ww a
arclinconvert result ww
build3d result
checkshape result
checknbshapes result -t -vertex 50 -edge 49 -wire 1
set tolres [checkmaxtol result]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
checkprops result -l 1.88301

View File

@ -0,0 +1,24 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
restore [locate_data_file bug31992.brep] a
wire a a
mkplane a a
arclinconvert result a
build3d result
checkshape result
checknbshapes result -t -vertex 187 -edge 187 -wire 1 -face 1
set tolres [checkmaxtol result]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
checkprops result -s 3.13603

View File

@ -0,0 +1,30 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
beziercurve c1 9 3 3 0 10 0 10 0 100 -3 3 0 10 -10 0 0 100 -3 -3 0 10 0 -10 0 100 3 -3 0 10 10 0 0 100 3 3 0 10
beziercurve c2 5 3 0 0 0 3 0 -3 0 0 0 -3 0 3 0 0
mkedge e1 c1
mkedge e2 c2
wire w1 e1
wire w2 e2
orientation w2 R
mkplane a w1
add w2 a
arclinconvert result a
build3d result
checkshape result
checknbshapes result -t -vertex 170 -edge 170 -wire 2 -face 1
set tolres [checkmaxtol result]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
checkprops result -s 106.6

View File

@ -0,0 +1,52 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
restore [locate_data_file bug32214.brep] a
wire ww a
donly ww
mkoffset result ww 14 0.1 -approx
front
fit
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
for {set i 1} {$i<=14} {incr i} {
checkshape result_${i}
set tolres [checkmaxtol result_${i}]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
}
checknbshapes result_1 -t -vertex 114 -edge 114 -wire 1
checkprops result_1 -l 4.39365
checknbshapes result_2 -t -vertex 110 -edge 110 -wire 1
checkprops result_2 -l 5.02084
checknbshapes result_3 -t -vertex 104 -edge 104 -wire 1
checkprops result_3 -l 5.64778
checknbshapes result_4 -t -vertex 101 -edge 101 -wire 1
checkprops result_4 -l 6.27443
checknbshapes result_5 -t -vertex 95 -edge 95 -wire 1
checkprops result_5 -l 6.89816
checknbshapes result_6 -t -vertex 92 -edge 92 -wire 1
checkprops result_6 -l 7.51255
checknbshapes result_7 -t -vertex 88 -edge 88 -wire 1
checkprops result_7 -l 8.12807
checknbshapes result_8 -t -vertex 81 -edge 81 -wire 1
checkprops result_8 -l 8.74586
checknbshapes result_9 -t -vertex 72 -edge 72 -wire 1
checkprops result_9 -l 9.36292
checknbshapes result_10 -t -vertex 65 -edge 65 -wire 1
checkprops result_10 -l 9.97455
checknbshapes result_11 -t -vertex 60 -edge 60 -wire 1
checkprops result_11 -l 10.5864
checknbshapes result_12 -t -vertex 59 -edge 59 -wire 1
checkprops result_12 -l 11.2017
checknbshapes result_13 -t -vertex 57 -edge 57 -wire 1
checkprops result_13 -l 11.8196
checknbshapes result_14 -t -vertex 55 -edge 55 -wire 1
checkprops result_14 -l 12.4395

View File

@ -0,0 +1,52 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
restore [locate_data_file bug32214.brep] a
wire ww a
donly ww
openoffset result ww 14 0.1 -approx
front
fit
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
for {set i 1} {$i<=14} {incr i} {
checkshape result_${i}
set tolres [checkmaxtol result_${i}]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
}
checknbshapes result_1 -t -vertex 61 -edge 60 -wire 1
checkprops result_1 -l 2.04858
checknbshapes result_2 -t -vertex 61 -edge 60 -wire 1
checkprops result_2 -l 2.21414
checknbshapes result_3 -t -vertex 61 -edge 60 -wire 1
checkprops result_3 -l 2.37971
checknbshapes result_4 -t -vertex 61 -edge 60 -wire 1
checkprops result_4 -l 2.54528
checknbshapes result_5 -t -vertex 61 -edge 60 -wire 1
checkprops result_5 -l 2.71084
checknbshapes result_6 -t -vertex 61 -edge 60 -wire 1
checkprops result_6 -l 2.87641
checknbshapes result_7 -t -vertex 61 -edge 60 -wire 1
checkprops result_7 -l 3.04198
checknbshapes result_8 -t -vertex 56 -edge 55 -wire 1
checkprops result_8 -l 3.20723
checknbshapes result_9 -t -vertex 50 -edge 49 -wire 1
checkprops result_9 -l 3.38587
checknbshapes result_10 -t -vertex 48 -edge 47 -wire 1
checkprops result_10 -l 3.58204
checknbshapes result_11 -t -vertex 45 -edge 44 -wire 1
checkprops result_11 -l 3.73715
checknbshapes result_12 -t -vertex 45 -edge 44 -wire 1
checkprops result_12 -l 3.97323
checknbshapes result_13 -t -vertex 43 -edge 42 -wire 1
checkprops result_13 -l 4.14242
checknbshapes result_14 -t -vertex 43 -edge 42 -wire 1
checkprops result_14 -l 4.37544

View File

@ -0,0 +1,52 @@
puts "========================================="
puts "OCC32214: 2d Offset produces wrong result"
puts "========================================="
puts ""
restore [locate_data_file bug32214.brep] a
wire ww a
donly ww
openoffset result ww 14 -0.1 -approx
front
fit
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
for {set i 1} {$i<=14} {incr i} {
checkshape result_${i}
set tolres [checkmaxtol result_${i}]
if { ${tolres} > 1.001e-7} {
puts "Error: bad tolerance of result"
}
}
checknbshapes result_1 -t -vertex 50 -edge 49 -wire 1
checkprops result_1 -l 1.66475
checknbshapes result_2 -t -vertex 46 -edge 45 -wire 1
checkprops result_2 -l 1.57655
checknbshapes result_3 -t -vertex 40 -edge 39 -wire 1
checkprops result_3 -l 1.48755
checknbshapes result_4 -t -vertex 37 -edge 36 -wire 1
checkprops result_4 -l 1.39682
checknbshapes result_5 -t -vertex 31 -edge 30 -wire 1
checkprops result_5 -l 1.30715
checknbshapes result_6 -t -vertex 28 -edge 27 -wire 1
checkprops result_6 -l 1.27033
checknbshapes result_7 -t -vertex 24 -edge 23 -wire 1
checkprops result_7 -l 1.1996
checknbshapes result_8 -t -vertex 22 -edge 21 -wire 1
checkprops result_8 -l 1.1737
checknbshapes result_9 -t -vertex 18 -edge 17 -wire 1
checkprops result_9 -l 1.17713
checknbshapes result_10 -t -vertex 17 -edge 16 -wire 1
checkprops result_10 -l 1.22711
checknbshapes result_11 -t -vertex 14 -edge 13 -wire 1
checkprops result_11 -l 1.2663
checknbshapes result_12 -t -vertex 14 -edge 13 -wire 1
checkprops result_12 -l 1.33108
checknbshapes result_13 -t -vertex 14 -edge 13 -wire 1
checkprops result_13 -l 1.39586
checknbshapes result_14 -t -vertex 14 -edge 13 -wire 1
checkprops result_14 -l 1.46064