mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-14 13:30:48 +03:00
0032940: Canonical Recognition: Some surfaces are not recognized as cylindrical surfaces
New method for recognizing cylindrical surfaces based on analysis Gaussian field of initial surface is added in class GeomConvert_SurfToAnaSurf
This commit is contained in:
@@ -25,3 +25,9 @@ GeomConvert_CurveToAnaCurve.hxx
|
||||
GeomConvert_SurfToAnaSurf.cxx
|
||||
GeomConvert_SurfToAnaSurf.hxx
|
||||
GeomConvert_ConvType.hxx
|
||||
GeomConvert_FuncSphereLSDist.cxx
|
||||
GeomConvert_FuncSphereLSDist.hxx
|
||||
GeomConvert_FuncCylinderLSDist.cxx
|
||||
GeomConvert_FuncCylinderLSDist.hxx
|
||||
GeomConvert_FuncConeLSDist.cxx
|
||||
GeomConvert_FuncConeLSDist.hxx
|
||||
|
68
src/GeomConvert/GeomConvert_FuncConeLSDist.cxx
Normal file
68
src/GeomConvert/GeomConvert_FuncConeLSDist.cxx
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright (c) 1995-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2022 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
|
||||
#include <GeomConvert_FuncConeLSDist.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <gp_Ax3.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <ElSLib.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : GeomConvert_FuncConeLSDist
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GeomConvert_FuncConeLSDist::GeomConvert_FuncConeLSDist(
|
||||
const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const gp_Dir& theDir):
|
||||
myPoints(thePoints), myDir(theDir)
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer GeomConvert_FuncConeLSDist::NbVariables () const
|
||||
{
|
||||
return 5;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncConeLSDist::Value(const math_Vector& X, Standard_Real& F)
|
||||
{
|
||||
gp_Pnt aLoc(X(1), X(2), X(3));
|
||||
Standard_Real aSemiAngle = X(4), anR = X(5);
|
||||
gp_Ax3 aPos(aLoc, myDir);
|
||||
|
||||
F = 0.;
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
Standard_Real u, v;
|
||||
gp_Pnt aPi(myPoints->Value(i));
|
||||
ElSLib::ConeParameters(aPos, anR, aSemiAngle, aPi, u, v);
|
||||
gp_Pnt aPp;
|
||||
ElSLib::ConeD0(u, v, aPos, anR, aSemiAngle, aPp);
|
||||
F += aPi.SquareDistance(aPp);
|
||||
}
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
66
src/GeomConvert/GeomConvert_FuncConeLSDist.hxx
Normal file
66
src/GeomConvert/GeomConvert_FuncConeLSDist.hxx
Normal file
@@ -0,0 +1,66 @@
|
||||
// Copyright (c) 1991-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2022 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _GeomConvert_FuncConeLSDist_HeaderFile
|
||||
#define _GeomConvert_FuncConeLSDist_HeaderFile
|
||||
|
||||
#include <Standard.hxx>
|
||||
#include <Standard_DefineAlloc.hxx>
|
||||
|
||||
#include <math_MultipleVarFunction.hxx>
|
||||
#include <TColgp_HArray1OfXYZ.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <gp_Dir.hxx>
|
||||
|
||||
//! Function for search of Cone canonic parameters: coordinates of center local coordinate system,
|
||||
//! direction of axis, radius and semi-angle from set of points
|
||||
//! by least square method.
|
||||
//!
|
||||
//!
|
||||
class GeomConvert_FuncConeLSDist : public math_MultipleVarFunction
|
||||
{
|
||||
public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
//! Constructor.
|
||||
Standard_EXPORT GeomConvert_FuncConeLSDist() {};
|
||||
|
||||
Standard_EXPORT GeomConvert_FuncConeLSDist(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const gp_Dir& theDir);
|
||||
|
||||
void SetPoints(const Handle(TColgp_HArray1OfXYZ)& thePoints)
|
||||
{
|
||||
myPoints = thePoints;
|
||||
}
|
||||
|
||||
void SetDir(const gp_Dir& theDir)
|
||||
{
|
||||
myDir = theDir;
|
||||
}
|
||||
|
||||
//! Number of variables.
|
||||
Standard_EXPORT Standard_Integer NbVariables() const Standard_OVERRIDE;
|
||||
|
||||
//! Value.
|
||||
Standard_EXPORT Standard_Boolean Value(const math_Vector& X,Standard_Real& F) Standard_OVERRIDE;
|
||||
|
||||
|
||||
private:
|
||||
|
||||
Handle(TColgp_HArray1OfXYZ) myPoints;
|
||||
gp_Dir myDir;
|
||||
|
||||
};
|
||||
#endif // _GeomConvert_FuncConeLSDist_HeaderFile
|
140
src/GeomConvert/GeomConvert_FuncCylinderLSDist.cxx
Normal file
140
src/GeomConvert/GeomConvert_FuncCylinderLSDist.cxx
Normal file
@@ -0,0 +1,140 @@
|
||||
// Copyright (c) 1995-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2022 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
|
||||
#include <GeomConvert_FuncCylinderLSDist.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : GeomConvert_FuncCylinderLSDist
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GeomConvert_FuncCylinderLSDist::GeomConvert_FuncCylinderLSDist(
|
||||
const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const gp_Dir& theDir):
|
||||
myPoints(thePoints), myDir(theDir)
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer GeomConvert_FuncCylinderLSDist::NbVariables () const
|
||||
{
|
||||
return 4;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncCylinderLSDist::Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR2 = X(4)*X(4);
|
||||
|
||||
F = 0.;
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
gp_Vec aV(myPoints->Value(i) - aLoc);
|
||||
Standard_Real aD2 = aV.CrossSquareMagnitude(myDir);
|
||||
Standard_Real d = aD2 - anR2;
|
||||
F += d * d;
|
||||
}
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Gradient
