mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0030489: Modeling Algorithms - BRepBuilderAPI_GTransform hangs
Approx_ComputeCLine.gxx - criterium to stop interval cutting is increased. ProjLib_ProjectedCurve.cxx - fix regression for bugs modalg_5 bug25886 Other tests are modified according to current state of algorithm
This commit is contained in:
parent
2328cae25d
commit
afb3647b34
@ -34,14 +34,14 @@
|
||||
//=======================================================================
|
||||
|
||||
Approx_ComputeCLine::Approx_ComputeCLine
|
||||
(const MultiLine& Line,
|
||||
const Standard_Integer degreemin,
|
||||
const Standard_Integer degreemax,
|
||||
const Standard_Real Tolerance3d,
|
||||
const Standard_Real Tolerance2d,
|
||||
const Standard_Boolean cutting,
|
||||
const AppParCurves_Constraint FirstC,
|
||||
const AppParCurves_Constraint LastC)
|
||||
(const MultiLine& Line,
|
||||
const Standard_Integer degreemin,
|
||||
const Standard_Integer degreemax,
|
||||
const Standard_Real Tolerance3d,
|
||||
const Standard_Real Tolerance2d,
|
||||
const Standard_Boolean cutting,
|
||||
const AppParCurves_Constraint FirstC,
|
||||
const AppParCurves_Constraint LastC)
|
||||
{
|
||||
mydegremin = degreemin;
|
||||
mydegremax = degreemax;
|
||||
@ -61,13 +61,13 @@ Approx_ComputeCLine::Approx_ComputeCLine
|
||||
//=======================================================================
|
||||
|
||||
Approx_ComputeCLine::Approx_ComputeCLine
|
||||
(const Standard_Integer degreemin,
|
||||
const Standard_Integer degreemax,
|
||||
const Standard_Real Tolerance3d,
|
||||
const Standard_Real Tolerance2d,
|
||||
const Standard_Boolean cutting,
|
||||
const AppParCurves_Constraint FirstC,
|
||||
const AppParCurves_Constraint LastC)
|
||||
(const Standard_Integer degreemin,
|
||||
const Standard_Integer degreemax,
|
||||
const Standard_Real Tolerance3d,
|
||||
const Standard_Real Tolerance2d,
|
||||
const Standard_Boolean cutting,
|
||||
const AppParCurves_Constraint FirstC,
|
||||
const AppParCurves_Constraint LastC)
|
||||
{
|
||||
alldone = Standard_False;
|
||||
mydegremin = degreemin;
|
||||
@ -88,21 +88,22 @@ Approx_ComputeCLine::Approx_ComputeCLine
|
||||
void Approx_ComputeCLine::Perform(const MultiLine& Line)
|
||||
{
|
||||
Standard_Real UFirst, ULast;
|
||||
Standard_Boolean Finish = Standard_False,
|
||||
begin = Standard_True, Ok = Standard_False;
|
||||
Standard_Boolean Finish = Standard_False,
|
||||
begin = Standard_True, Ok = Standard_False;
|
||||
Standard_Real thetol3d = Precision::Confusion(), thetol2d = Precision::Confusion();
|
||||
UFirst = Line.FirstParameter();
|
||||
ULast = Line.LastParameter();
|
||||
Standard_Real TolU = Max((ULast-UFirst)*1.e-05, Precision::PApproximation());
|
||||
Standard_Real myfirstU = UFirst;
|
||||
ULast = Line.LastParameter();
|
||||
Standard_Real TolU = Max((ULast - UFirst)*1.e-03, Precision::Confusion());
|
||||
Standard_Real myfirstU = UFirst;
|
||||
Standard_Real mylastU = ULast;
|
||||
Standard_Integer aMaxSegments = 0;
|
||||
Standard_Integer aMaxSegments1 = myMaxSegments - 1;
|
||||
Standard_Integer aNbCut = 0, aNbImp = 0, aNbComp = 5;
|
||||
|
||||
if (!mycut)
|
||||
{
|
||||
alldone = Compute(Line, UFirst, ULast, thetol3d, thetol2d);
|
||||
if (!alldone)
|
||||
if (!alldone)
|
||||
{
|
||||
tolreached = Standard_False;
|
||||
myfirstparam.Append(UFirst);
|
||||
@ -112,25 +113,27 @@ void Approx_ComputeCLine::Perform(const MultiLine& Line)
|
||||
Tolers2d.Append(currenttol2d);
|
||||
}
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
|
||||
// previous decision to be taken if we get worse with next cut (eap)
|
||||
AppParCurves_MultiCurve KeptMultiCurve;
|
||||
Standard_Real KeptUfirst = 0., KeptUlast = 0., KeptT3d = RealLast(), KeptT2d = 0.;
|
||||
|
||||
while (!Finish)
|
||||
while (!Finish)
|
||||
{
|
||||
|
||||
|
||||
// Gestion du decoupage de la multiline pour approximer:
|
||||
if (!begin)
|
||||
if (!begin)
|
||||
{
|
||||
if (Ok)
|
||||
if (Ok)
|
||||
{
|
||||
// Calcul de la partie a approximer.