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncCylinderLSDist::Gradient(const math_Vector& X,math_Vector& G)
|
||||
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR = X(4), anR2 = anR * anR;
|
||||
Standard_Real x = myDir.X(), y = myDir.Y(), z = myDir.Z();
|
||||
G.Init(0.);
|
||||
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
gp_Vec aV(myPoints->Value(i) - aLoc);
|
||||
Standard_Real aD2 = aV.CrossSquareMagnitude(myDir);
|
||||
Standard_Real d = aD2 - anR2;
|
||||
Standard_Real Dx0 = 2.*(aV.Z()*x - aV.X()*z)*z
|
||||
-2.*(aV.X()*y - aV.Y()*x)*y;
|
||||
Standard_Real Dy0 = -2.*(aV.Y()*z - aV.Z()*y)*z
|
||||
+2.*(aV.X()*y - aV.Y()*x)*x;
|
||||
Standard_Real Dz0 = 2.*(aV.Y()*z - aV.Z()*y)*y
|
||||
-2.*(aV.Z()*x - aV.X()*z)*x;
|
||||
|
||||
G(1) += d * Dx0;
|
||||
G(2) += d * Dy0;
|
||||
G(3) += d * Dz0;
|
||||
//
|
||||
G(4) += d;
|
||||
}
|
||||
|
||||
G *= 2;
|
||||
G(6) *= -2.*anR;
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Values
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncCylinderLSDist::Values(const math_Vector& X,Standard_Real& F,math_Vector& G)
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR = X(4), anR2 = anR * anR;
|
||||
Standard_Real x = myDir.X(), y = myDir.Y(), z = myDir.Z();
|
||||
|
||||
F = 0.;
|
||||
G.Init(0.);
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
gp_Vec aV(myPoints->Value(i) - aLoc);
|
||||
Standard_Real aD2 = aV.CrossSquareMagnitude(myDir);
|
||||
Standard_Real d = aD2 - anR2;
|
||||
Standard_Real Dx0 = 2.*(aV.Z()*x - aV.X()*z)*z
|
||||
- 2.*(aV.X()*y - aV.Y()*x)*y;
|
||||
Standard_Real Dy0 = -2.*(aV.Y()*z - aV.Z()*y)*z
|
||||
+ 2.*(aV.X()*y - aV.Y()*x)*x;
|
||||
Standard_Real Dz0 = 2.*(aV.Y()*z - aV.Z()*y)*y
|
||||
- 2.*(aV.Z()*x - aV.X()*z)*x;
|
||||
|
||||
G(1) += d * Dx0;
|
||||
G(2) += d * Dy0;
|
||||
G(3) += d * Dz0;
|
||||
//
|
||||
G(4) += d;
|
||||
//
|
||||
F += d * d;
|
||||
}
|
||||
|
||||
G *= 2;
|
||||
G(4) *= -2.*anR;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
100
src/GeomConvert/GeomConvert_FuncCylinderLSDist.hxx
Normal file
100
src/GeomConvert/GeomConvert_FuncCylinderLSDist.hxx
Normal file
@@ -0,0 +1,100 @@
|
||||
// Copyright (c) 1991-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2022 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _GeomConvert_FuncCylinderLSDist_HeaderFile
|
||||
#define _GeomConvert_FuncCylinderLSDist_HeaderFile
|
||||
|
||||
#include <Standard.hxx>
|
||||
#include <Standard_DefineAlloc.hxx>
|
||||
|
||||
#include <math_MultipleVarFunctionWithGradient.hxx>
|
||||
#include <TColgp_HArray1OfXYZ.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <gp_Dir.hxx>
|
||||
|
||||
//! Function for search of cylinder canonic parameters: coordinates of center local coordinate system,
|
||||
//! direction of axis and radius from set of points
|
||||
//! by least square method.
|
||||
//!
|
||||
//! The class inherits math_MultipleVarFunctionWithGradient and thus is intended
|
||||
//! for use in math_BFGS algorithm.
|
||||
//!
|
||||
//! Parametrisation:
|
||||
//! Cylinder is defined by its axis and radius. Axis is defined by 3 cartesian coordinats it location x0, y0, z0
|
||||
//! and direction, which is constant and set by user:
|
||||
//! dir.x, dir.y, dir.z
|
||||
//! The criteria is:
|
||||
//! F(x0, y0, z0, theta, phi, R) = Sum[|(P(i) - Loc)^dir|^2 - R^2]^2 => min
|
||||
//! P(i) is i-th sample point, Loc, dir - axis location and direction, R - radius
|
||||
//!
|
||||
//! The square vector product |(P(i) - Loc)^dir|^2 is:
|
||||
//!
|
||||
//! [(y - y0)*dir.z - (z - z0)*dir.y]^2 +
|
||||
//! [(z - z0)*dir.x - (x - x0)*dir.z]^2 +
|
||||
//! [(x - x0)*dir.y - (y - y0)*dir.x]^2
|
||||
//!
|
||||
//! First derivative of square vector product are:
|
||||
//! Dx0 = 2*[(z - z0)*dir.x - (x - x0)*dir.z]*dir.z
|
||||
//! -2*[(x - x0)*dir.y - (y - y0)*dir.x]*dir.y
|
||||
//! Dy0 = -2*[(y - y0)*dir.z - (z - z0)*dir.y]*dir.z
|
||||
//! +2*[(x - x0)*dir.y - (y - y0)*dir.x]*dir.x
|
||||
//! Dz0 = 2*[(y - y0)*dir.z - (z - z0)*dir.y]*dir.y
|
||||
//! -2*[(z - z0)*dir.x - (x - x0)*dir.z]*dir.x
|
||||
//!
|
||||
//! dF/dx0 : G1(...) = 2*Sum{[...]*Dx0}
|
||||
//! dF/dy0 : G2(...) = 2*Sum{[...]*Dy0}
|
||||
//! dF/dz0 : G3(...) = 2*Sum{[...]*Dz0}
|
||||
//! dF/dR : G4(...) = -4*R*Sum[...]
|
||||
//! [...] = [|(P(i) - Loc)^dir|^2 - R^2]
|
||||
class GeomConvert_FuncCylinderLSDist : public math_MultipleVarFunctionWithGradient
|
||||
{
|
||||
public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
//! Constructor.
|
||||
Standard_EXPORT GeomConvert_FuncCylinderLSDist() {};
|
||||
|
||||
Standard_EXPORT GeomConvert_FuncCylinderLSDist(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const gp_Dir& theDir);
|
||||
|
||||
void SetPoints(const Handle(TColgp_HArray1OfXYZ)& thePoints)
|
||||
{
|
||||
myPoints = thePoints;
|
||||
}
|
||||
|
||||
void SetDir(const gp_Dir& theDir)
|
||||
{
|
||||
myDir = theDir;
|
||||
}
|
||||
|
||||
//! Number of variables.
|
||||
Standard_EXPORT Standard_Integer NbVariables() const Standard_OVERRIDE;
|
||||
|
||||
//! Value.
|
||||
Standard_EXPORT Standard_Boolean Value(const math_Vector& X,Standard_Real& F) Standard_OVERRIDE;
|
||||
|
||||
//! Gradient.
|
||||
Standard_EXPORT Standard_Boolean Gradient(const math_Vector& X,math_Vector& G) Standard_OVERRIDE;
|
||||
|
||||
//! Value and gradient.