|
||||
myfirstU = mylastU;
|
||||
mylastU = ULast;
|
||||
if (Abs(ULast-myfirstU) <= RealEpsilon()
|
||||
mylastU = ULast;
|
||||
aNbCut = 0;
|
||||
aNbImp = 0;
|
||||
if (Abs(ULast - myfirstU) <= RealEpsilon()
|
||||
|| aMaxSegments >= myMaxSegments)
|
||||
{
|
||||
Finish = Standard_True;
|
||||
@ -147,50 +150,59 @@ void Approx_ComputeCLine::Perform(const MultiLine& Line)
|
||||
if ((thetol3d + thetol2d) < (KeptT3d + KeptT2d))
|
||||
{
|
||||
KeptMultiCurve = TheMultiCurve;
|
||||
KeptUfirst = myfirstU;
|
||||
KeptUlast = mylastU;
|
||||
KeptT3d = thetol3d;
|
||||
KeptT2d = thetol2d;
|
||||
KeptUfirst = myfirstU;
|
||||
KeptUlast = mylastU;
|
||||
KeptT3d = thetol3d;
|
||||
KeptT2d = thetol2d;
|
||||
aNbImp++;
|
||||
}
|
||||
|
||||
// cut an interval
|
||||
mylastU = (myfirstU + mylastU)/2;
|
||||
mylastU = (myfirstU + mylastU) / 2;
|
||||
aNbCut++;
|
||||
}
|
||||
}
|
||||
|
||||
// Calcul des parametres sur ce nouvel intervalle.
|
||||
Ok = Compute(Line, myfirstU, mylastU, thetol3d, thetol2d);
|
||||
if(Ok)
|
||||
if (Ok)
|
||||
{
|
||||
aMaxSegments++;
|
||||
}
|
||||
|
||||
//cout << myfirstU << " - " << mylastU << " tol : " << thetol3d << " " << thetol2d << endl;
|
||||
|
||||
// is new decision better?
|
||||
if (!Ok && (Abs(myfirstU-mylastU) <= TolU || aMaxSegments >= aMaxSegments1))
|
||||
Standard_Boolean aStopCutting = Standard_False;
|
||||
if (aNbCut >= aNbComp)
|
||||
{
|
||||
Ok = Standard_True; // stop interval cutting, approx the rest part
|
||||
|
||||
if ((thetol3d + thetol2d) < (KeptT3d + KeptT2d))
|
||||
{
|
||||
KeptMultiCurve = TheMultiCurve;
|
||||
KeptUfirst = myfirstU;
|
||||
KeptUlast = mylastU;
|
||||
KeptT3d = thetol3d;
|
||||
KeptT2d = thetol2d;
|
||||
}
|
||||
|
||||
mylastU = KeptUlast;
|
||||
|
||||
tolreached = Standard_False; // helas
|
||||
myMultiCurves.Append(KeptMultiCurve);
|
||||
aMaxSegments++;
|
||||
Tolers3d.Append (KeptT3d);
|
||||
Tolers2d.Append (KeptT2d);
|
||||
myfirstparam.Append (KeptUfirst);
|
||||
mylastparam.Append (KeptUlast);
|
||||
if (aNbCut > aNbImp)
|
||||
{
|
||||
aStopCutting = Standard_True;
|
||||
}
|
||||
}
|
||||
// is new decision better?