|
||||
Standard_EXPORT Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G) Standard_OVERRIDE;
|
||||
|
||||
private:
|
||||
|
||||
Handle(TColgp_HArray1OfXYZ) myPoints;
|
||||
gp_Dir myDir;
|
||||
|
||||
};
|
||||
#endif // _GeomConvert_FuncCylinderLSDist_HeaderFile
|
115
src/GeomConvert/GeomConvert_FuncSphereLSDist.cxx
Normal file
115
src/GeomConvert/GeomConvert_FuncSphereLSDist.cxx
Normal file
@@ -0,0 +1,115 @@
|
||||
// Created on: 2016-05-10
|
||||
// Created by: Alexander MALYSHEV
|
||||
// Copyright (c) 1995-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2016 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
|
||||
#include <GeomConvert_FuncSphereLSDist.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : GeomConvert_FuncSphereLSDist
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GeomConvert_FuncSphereLSDist::GeomConvert_FuncSphereLSDist(const Handle(TColgp_HArray1OfXYZ)& thePoints):
|
||||
myPoints(thePoints)
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer GeomConvert_FuncSphereLSDist::NbVariables () const
|
||||
{
|
||||
return 4;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncSphereLSDist::Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR2 = X(4)*X(4);
|
||||
|
||||
F = 0.;
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
Standard_Real d = (myPoints->Value(i) - aLoc).SquareModulus() - anR2;
|
||||
F += d * d;
|
||||
}
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Gradient
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncSphereLSDist::Gradient(const math_Vector& X,math_Vector& G)
|
||||
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR = X(4), anR2 = anR * anR;
|
||||
|
||||
G.Init(0.);
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
gp_XYZ dLoc = myPoints->Value(i) - aLoc;
|
||||
Standard_Real d = dLoc.SquareModulus() - anR2;
|
||||
G(1) += d * dLoc.X();
|
||||
G(2) += d * dLoc.Y();
|
||||
G(3) += d * dLoc.Z();
|
||||
G(4) += d;
|
||||
}
|
||||
G *= -4;
|
||||
G(4) *= anR;
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Values
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean GeomConvert_FuncSphereLSDist::Values(const math_Vector& X,Standard_Real& F,math_Vector& G)
|
||||
{
|
||||
gp_XYZ aLoc(X(1), X(2), X(3));
|
||||
Standard_Real anR = X(4), anR2 = anR * anR;
|
||||
|
||||
G.Init(0.);
|
||||
F = 0.;
|
||||
Standard_Integer i;
|
||||
for (i = myPoints->Lower(); i <= myPoints->Upper(); ++i)
|
||||
{
|
||||
gp_XYZ dLoc = myPoints->Value(i) - aLoc;
|
||||
Standard_Real d = dLoc.SquareModulus() - anR2;
|
||||
G(1) += d * dLoc.X();
|
||||
G(2) += d * dLoc.Y();
|
||||
G(3) += d * dLoc.Z();
|
||||
G(4) += d;
|
||||
F += d * d;
|
||||
}
|
||||
G *= -4;
|
||||
G(4) *= anR;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
77
src/GeomConvert/GeomConvert_FuncSphereLSDist.hxx
Normal file
77
src/GeomConvert/GeomConvert_FuncSphereLSDist.hxx
Normal file
@@ -0,0 +1,77 @@
|
||||
|
||||
// Copyright (c) 1991-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2022 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _GeomConvert_FuncSphereLSDist_HeaderFile
|
||||
#define _GeomConvert_FuncSphereLSDist_HeaderFile
|
||||
|
||||
#include <Standard.hxx>
|
||||
#include <Standard_DefineAlloc.hxx>
|
||||
|
||||
#include <math_MultipleVarFunctionWithGradient.hxx>
|
||||
#include <TColgp_HArray1OfXYZ.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
|
||||
//! Function for search of sphere canonic parameters: coordinates of center and radius from set of moints
|
||||
//! by least square method.
|
||||
//! //!
|
||||
//! The class inherits math_MultipleVarFunctionWithGradient and thus is intended
|
||||
//! for use in math_BFGS algorithm.
|
||||
//!
|
||||
//! The criteria is:
|
||||
//! F(x0, y0, z0, R) = Sum[(x(i) - x0)^2 + (y(i) - y0)^2 + (z(i) - z0)^2 - R^2]^2 => min,
|
||||
//! x(i), y(i), z(i) - coordinates of sample points, x0, y0, z0, R - coordinates of center and radius of sphere,
|
||||
//! which must be defined
|
||||
//!
|
||||
//! The first derivative are:
|
||||
//! dF/dx0 : G1(x0, y0, z0, R) = -4*Sum{[...]*(x(i) - x0)}
|
||||
//! dF/dy0 : G2(x0, y0, z0, R) = -4*Sum{[...]*(y(i) - y0)}
|
||||
//! dF/dz0 : G3(x0, y0, z0, R) = -4*Sum{[...]*(z(i) - z0)}
|
||||
//! dF/dR : G4(x0, y0, z0, R) = -4*R*Sum[...]
|
||||
//! [...] = [(x(i) - x0)^2 + (y(i) - y0)^2 + (z(i) - z0)^2 - R^2]
|
||||
//!
|
||||
class GeomConvert_FuncSphereLSDist : public math_MultipleVarFunctionWithGradient
|
||||
{
|
||||
public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
//! Constructor.
|
||||
Standard_EXPORT GeomConvert_FuncSphereLSDist() {};
|
||||
|
||||
Standard_EXPORT GeomConvert_FuncSphereLSDist(const Handle(TColgp_HArray1OfXYZ)& thePoints);
|
||||
|
||||
void SetPoints(const Handle(TColgp_HArray1OfXYZ)& thePoints)
|
||||
{
|
||||
myPoints = thePoints;
|
||||
}
|
||||
|
||||
//! Number of variables.
|
||||
Standard_EXPORT Standard_Integer NbVariables() const Standard_OVERRIDE;
|
||||
|
||||
//! Value.
|
||||
Standard_EXPORT Standard_Boolean Value(const math_Vector& X,Standard_Real& F) Standard_OVERRIDE;
|
||||
|
||||
//! Gradient.
|
||||
Standard_EXPORT Standard_Boolean Gradient(const math_Vector& X,math_Vector& G) Standard_OVERRIDE;
|
||||
|
||||
//! Value and gradient.