|
||||
if (!Ok && (Abs(myfirstU - mylastU) <= TolU || aMaxSegments >= aMaxSegments1 || aStopCutting ))
|
||||
{
|
||||
Ok = Standard_True; // stop interval cutting, approx the rest part
|
||||
|
||||
if ((thetol3d + thetol2d) < (KeptT3d + KeptT2d))
|
||||
{
|
||||
KeptMultiCurve = TheMultiCurve;
|
||||
KeptUfirst = myfirstU;
|
||||
KeptUlast = mylastU;
|
||||
KeptT3d = thetol3d;
|
||||
KeptT2d = thetol2d;
|
||||
}
|
||||
|
||||
mylastU = KeptUlast;
|
||||
|
||||
tolreached = Standard_False; // helas
|
||||
myMultiCurves.Append(KeptMultiCurve);
|
||||
aMaxSegments++;
|
||||
Tolers3d.Append(KeptT3d);
|
||||
Tolers2d.Append(KeptT2d);
|
||||
myfirstparam.Append(KeptUfirst);
|
||||
mylastparam.Append(KeptUlast);
|
||||
}
|
||||
|
||||
begin = Standard_False;
|
||||
} // while (!Finish)
|
||||
@ -225,10 +237,10 @@ const
|
||||
//=======================================================================
|
||||
|
||||
Standard_Boolean Approx_ComputeCLine::Compute(const MultiLine& Line,
|
||||
const Standard_Real Ufirst,
|
||||
const Standard_Real Ulast,
|
||||
Standard_Real& TheTol3d,
|
||||
Standard_Real& TheTol2d)
|
||||
const Standard_Real Ufirst,
|
||||
const Standard_Real Ulast,
|
||||
Standard_Real& TheTol3d,
|
||||
Standard_Real& TheTol2d)
|
||||
{
|
||||
|
||||
|
||||
@ -243,14 +255,14 @@ Standard_Boolean Approx_ComputeCLine::Compute(const MultiLine& Line,
|
||||
if (mydone) {
|
||||
LSquare.Error(Fv, TheTol3d, TheTol2d);
|
||||
if (TheTol3d <= mytol3d && TheTol2d <= mytol2d) {
|
||||
// Stockage de la multicurve approximee.
|
||||
tolreached = Standard_True;
|
||||
// Stockage de la multicurve approximee.
|
||||
tolreached = Standard_True;
|
||||
myMultiCurves.Append(LSquare.Value());
|
||||
myfirstparam.Append(Ufirst);
|
||||
mylastparam.Append(Ulast);
|
||||
Tolers3d.Append(TheTol3d);
|
||||
Tolers2d.Append(TheTol2d);
|
||||
return Standard_True;
|
||||
myfirstparam.Append(Ufirst);
|
||||
mylastparam.Append(Ulast);
|
||||
Tolers3d.Append(TheTol3d);
|
||||
Tolers2d.Append(TheTol2d);
|
||||
return Standard_True;
|
||||
}
|
||||
}
|
||||
if (deg == mydegremax) {
|
||||
@ -258,7 +270,7 @@ Standard_Boolean Approx_ComputeCLine::Compute(const MultiLine& Line,
|
||||
currenttol3d = TheTol3d;
|
||||
currenttol2d = TheTol2d;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
return Standard_False;
|
||||
}
|
||||
@ -270,11 +282,11 @@ Standard_Boolean Approx_ComputeCLine::Compute(const MultiLine& Line,
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine::Parameters(const Standard_Integer Index,
|
||||
Standard_Real& firstpar,
|
||||
Standard_Real& lastpar) const
|
||||
Standard_Real& firstpar,
|
||||
Standard_Real& lastpar) const
|
||||
{
|
||||
firstpar = myfirstparam.Value(Index);
|
||||
lastpar = mylastparam.Value(Index);
|
||||
lastpar = mylastparam.Value(Index);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@ -283,7 +295,7 @@ void Approx_ComputeCLine::Parameters(const Standard_Integer Index,
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine::SetDegrees(const Standard_Integer degreemin,
|
||||
const Standard_Integer degreemax)
|
||||
const Standard_Integer degreemax)
|
||||
{
|
||||
mydegremin = degreemin;
|
||||
mydegremax = degreemax;
|
||||
@ -295,7 +307,7 @@ void Approx_ComputeCLine::SetDegrees(const Standard_Integer degreemin,
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine::SetTolerances(const Standard_Real Tolerance3d,
|
||||
const Standard_Real Tolerance2d)
|
||||
const Standard_Real Tolerance2d)
|
||||
{
|
||||
mytol3d = Tolerance3d;
|
||||
mytol2d = Tolerance2d;
|
||||
@ -307,10 +319,10 @@ void Approx_ComputeCLine::SetTolerances(const Standard_Real Tolerance3d,
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine::SetConstraints(const AppParCurves_Constraint FirstC,
|
||||
const AppParCurves_Constraint LastC)
|
||||
const AppParCurves_Constraint LastC)
|
||||
{
|
||||
myfirstC = FirstC;
|
||||
mylastC = LastC;
|
||||
mylastC = LastC;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@ -318,7 +330,7 @@ void Approx_ComputeCLine::SetConstraints(const AppParCurves_Constraint FirstC,
|
||||
//purpose : Changes the max number of segments, which is allowed for cutting.
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine:: SetMaxSegments(const Standard_Integer theMaxSegments)
|
||||
void Approx_ComputeCLine::SetMaxSegments(const Standard_Integer theMaxSegments)
|
||||
{
|
||||
myMaxSegments = theMaxSegments;
|
||||
}
|
||||
@ -351,8 +363,8 @@ const {
|
||||
//=======================================================================
|
||||
|
||||
void Approx_ComputeCLine::Error(const Standard_Integer Index,
|
||||
Standard_Real& tol3d,
|
||||
Standard_Real& tol2d) const
|
||||
Standard_Real& tol3d,
|
||||
Standard_Real& tol2d) const
|
||||
{
|
||||
tol3d = Tolers3d.Value(Index);
|
||||
tol2d = Tolers2d.Value(Index);
|
||||
|
@ -42,6 +42,7 @@
|
||||
#include <TColgp_HArray1OfPnt2d.hxx>
|
||||
#include <TColStd_HArray1OfReal.hxx>
|
||||
#include <Geom2dConvert_CompCurveToBSplineCurve.hxx>
|
||||
#include <Geom2dConvert.hxx>
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <TColStd_Array1OfInteger.hxx>
|
||||
#include <TColgp_Array1OfPnt2d.hxx>
|
||||
@ -55,6 +56,8 @@
|
||||
#include <GeomLib.hxx>
|
||||
#include <Extrema_ExtPC.hxx>
|
||||
#include <NCollection_DataMap.hxx>
|
||||
#include <ElSLib.hxx>
|
||||
#include <ElCLib.hxx>
|
||||
//=======================================================================
|
||||
//function : ComputeTolU
|
||||
//purpose :
|
||||
@ -146,18 +149,19 @@ static Standard_Boolean IsoIsDeg (const Adaptor3d_Surface& S,
|
||||
//=======================================================================
|
||||
|
||||
static void TrimC3d(Handle(Adaptor3d_HCurve)& myCurve,
|
||||
Standard_Boolean* IsTrimmed,
|
||||
const Standard_Real dt,
|
||||
const gp_Pnt& Pole,
|
||||
Standard_Boolean* IsTrimmed,
|
||||
const Standard_Real dt,
|
||||
const gp_Pnt& Pole,
|
||||
Standard_Integer* SingularCase,
|
||||
const Standard_Integer NumberOfSingularCase)
|
||||
const Standard_Integer NumberOfSingularCase,
|
||||
const Standard_Real TolConf)
|
||||
{
|
||||
Standard_Real f = myCurve->FirstParameter();
|
||||
Standard_Real l = myCurve->LastParameter();
|
||||
|
||||
gp_Pnt P = myCurve->Value(f);
|
||||
|
||||
if(P.Distance(Pole) < Precision::Confusion()) {
|
||||
if(P.Distance(Pole) <= TolConf) {
|
||||
IsTrimmed[0] = Standard_True;
|
||||
f = f+dt;
|
||||
myCurve = myCurve->Trim(f, l, Precision::Confusion());
|
||||
@ -165,7 +169,7 @@ static void TrimC3d(Handle(Adaptor3d_HCurve)& myCurve,
|
||||
}
|
||||
|
||||
P = myCurve->Value(l);
|
||||
if(P.Distance(Pole) < Precision::Confusion()) {
|
||||