|
||||
Standard_EXPORT Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G) Standard_OVERRIDE;
|
||||
|
||||
private:
|
||||
|
||||
Handle(TColgp_HArray1OfXYZ) myPoints;
|
||||
|
||||
};
|
||||
#endif // _GeomConvert_FuncSphereLSDist_HeaderFile
|
@@ -47,10 +47,20 @@
|
||||
#include <TColgp_Array1OfPnt.hxx>
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <Extrema_ExtElC.hxx>
|
||||
#include <GeomLProp_SLProps.hxx>
|
||||
#include <TColgp_HArray1OfXYZ.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <math_PSO.hxx>
|
||||
#include <math_Powell.hxx>
|
||||
#include <GeomConvert_FuncCylinderLSDist.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : CheckVTrimForRevSurf
|
||||
//purpose :
|
||||
//static method for checking surface of revolution
|
||||
//To avoid two-parts cone-like surface
|
||||
static void CheckVTrimForRevSurf(const Handle(Geom_SurfaceOfRevolution)& aRevSurf,
|
||||
//=======================================================================
|
||||
void GeomConvert_SurfToAnaSurf::CheckVTrimForRevSurf(const Handle(Geom_SurfaceOfRevolution)& aRevSurf,
|
||||
Standard_Real& V1, Standard_Real& V2)
|
||||
{
|
||||
const Handle(Geom_Curve)& aBC = aRevSurf->BasisCurve();
|
||||
@@ -96,10 +106,369 @@ static void CheckVTrimForRevSurf(const Handle(Geom_SurfaceOfRevolution)& aRevSur
|
||||
}
|
||||
|
||||
}
|
||||
//=======================================================================
|
||||
//function : TryCylinderCone
|
||||
//purpose :
|
||||
//static method to try create cylindrical or conical surface
|
||||
//=======================================================================
|
||||
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinerCone(const Handle(Geom_Surface)& theSurf, const Standard_Boolean theVCase,
|
||||
const Handle(Geom_Curve)& theUmidiso, const Handle(Geom_Curve)& theVmidiso,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Standard_Real theToler)
|
||||
{
|
||||
Handle(Geom_Surface) aNewSurf;
|
||||
Standard_Real param1, param2, cf1, cf2, cl1, cl2, aGap1, aGap2;
|
||||
Handle(Geom_Curve) firstiso, lastiso;
|
||||
Handle(Geom_Circle) firstisocirc, lastisocirc, midisocirc;
|
||||
gp_Dir isoline;
|
||||
if (theVCase) {
|
||||
param1 = theU1; param2 = theU2;
|
||||
firstiso = theSurf->VIso(theV1);
|
||||
lastiso = theSurf->VIso(theV2);
|
||||
midisocirc = Handle(Geom_Circle)::DownCast(theVmidiso);
|
||||
isoline = Handle(Geom_Line)::DownCast(theUmidiso)->Lin().Direction();
|
||||
}
|
||||
else {
|
||||
param1 = theV1; param2 = theV2;
|
||||
firstiso = theSurf->UIso(theU1);
|
||||
lastiso = theSurf->UIso(theU2);
|
||||
midisocirc = Handle(Geom_Circle)::DownCast(theUmidiso);
|
||||
isoline = Handle(Geom_Line)::DownCast(theVmidiso)->Lin().Direction();
|
||||
}
|
||||
firstisocirc = Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(firstiso, theToler,
|
||||
param1, param2, cf1, cl1, aGap1));
|
||||
lastisocirc = Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(lastiso, theToler,
|
||||
param1, param2, cf2, cl2, aGap2));
|
||||
if (!firstisocirc.IsNull() || !lastisocirc.IsNull()) {
|
||||
Standard_Real R1, R2, R3;
|
||||
gp_Pnt P1, P2, P3;
|
||||
if (!firstisocirc.IsNull()) {
|
||||
R1 = firstisocirc->Circ().Radius();
|
||||
P1 = firstisocirc->Circ().Location();
|
||||
}
|
||||
else {
|
||||
R1 = 0;
|
||||
P1 = firstiso->Value((firstiso->LastParameter() - firstiso->FirstParameter()) / 2);
|
||||
}
|
||||
R2 = midisocirc->Circ().Radius();
|
||||
P2 = midisocirc->Circ().Location();
|
||||
if (!lastisocirc.IsNull()) {
|
||||
R3 = lastisocirc->Circ().Radius();
|
||||
P3 = lastisocirc->Circ().Location();
|
||||
}
|
||||
else {
|
||||
R3 = 0;
|
||||
P3 = lastiso->Value((lastiso->LastParameter() - lastiso->FirstParameter()) / 2);
|
||||
}
|
||||
//cylinder
|
||||
if (((Abs(R2 - R1)) < theToler) && ((Abs(R3 - R1)) < theToler) &&
|
||||
((Abs(R3 - R2)) < theToler)) {
|
||||
gp_Ax3 Axes(P1, gp_Dir(gp_Vec(P1, P3)));
|
||||
aNewSurf = new Geom_CylindricalSurface(Axes, R1);
|
||||
}
|
||||
//cone
|
||||
else if ((((Abs(R1)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R3)))) ||
|
||||
(((Abs(R3)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R1))))) {
|
||||
Standard_Real radius;
|
||||
gp_Ax3 Axes;
|
||||
Standard_Real semiangle =
|
||||
gp_Vec(isoline).Angle(gp_Vec(P3, P1));
|
||||
if (semiangle > M_PI / 2) semiangle = M_PI - semiangle;
|
||||
if (R1 > R3) {
|
||||
radius = R3;
|
||||
Axes = gp_Ax3(P3, gp_Dir(gp_Vec(P3, P1)));
|
||||
}
|
||||
else {
|
||||
radius = R1;
|
||||
Axes = gp_Ax3(P1, gp_Dir(gp_Vec(P1, P3)));
|
||||
}
|
||||
aNewSurf = new Geom_ConicalSurface(Axes, semiangle, radius);
|
||||
}
|
||||
}
|
||||
return aNewSurf;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetCylByLS
|
||||
//purpose :
|
||||
//static method to create cylinrical surface using least square method
|
||||
//=======================================================================
|
||||
static void GetLSGap(const Handle(TColgp_HArray1OfXYZ)& thePoints, const gp_Ax3& thePos,
|
||||
const Standard_Real theR, Standard_Real& theGap)
|
||||
{
|
||||
theGap = 0.;
|
||||
Standard_Integer i;
|
||||
gp_XYZ aLoc = thePos.Location().XYZ();
|
||||
gp_Dir aDir = thePos.Direction();
|
||||
for (i = thePoints->Lower(); i <= thePoints->Upper(); ++i)
|
||||
{
|
||||
gp_Vec aD(thePoints->Value(i) - aLoc);
|
||||
aD.Cross(aDir);
|
||||
theGap = Max(theGap, Abs((aD.Magnitude() - theR)));
|
||||
}
|
||||
|
||||
}
|
||||
Standard_Boolean GeomConvert_SurfToAnaSurf::GetCylByLS(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const Standard_Real theTol,
|
||||
gp_Ax3& thePos, Standard_Real& theR,
|
||||
Standard_Real& theGap)
|
||||
{
|
||||
|
||||
GetLSGap(thePoints, thePos, theR, theGap);
|
||||
if (theGap <= Precision::Confusion())
|
||||
{
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
Standard_Integer i;
|
||||
|
||||
Standard_Integer aNbVar = 4;
|
||||
|
||||
math_Vector aFBnd(1, aNbVar), aLBnd(1, aNbVar), aStartPoint(1, aNbVar);
|
||||
|
||||
Standard_Real aRelDev = 0.2; //Customer can set parameters of sample surface
|
||||
// with relative precision about aRelDev.
|
||||
// For example, if radius of sample surface is R,
|
||||
// it means, that "exact" vaue is in interav
|
||||
//[R - aRelDev*R, R + aRelDev*R]. This intrrval is set
|
||||
// for R as boundary values for dptimization algo.