if(P.Distance(Pole) <= TolConf) {
|
||||
IsTrimmed[1] = Standard_True;
|
||||
l = l-dt;
|
||||
myCurve = myCurve->Trim(f, l, Precision::Confusion());
|
||||
@ -232,17 +236,24 @@ static void ExtendC2d (Handle(Geom2d_BSplineCurve)& aRes,
|
||||
}
|
||||
}
|
||||
gp_Lin2d BoundLin(thePole, theBoundDir); //one of the bounds of rectangle
|
||||
Standard_Real ParOnLin = 0.;
|
||||
if (theBoundDir.IsParallel(aDBnd, 100.*Precision::Angular()))
|
||||
{
|
||||
ParOnLin = ElCLib::Parameter(aLin, thePole);
|
||||
}
|
||||
else
|
||||
{
|
||||
Standard_Real U1x = BoundLin.Direction().X();
|
||||
Standard_Real U1y = BoundLin.Direction().Y();
|
||||
Standard_Real U2x = aLin.Direction().X();
|
||||
Standard_Real U2y = aLin.Direction().Y();
|
||||
Standard_Real Uo21x = aLin.Location().X() - BoundLin.Location().X();
|
||||
Standard_Real Uo21y = aLin.Location().Y() - BoundLin.Location().Y();
|
||||
|
||||
Standard_Real U1x = BoundLin.Direction().X();
|
||||
Standard_Real U1y = BoundLin.Direction().Y();
|
||||
Standard_Real U2x = aLin.Direction().X();
|
||||
Standard_Real U2y = aLin.Direction().Y();
|
||||
Standard_Real Uo21x = aLin.Location().X() - BoundLin.Location().X();
|
||||
Standard_Real Uo21y = aLin.Location().Y() - BoundLin.Location().Y();
|
||||
|
||||
Standard_Real D = U1y*U2x-U1x*U2y;
|
||||
|
||||
Standard_Real ParOnLin = (Uo21y * U1x - Uo21x * U1y)/D; //parameter of intersection point
|
||||
Standard_Real D = U1y*U2x - U1x*U2y;
|
||||
|
||||
ParOnLin = (Uo21y * U1x - Uo21x * U1y) / D; //parameter of intersection point
|
||||
}
|
||||
|
||||
Handle(Geom2d_Line) aSegLine = new Geom2d_Line(aLin);
|
||||
aSegment = (FirstOrLast == 0)?
|
||||
@ -392,6 +403,16 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
GeomAbs_SurfaceType SType = mySurface->GetType();
|
||||
GeomAbs_CurveType CType = myCurve->GetType();
|
||||
Standard_Boolean isAnalyticalSurf = Standard_True;
|
||||
Standard_Boolean IsTrimmed[2] = { Standard_False, Standard_False };
|
||||
Standard_Integer SingularCase[2];
|
||||
const Standard_Real eps = 0.01;
|
||||
Standard_Real TolConf = Precision::Confusion();
|
||||
Standard_Real dt = (LastPar - FirstPar) * eps;
|
||||
Standard_Real U1 = 0.0, U2 = 0.0, V1 = 0.0, V2 = 0.0;
|
||||
U1 = mySurface->FirstUParameter();
|
||||
U2 = mySurface->LastUParameter();
|
||||
V1 = mySurface->FirstVParameter();
|
||||
V2 = mySurface->LastVParameter();
|
||||
|
||||
switch (SType)
|
||||
{
|
||||
@ -429,6 +450,28 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
// periodique en V !)