|
||||
|
||||
aStartPoint(1) = thePos.Location().X();
|
||||
aStartPoint(2) = thePos.Location().Y();
|
||||
aStartPoint(3) = thePos.Location().Z();
|
||||
aStartPoint(4) = theR;
|
||||
Standard_Real aDR = aRelDev * theR;
|
||||
Standard_Real aDXYZ = aDR;
|
||||
for (i = 1; i <= 3; ++i)
|
||||
{
|
||||
aFBnd(i) = aStartPoint(i) - aDXYZ;
|
||||
aLBnd(i) = aStartPoint(i) + aDXYZ;
|
||||
}
|
||||
aFBnd(4) = aStartPoint(4) - aDR;
|
||||
aLBnd(4) = aStartPoint(4) + aDR;
|
||||
|
||||
//
|
||||
Standard_Real aTol = Precision::Confusion();
|
||||
math_MultipleVarFunction* aPFunc;
|
||||
GeomConvert_FuncCylinderLSDist aFuncCyl(thePoints, thePos.Direction());
|
||||
aPFunc = (math_MultipleVarFunction*)&aFuncCyl;
|
||||
//
|
||||
math_Vector aSteps(1, aNbVar);
|
||||
Standard_Integer aNbInt = 10;
|
||||
for (i = 1; i <= aNbVar; ++i)
|
||||
{
|
||||
aSteps(i) = (aLBnd(i) - aFBnd(i)) / aNbInt;
|
||||
}
|
||||
math_PSO aGlobSolver(aPFunc, aFBnd, aLBnd, aSteps);
|
||||
Standard_Real aLSDist;
|
||||
aGlobSolver.Perform(aSteps, aLSDist, aStartPoint);
|
||||
//
|
||||
gp_Pnt aLoc(aStartPoint(1), aStartPoint(2), aStartPoint(3));
|
||||
thePos.SetLocation(aLoc);
|
||||
theR = aStartPoint(4);
|
||||
|
||||
GetLSGap(thePoints, thePos, theR, theGap);
|
||||
if (theGap <= aTol)
|
||||
{
|
||||
return Standard_True;
|
||||
}
|
||||
//
|
||||
math_Matrix aDirMatrix(1, aNbVar, 1, aNbVar, 0.0);
|
||||
for (i = 1; i <= aNbVar; i++)
|
||||
aDirMatrix(i, i) = 1.0;
|
||||
|
||||
//Set search direction for location to be perpendicular to axis to avoid
|
||||
//seaching along axis
|
||||
const gp_Dir aDir = thePos.Direction();
|
||||
gp_Pln aPln(thePos.Location(), aDir);
|
||||
gp_Dir aUDir = aPln.Position().XDirection();
|
||||
gp_Dir aVDir = aPln.Position().YDirection();
|
||||
for (i = 1; i <= 3; ++i)
|
||||
{
|
||||
aDirMatrix(i, 1) = aUDir.Coord(i);
|
||||
aDirMatrix(i, 2) = aVDir.Coord(i);
|
||||
gp_Dir aUVDir(aUDir.XYZ() + aVDir.XYZ());
|
||||
aDirMatrix(i, 3) = aUVDir.Coord(i);
|
||||
}
|
||||
|
||||
math_Powell aSolver(*aPFunc, aTol);
|
||||
aSolver.Perform(*aPFunc, aStartPoint, aDirMatrix);
|
||||
|
||||
if (aSolver.IsDone())
|
||||
{
|
||||
gp_Ax3 aPos2 = thePos;
|
||||
aSolver.Location(aStartPoint);
|
||||
aLoc.SetCoord(aStartPoint(1), aStartPoint(2), aStartPoint(3));
|
||||
aPos2.SetLocation(aLoc);
|
||||
Standard_Real anR2 = aStartPoint(4), aGap2 = 0.;
|
||||
//
|
||||
GetLSGap(thePoints, aPos2, anR2, aGap2);
|
||||
//
|
||||
if (aGap2 < theGap)
|
||||
{
|
||||
theGap = aGap2;
|
||||
thePos = aPos2;
|
||||
theR = anR2;
|
||||
}
|
||||
}
|
||||
if (theGap <= theTol)
|
||||
{
|
||||
return Standard_True;
|
||||
}
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TryCylinderByGaussField
|
||||
//purpose :
|
||||
//static method to try create cylinrical surface based on its Gauss field
|
||||
//=======================================================================
|
||||
|
||||
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryCylinderByGaussField(const Handle(Geom_Surface)& theSurf,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Standard_Real theToler, const Standard_Integer theNbU, const Standard_Integer theNbV,
|
||||
const Standard_Boolean theLeastSquare)
|
||||
{
|
||||
Handle(Geom_Surface) aNewSurf;
|
||||
Standard_Real du = (theU2 - theU1) / theNbU, dv = (theV2 - theV1) / theNbV;
|
||||
Standard_Real aSigmaR = 0.;
|
||||
Standard_Real aTol = 100. * theToler;
|
||||
TColStd_Array1OfReal anRs(1, theNbU*theNbV);
|
||||
Handle(TColgp_HArray1OfXYZ) aPoints;
|
||||
if (theLeastSquare)
|
||||
{
|
||||
aPoints = new TColgp_HArray1OfXYZ(1, theNbU*theNbU);
|
||||
}
|
||||
//
|
||||
GeomLProp_SLProps aProps(theSurf, 2, Precision::Confusion());
|
||||
Standard_Real anAvMaxCurv = 0., anAvMinCurv = 0., anAvR = 0, aSign = 1.;
|
||||
gp_XYZ anAvDir;
|
||||
gp_Dir aMinD, aMaxD;
|
||||
Standard_Integer i, j, n = 0;
|
||||
Standard_Real anU, aV;
|
||||
for (i = 1, anU = theU1 + du / 2.; i <= theNbU; ++i, anU += du)
|
||||
{
|
||||
for (j = 1, aV = theV1 + dv / 2.; j <= theNbV; ++j, aV += dv)
|
||||
{
|
||||
aProps.SetParameters(anU, aV);
|
||||
if (!aProps.IsCurvatureDefined())
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
if (aProps.IsUmbilic())
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
++n;
|
||||
Standard_Real aMinCurv = aProps.MinCurvature();
|
||||
Standard_Real aMaxCurv = aProps.MaxCurvature();
|
||||
Standard_Real aGaussCurv = Abs(aProps.GaussianCurvature());
|
||||
Standard_Real aK1 = Sqrt(aGaussCurv);
|
||||
if (aK1 > theToler )
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
gp_XYZ aD;
|
||||
aProps.CurvatureDirections(aMaxD, aMinD);
|
||||
aMinCurv = Abs(aMinCurv);
|
||||
aMaxCurv = Abs(aMaxCurv);
|
||||
if (aMinCurv > aMaxCurv)
|
||||
{
|
||||
//aMinCurv < 0;
|
||||
aSign = -1.;
|
||||
std::swap(aMinCurv, aMaxCurv);
|
||||
gp_Dir aDummy = aMaxD;
|
||||
aMaxD = aMinD;
|
||||
aMinD = aDummy;
|
||||
}
|
||||
Standard_Real anR = 1. / aMaxCurv;
|
||||
Standard_Real anR2 = anR * anR;
|
||||
anRs(n) = anR;
|
||||
//
|
||||
if (n > 1)
|
||||
{
|
||||
if (Abs(aMaxCurv - anAvMaxCurv / (n - 1)) > aTol / anR2)
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
if (Abs(aMinCurv - anAvMinCurv / (n - 1)) > aTol)
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
}
|
||||
aD = aMinD.XYZ();
|
||||
anAvR += anR;
|
||||
anAvDir += aD;
|
||||
anAvMaxCurv += aMaxCurv;
|
||||
anAvMinCurv += aMinCurv;
|
||||
if (theLeastSquare)
|
||||
{
|
||||
aPoints->SetValue(n, aProps.Value().XYZ());
|
||||
}
|
||||
}
|
||||
}
|
||||
anAvMaxCurv /= n;
|
||||
anAvMinCurv /= n;
|
||||
anAvR /= n;
|
||||
anAvDir /= n;
|
||||
//
|
||||
if (Abs(anAvMinCurv) > theToler)
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
//
|
||||
for (i = 1; i <= n; ++i)
|
||||
{
|
||||
Standard_Real d = (anRs(i) - anAvR);
|
||||
aSigmaR += d * d;
|
||||
}
|
||||
aSigmaR = Sqrt(aSigmaR / n);
|
||||
aTol = 3.*aSigmaR / Sqrt(n);
|
||||
if (aTol > 100. * theToler)
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
aProps.SetParameters(theU1, theV1);
|
||||
if (!aProps.IsCurvatureDefined())
|
||||
{
|
||||
return aNewSurf;
|
||||
}
|
||||
gp_Dir aNorm = aProps.Normal();
|
||||
gp_Pnt aLoc = aProps.Value();
|
||||
gp_Dir anAxD(anAvDir);
|
||||
gp_Vec aT(aSign*anAvR*aNorm.XYZ());
|
||||
aLoc.Translate(aT);
|
||||
gp_Ax1 anAx1(aLoc, anAxD);
|
||||
gp_Cylinder aCyl;
|
||||
aCyl.SetAxis(anAx1);
|
||||
aCyl.SetRadius(anAvR);
|
||||
|
||||
if (theLeastSquare)
|
||||
{
|
||||
gp_Ax3 aPos = aCyl.Position();
|
||||
Standard_Real anR = aCyl.Radius();
|
||||
Standard_Real aGap = 0.;
|
||||
Standard_Boolean IsDone = GetCylByLS(aPoints, theToler, aPos, anR, aGap);
|
||||
if (IsDone)
|
||||
{
|
||||
aCyl.SetPosition(aPos);
|
||||
aCyl.SetRadius(anR);
|
||||
}
|
||||
}
|
||||
|
||||
aNewSurf = new Geom_CylindricalSurface(aCyl);
|
||||
|
||||
return aNewSurf;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TryTorusSphere
|
||||
//purpose :
|
||||
// static method to try create toroidal surface.