|
||||
P.SetInBounds(myCurve->FirstParameter());
|
||||
}
|
||||
else
|
||||
{
|
||||
const Standard_Real Vmax = M_PI / 2.;
|
||||
const Standard_Real Vmin = -Vmax;
|
||||
const Standard_Real minang = 1.e-5 * M_PI;
|
||||
gp_Sphere aSph = mySurface->Sphere();
|
||||
Standard_Real anR = aSph.Radius();
|
||||
Standard_Real f = myCurve->FirstParameter();
|
||||
Standard_Real l = myCurve->LastParameter();
|
||||
|
||||
gp_Pnt Pf = myCurve->Value(f);
|
||||
gp_Pnt Pl = myCurve->Value(l);
|
||||
gp_Pnt aLoc = aSph.Position().Location();
|
||||
Standard_Real maxdist = Max(Pf.Distance(aLoc), Pl.Distance(aLoc));
|
||||
TolConf = Max(anR * minang, Abs(anR - maxdist));
|
||||
|
||||
//Surface has pole at V = Vmin and Vmax
|
||||
gp_Pnt Pole = mySurface->Value(U1, Vmin);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 3, TolConf);
|
||||
Pole = mySurface->Value(U1, Vmax);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 4, TolConf);
|
||||
}
|
||||
myResult = P;
|
||||
}
|
||||
break;
|
||||
@ -445,15 +488,11 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
case GeomAbs_BSplineSurface:
|
||||
{
|
||||
isAnalyticalSurf = Standard_False;
|
||||
Standard_Boolean IsTrimmed[2] = {Standard_False, Standard_False};
|
||||
Standard_Integer SingularCase[2];
|
||||
Standard_Real f, l, dt;
|
||||
const Standard_Real eps = 0.01;
|
||||
Standard_Real f, l;
|
||||
f = myCurve->FirstParameter();
|
||||
l = myCurve->LastParameter();
|
||||
dt = (l - f) * eps;
|
||||
|
||||
Standard_Real U1 = 0.0, U2=0.0, V1=0.0, V2=0.0;
|
||||
const Adaptor3d_Surface& S = mySurface->Surface();
|
||||
U1 = S.FirstUParameter();
|
||||
U2 = S.LastUParameter();
|
||||
@ -464,28 +503,28 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
{
|
||||
//Surface has pole at U = Umin
|
||||
gp_Pnt Pole = mySurface->Value(U1, V1);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 1);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 1, TolConf);
|
||||
}
|
||||
|
||||
if(IsoIsDeg(S, U2, GeomAbs_IsoU, 0., myTolerance))
|
||||
{
|
||||
//Surface has pole at U = Umax
|
||||
gp_Pnt Pole = mySurface->Value(U2, V1);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 2);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 2, TolConf);
|
||||
}
|
||||
|
||||
if(IsoIsDeg(S, V1, GeomAbs_IsoV, 0., myTolerance))
|
||||
{
|
||||
//Surface has pole at V = Vmin
|
||||
gp_Pnt Pole = mySurface->Value(U1, V1);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 3);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 3, TolConf);
|
||||
}
|
||||
|
||||
if(IsoIsDeg(S, V2, GeomAbs_IsoV, 0., myTolerance))
|
||||
{
|
||||
//Surface has pole at V = Vmax
|
||||
gp_Pnt Pole = mySurface->Value(U1, V2);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 4);
|
||||
TrimC3d(myCurve, IsTrimmed, dt, Pole, SingularCase, 4, TolConf);
|
||||
}
|
||||
|
||||
ProjLib_ComputeApproxOnPolarSurface polar;
|
||||
@ -531,10 +570,9 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
default:
|
||||
{
|
||||
isAnalyticalSurf = Standard_False;
|
||||
Standard_Boolean IsTrimmed[2] = {Standard_False, Standard_False};
|
||||
Standard_Real Vsingular[2] = {0.0 , 0.0}; //for surfaces of revolution
|
||||