|
||||
// In case <isTryUMajor> = Standard_True try to use V isoline radius as minor radaius.
|
||||
static Handle(Geom_Surface) TryTorusSphere(const Handle(Geom_Surface)& theSurf,
|
||||
//=======================================================================
|
||||
|
||||
Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::TryTorusSphere(const Handle(Geom_Surface)& theSurf,
|
||||
const Handle(Geom_Circle)& circle,
|
||||
const Handle(Geom_Circle)& otherCircle,
|
||||
const Standard_Real Param1,
|
||||
@@ -181,9 +550,14 @@ static Handle(Geom_Surface) TryTorusSphere(const Handle(Geom_Surface)& theSurf,
|
||||
return newSurface;
|
||||
}
|
||||
|
||||
static Standard_Real ComputeGap(const Handle(Geom_Surface)& theSurf,
|
||||
//=======================================================================
|
||||
//function : ComputeGap
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
Standard_Real GeomConvert_SurfToAnaSurf::ComputeGap(const Handle(Geom_Surface)& theSurf,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Handle(Geom_Surface) theNewSurf, const Standard_Real theTol = RealLast())
|
||||
const Handle(Geom_Surface) theNewSurf, const Standard_Real theTol)
|
||||
{
|
||||
GeomAdaptor_Surface aGAS(theNewSurf);
|
||||
GeomAbs_SurfaceType aSType = aGAS.GetType();
|
||||
@@ -228,7 +602,7 @@ static Standard_Real ComputeGap(const Handle(Geom_Surface)& theSurf,
|
||||
Standard_Real DU2 = DU / 2., DV2 = DV / 2.;
|
||||
for (j = 1; (j < NP) && onSurface; j++) {
|
||||
Standard_Real V = theV1 + DV*(j - 1) + DV2;
|
||||
for (i = 1; i <= NP; i++) {
|
||||
for (i = 1; i < NP; i++) {
|
||||
Standard_Real U = theU1 + DU*(i - 1) + DU2;
|
||||
theSurf->D0(U, V, P3d);
|
||||
|
||||
@@ -384,7 +758,9 @@ Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(const Standa
|
||||
//
|
||||
Standard_Real toler = InitialToler;
|
||||
Handle(Geom_Surface) newSurf[5];
|
||||
Standard_Real dd[5] = { -1., -1., -1., -1., -1 };
|
||||
Standard_Real dd[5] = { RealLast(), RealLast(), RealLast(), RealLast(), RealLast() };
|
||||
GeomAbs_SurfaceType aSTypes[5] = { GeomAbs_Plane, GeomAbs_Cylinder,
|
||||
GeomAbs_Cone, GeomAbs_Sphere, GeomAbs_Torus };
|
||||
|
||||
//Check boundaries
|
||||
Standard_Real U1, U2, V1, V2;
|
||||
@@ -481,183 +857,136 @@ Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(const Standa
|
||||
//convert middle uiso and viso to canonical representation
|
||||
Standard_Real VMid = 0.5*(V1 + V2);
|
||||
Standard_Real UMid = 0.5*(U1 + U2);
|
||||
Handle(Geom_Surface) TrSurf = aTempS;
|
||||
if(!aDoSegment)
|
||||
TrSurf = new Geom_RectangularTrimmedSurface(aTempS, U1, U2, V1, V2);
|
||||
// Handle(Geom_Surface) TrSurf = aTempS;
|
||||
|
||||
Handle(Geom_Curve) UIso = TrSurf->UIso(UMid);
|
||||
Handle(Geom_Curve) VIso = TrSurf->VIso(VMid);
|
||||
Handle(Geom_Curve) UIso = aTempS->UIso(UMid);
|
||||
Handle(Geom_Curve) VIso = aTempS->VIso(VMid);
|
||||
|
||||
Standard_Real cuf, cul, cvf, cvl, aGap1, aGap2;
|
||||
Handle(Geom_Curve) umidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(UIso, toler, V1, V2, cuf, cul, aGap1);
|
||||
Handle(Geom_Curve) vmidiso = GeomConvert_CurveToAnaCurve::ComputeCurve(VIso, toler, U1, U2, cvf, cvl, aGap2);
|
||||
if (umidiso.IsNull() || vmidiso.IsNull()) {
|
||||
return newSurf[isurf];
|
||||
}
|
||||
|
||||
//
|
||||
Standard_Boolean VCase = Standard_False;
|
||||
|
||||
if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
|
||||
if (!umidiso.IsNull() && !vmidiso.IsNull())
|
||||
{
|
||||
aToroidSphere = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Cylinder || myTarget == GeomAbs_Cone))
|
||||
|
||||
//
|
||||
Standard_Boolean VCase = Standard_False;
|
||||
|
||||
if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle)))
|
||||
{
|
||||
isurf = 1;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
aToroidSphere = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Cylinder || myTarget == GeomAbs_Cone))
|
||||
{
|
||||
isurf = 1;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
}
|
||||
isurf = 3; // set sphere
|
||||
}
|
||||
isurf = 3; // set sphere
|
||||
}
|
||||
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Line)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle))) {
|
||||
aCylinderConus = Standard_True; VCase = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
||||
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Line)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Circle))) {
|
||||
aCylinderConus = Standard_True; VCase = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
||||
{
|
||||
isurf = 3;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
}
|
||||
isurf = 1;// set cylinder
|
||||
}
|
||||
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Line)))
|
||||
{
|
||||
isurf = 3;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
aCylinderConus = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
||||
{
|
||||
isurf = 3;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
}
|
||||
isurf = 1;// set cylinder
|
||||
}
|
||||
|
||||
|
||||
//case of torus-sphere
|
||||
if (aToroidSphere) {
|
||||
|
||||
isurf = 3; // Set spherical surface
|
||||
|
||||
Handle(Geom_Circle) Ucircle = Handle(Geom_Circle)::DownCast(umidiso);
|
||||
Handle(Geom_Circle) Vcircle = Handle(Geom_Circle)::DownCast(vmidiso);
|
||||
// torus
|
||||
// try when V isolines is with same radius
|
||||
Handle(Geom_Surface) anObject =
|
||||
TryTorusSphere(mySurf, Vcircle, Ucircle, V1, V2, U1, U2, toler, Standard_True);
|
||||
if (anObject.IsNull()) // try when U isolines is with same radius
|
||||
anObject = TryTorusSphere(mySurf, Ucircle, Vcircle, U1, U2, V1, V2, toler, Standard_False);
|
||||
|
||||
if (!anObject.IsNull())
|
||||
{
|
||||
if (anObject->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
|
||||
{
|
||||
isurf = 4; // set torus
|
||||
}
|
||||
newSurf[isurf] = anObject;
|
||||
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
|
||||
{
|
||||
myGap = RealLast();
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
myGap = dd[isurf];
|
||||
}
|
||||
}
|
||||
//case of cone - cylinder
|
||||
else if (aCylinderConus) {
|
||||
isurf = 1; //set cylindrical surface
|
||||
Handle(Geom_Surface) anObject = TryCylinerCone(aTempS, VCase, umidiso, vmidiso,
|
||||
U1, U2, V1, V2, toler);
|
||||
if (!anObject.IsNull())
|
||||
{
|
||||
if (anObject->IsKind(STANDARD_TYPE(Geom_ConicalSurface)))
|
||||
{
|
||||
isurf = 2; // set conical surface
|
||||
}
|
||||
if (myConvType == GeomConvert_Target && (myTarget != aSTypes[isurf]))
|
||||
{
|
||||
myGap = RealLast();
|
||||
return NULL;
|
||||
}
|
||||
newSurf[isurf] = anObject;
|
||||
}
|
||||
else
|
||||
{
|
||||
myGap = dd[isurf];
|
||||
}
|
||||
}
|
||||
isurf = 1;// set cylinder
|
||||
}
|
||||
else if (umidiso->IsKind(STANDARD_TYPE(Geom_Circle)) && vmidiso->IsKind(STANDARD_TYPE(Geom_Line)))
|
||||
//Additional checking for case of cylinder
|
||||
if (!aCylinderConus && !aToroidSphere)
|
||||
{
|
||||
aCylinderConus = Standard_True;
|
||||
if (myConvType == GeomConvert_Target && (myTarget == GeomAbs_Sphere || myTarget == GeomAbs_Torus))
|
||||
{
|
||||
isurf = 3;
|
||||
myGap = dd[isurf];
|
||||
return newSurf[isurf];
|
||||
}
|
||||
isurf = 1;// set cylinder
|
||||
}
|
||||
Standard_Real cl = 0.0;
|
||||
//case of torus-sphere
|
||||
if (aToroidSphere) {
|
||||
|
||||
isurf = 3; // Set spherical surface
|
||||
|
||||
Handle(Geom_Circle) Ucircle = Handle(Geom_Circle)::DownCast(umidiso);
|
||||
Handle(Geom_Circle) Vcircle = Handle(Geom_Circle)::DownCast(vmidiso);
|
||||
// torus
|
||||
// try when V isolines is with same radius
|
||||
Handle(Geom_Surface) anObject =
|
||||
TryTorusSphere(mySurf, Vcircle, Ucircle, V1, V2, U1, U2, toler, Standard_True);
|
||||
if (anObject.IsNull()) // try when U isolines is with same radius
|
||||
anObject = TryTorusSphere(mySurf, Ucircle, Vcircle, U1, U2, V1, V2, toler, Standard_False);
|
||||
|
||||
//Try cylinder using Gauss field
|
||||
Standard_Integer aNbU = 7, aNbV = 7;
|
||||
Standard_Boolean aLeastSquare = Standard_True;
|
||||
Handle(Geom_Surface) anObject = TryCylinderByGaussField(aTempS, U1, U2, V1, V2, toler,
|
||||
aNbU, aNbV, aLeastSquare);
|
||||
if (!anObject.IsNull())
|
||||
{
|
||||
if (anObject->IsKind(STANDARD_TYPE(Geom_ToroidalSurface)))
|
||||
{
|
||||
isurf = 4; // set torus
|
||||
}
|
||||
isurf = 1;
|
||||
newSurf[isurf] = anObject;
|
||||
}
|
||||
else
|
||||
{
|
||||
myGap = dd[isurf];
|
||||
}
|
||||
}
|
||||
//case of cone - cylinder
|
||||
else if (aCylinderConus) {
|
||||
Standard_Real param1, param2, cf1, cf2;
|
||||
Handle(Geom_Curve) firstiso, lastiso;
|
||||
Handle(Geom_Circle) firstisocirc, lastisocirc, midisocirc;
|
||||
gp_Dir isoline;
|
||||
if (VCase) {
|
||||
param1 = U1; param2 = U2;
|
||||
firstiso = TrSurf->VIso(V1);
|
||||
lastiso = TrSurf->VIso(V2);
|
||||
midisocirc = Handle(Geom_Circle)::DownCast(vmidiso);
|
||||
isoline = Handle(Geom_Line)::DownCast(umidiso)->Lin().Direction();
|
||||
}
|
||||
else {
|
||||
param1 = V1; param2 = V2;
|
||||
firstiso = TrSurf->UIso(U1);
|
||||
lastiso = TrSurf->UIso(U2);
|
||||
midisocirc = Handle(Geom_Circle)::DownCast(umidiso);
|
||||
isoline = Handle(Geom_Line)::DownCast(vmidiso)->Lin().Direction();
|
||||
}
|
||||
firstisocirc = Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(firstiso, toler, param1, param2, cf1, cl, aGap1));
|
||||
lastisocirc = Handle(Geom_Circle)::DownCast(GeomConvert_CurveToAnaCurve::ComputeCurve(lastiso, toler, param1, param2, cf2, cl, aGap2));
|
||||
if (!firstisocirc.IsNull() || !lastisocirc.IsNull()) {
|
||||
Standard_Real R1, R2, R3;
|
||||
gp_Pnt P1, P2, P3;
|
||||
if (!firstisocirc.IsNull()) {
|
||||
R1 = firstisocirc->Circ().Radius();
|
||||
P1 = firstisocirc->Circ().Location();
|
||||
}
|
||||
else {
|
||||
R1 = 0;
|
||||
P1 = firstiso->Value((firstiso->LastParameter() - firstiso->FirstParameter()) / 2);
|
||||
}
|
||||
R2 = midisocirc->Circ().Radius();
|
||||
P2 = midisocirc->Circ().Location();
|
||||
if (!lastisocirc.IsNull()) {
|
||||
R3 = lastisocirc->Circ().Radius();
|
||||
P3 = lastisocirc->Circ().Location();
|
||||
}
|
||||
else {
|
||||
R3 = 0;
|
||||
P3 = lastiso->Value((lastiso->LastParameter() - lastiso->FirstParameter()) / 2);
|
||||
}
|
||||
//cylinder
|
||||
if (((Abs(R2 - R1)) < toler) && ((Abs(R3 - R1)) < toler) &&
|
||||
((Abs(R3 - R2)) < toler)) {
|
||||
isurf = 1;
|
||||
gp_Ax3 Axes(P1, gp_Dir(gp_Vec(P1, P3)));
|
||||
Handle(Geom_CylindricalSurface) anObject =
|
||||
new Geom_CylindricalSurface(Axes, R1);
|
||||
if (myConvType == GeomConvert_Target && myTarget != GeomAbs_Cylinder)
|
||||
{
|
||||
return newSurf[isurf];
|
||||
}
|
||||
newSurf[isurf] = anObject;
|
||||
}
|
||||
//cone
|
||||
else if ((((Abs(R1)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R3)))) ||
|
||||
(((Abs(R3)) > (Abs(R2))) && ((Abs(R2)) > (Abs(R1))))) {
|
||||
Standard_Real radius;
|
||||
gp_Ax3 Axes;
|
||||
Standard_Real semiangle =
|
||||
gp_Vec(isoline).Angle(gp_Vec(P3, P1));
|
||||
if (semiangle>M_PI / 2) semiangle = M_PI - semiangle;
|
||||
if (R1 > R3) {
|
||||
radius = R3;
|
||||
Axes = gp_Ax3(P3, gp_Dir(gp_Vec(P3, P1)));
|
||||
}
|
||||
else {
|
||||
radius = R1;
|
||||
Axes = gp_Ax3(P1, gp_Dir(gp_Vec(P1, P3)));
|
||||
}
|
||||
Handle(Geom_ConicalSurface) anObject =
|
||||
new Geom_ConicalSurface(Axes, semiangle, radius);
|
||||
isurf = 2;
|
||||
if (myConvType == GeomConvert_Target && myTarget != GeomAbs_Cone)
|
||||
{
|
||||
return newSurf[isurf];
|
||||
}
|
||||
newSurf[isurf] = anObject;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
myGap = dd[isurf];
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
//---------------------------------------------------------------------
|
||||
// verification
|
||||
//---------------------------------------------------------------------
|
||||
GeomAbs_SurfaceType aSTypes[5] = { GeomAbs_Plane, GeomAbs_Cylinder,
|
||||
GeomAbs_Cone, GeomAbs_Sphere, GeomAbs_Torus };
|
||||
Standard_Integer imin = -1;
|
||||
Standard_Real aDmin = RealLast();
|
||||
for (isurf = 0; isurf < 5; ++isurf)
|
||||
{
|
||||
if (newSurf[isurf].IsNull())
|
||||
continue;
|
||||
dd[isurf] = ComputeGap(TrSurf, U1, U2, V1, V2, newSurf[isurf], toler);
|
||||
dd[isurf] = ComputeGap(aTempS, U1, U2, V1, V2, newSurf[isurf], toler);
|
||||
if (dd[isurf] <= toler)
|
||||
{
|
||||
if (myConvType == GeomConvert_Simplest || (myConvType == GeomConvert_Target && myTarget == aSTypes[isurf]))
|
||||
@@ -682,7 +1011,7 @@ Handle(Geom_Surface) GeomConvert_SurfToAnaSurf::ConvertToAnalytical(const Standa
|
||||
return newSurf[imin];
|
||||
}
|
||||
|
||||
return newSurf[0];
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
|
@@ -25,8 +25,10 @@
|
||||
#include <Standard_Boolean.hxx>
|
||||
#include <GeomConvert_ConvType.hxx>
|
||||
#include <GeomAbs_SurfaceType.hxx>
|
||||
#include <TColgp_HArray1OfXYZ.hxx>
|
||||
class Geom_Surface;
|
||||
|
||||
class Geom_SurfaceOfRevolution;
|
||||
class Geom_Circle;
|
||||
|
||||
//! Converts a surface to the analitical form with given
|
||||
//! precision. Conversion is done only the surface is bspline
|
||||
@@ -75,6 +77,48 @@ public:
|
||||
//! Returns true, if surface is canonical
|
||||
Standard_EXPORT static Standard_Boolean IsCanonical (const Handle(Geom_Surface)& S);
|
||||
|
||||
private:
|
||||
//!static method for checking surface of revolution
|
||||
//!To avoid two-parts cone-like surface
|
||||
static void CheckVTrimForRevSurf(const Handle(Geom_SurfaceOfRevolution)& aRevSurf,
|
||||
Standard_Real& V1, Standard_Real& V2);
|
||||
|
||||
//!static method to try create cylindrical or conical surface
|
||||
static Handle(Geom_Surface) TryCylinerCone(const Handle(Geom_Surface)& theSurf, const Standard_Boolean theVCase,
|
||||
const Handle(Geom_Curve)& theUmidiso, const Handle(Geom_Curve)& theVmidiso,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Standard_Real theToler);
|
||||
|
||||
//!static method to try create cylinrical surface using least square method
|
||||
static Standard_Boolean GetCylByLS(const Handle(TColgp_HArray1OfXYZ)& thePoints,
|
||||
const Standard_Real theTol,
|
||||
gp_Ax3& thePos, Standard_Real& theR,
|
||||
Standard_Real& theGap);
|
||||
|
||||
//!static method to try create cylinrical surface based on its Gauss field
|
||||
static Handle(Geom_Surface) TryCylinderByGaussField(const Handle(Geom_Surface)& theSurf,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Standard_Real theToler, const Standard_Integer theNbU = 20, const Standard_Integer theNbV = 20,
|
||||
const Standard_Boolean theLeastSquare = Standard_False);
|
||||
|
||||
//! static method to try create toroidal surface.
|
||||
//! In case <isTryUMajor> = Standard_True try to use V isoline radius as minor radaius.
|
||||
static Handle(Geom_Surface) TryTorusSphere(const Handle(Geom_Surface)& theSurf,
|
||||
const Handle(Geom_Circle)& circle,
|
||||
const Handle(Geom_Circle)& otherCircle,
|
||||
const Standard_Real Param1,
|
||||
const Standard_Real Param2,
|
||||
const Standard_Real aParam1ToCrv,
|
||||
const Standard_Real aParam2ToCrv,
|
||||
const Standard_Real toler,
|
||||
const Standard_Boolean isTryUMajor);
|
||||
|
||||
static Standard_Real ComputeGap(const Handle(Geom_Surface)& theSurf,
|
||||
const Standard_Real theU1, const Standard_Real theU2, const Standard_Real theV1, const Standard_Real theV2,
|
||||
const Handle(Geom_Surface) theNewSurf, const Standard_Real theTol = RealLast());
|
||||
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
Reference in New Issue
Block a user