Standard_Real f = 0.0, l = 0.0, dt = 0.0;
|
||||
const Standard_Real eps = 0.01;
|
||||
Standard_Real f = 0.0, l = 0.0;
|
||||
dt = 0.0;
|
||||
|
||||
if(mySurface->GetType() == GeomAbs_SurfaceOfRevolution)
|
||||
{
|
||||
@ -710,26 +748,59 @@ void ProjLib_ProjectedCurve::Perform(const Handle(Adaptor3d_HCurve)& C)
|
||||
Comp.SetDegree(myDegMin, myDegMax);
|
||||
Comp.SetMaxSegments(myMaxSegments);
|
||||
Comp.SetBndPnt(myBndPnt);
|
||||
Comp.Perform( myCurve, mySurface);
|
||||
Comp.Perform(myCurve, mySurface);
|
||||
if (Comp.Bezier().IsNull() && Comp.BSpline().IsNull())
|
||||
return; // advanced projector has been failed too
|
||||
myResult.Done();
|
||||
|
||||
// set the type
|
||||
if ( SType == GeomAbs_Plane && CType == GeomAbs_BezierCurve)
|
||||
Handle(Geom2d_BSplineCurve) aRes;
|
||||
if (Comp.BSpline().IsNull())
|
||||
{
|
||||
myResult.SetType(GeomAbs_BezierCurve);
|
||||
myResult.SetBezier(Comp.Bezier()) ;
|
||||
aRes = Geom2dConvert::CurveToBSplineCurve(Comp.Bezier());
|
||||
}
|
||||
else
|
||||
{
|
||||
aRes = Comp.BSpline();
|
||||
}
|
||||
if ((IsTrimmed[0] || IsTrimmed[1]))
|
||||
{
|
||||
if (IsTrimmed[0])
|
||||
{
|
||||
//Add segment before start of curve
|
||||
Standard_Real f = myCurve->FirstParameter();
|
||||
ExtendC2d(aRes, f, -dt, U1, U2, V1, V2, 0, SingularCase[0]);
|
||||
}
|
||||
if (IsTrimmed[1])
|
||||
{
|
||||
//Add segment after end of curve
|
||||
Standard_Real l = myCurve->LastParameter();
|
||||
ExtendC2d(aRes, l, dt, U1, U2, V1, V2, 1, SingularCase[1]);
|
||||
}
|
||||
Handle(Geom2d_Curve) NewCurve2d;
|
||||
GeomLib::SameRange(Precision::PConfusion(), aRes,
|
||||
aRes->FirstParameter(), aRes->LastParameter(),
|
||||
FirstPar, LastPar, NewCurve2d);
|
||||
aRes = Handle(Geom2d_BSplineCurve)::DownCast(NewCurve2d);
|
||||
myResult.SetBSpline(aRes);
|
||||
myResult.SetType(GeomAbs_BSplineCurve);
|
||||
myResult.SetBSpline(Comp.BSpline()) ;
|
||||
}
|
||||
else
|
||||
{
|
||||
// set the type
|
||||
if (SType == GeomAbs_Plane && CType == GeomAbs_BezierCurve)
|
||||
{
|
||||
myResult.SetType(GeomAbs_BezierCurve);
|
||||
myResult.SetBezier(Comp.Bezier());
|
||||
}
|
||||
else
|
||||
{
|
||||
myResult.SetType(GeomAbs_BSplineCurve);
|
||||
myResult.SetBSpline(Comp.BSpline());
|
||||
}
|
||||
}
|
||||
// set the periodicity flag
|
||||
if (SType == GeomAbs_Plane &&
|
||||
CType == GeomAbs_BSplineCurve &&
|
||||
myCurve->IsPeriodic() )
|
||||
CType == GeomAbs_BSplineCurve &&
|
||||
myCurve->IsPeriodic())
|
||||
{
|
||||
myResult.SetPeriodic();
|
||||
}
|
||||
|
@ -6,8 +6,8 @@ puts ""
|
||||
# Wrong result obtained by projection algorithm
|
||||
#################################################
|
||||
|
||||
set ok_len_c3x "3.28347"
|
||||
set ok_len_c5x "3.28346"
|
||||
set ok_len_c3x "1.57079"
|
||||
set ok_len_c5x "1.57079"
|
||||
|
||||
smallview -2D-
|
||||
|
||||
|
@ -26,7 +26,7 @@ regexp {Tolerance Reached=+([-0-9.+eE]+)\n+([-0-9.+eE]+)} ${log} full Tolerance_
|
||||
|
||||
set GoodNbCurv 2
|
||||
|
||||
set expected_Tolerance_Reached 1.2482990218170969e-007
|
||||
set expected_Tolerance_Reached 1.042095984078466e-05
|
||||
set tol_abs_Tolerance_Reached 1.0e-7
|
||||
set tol_rel_Tolerance_Reached 0.0
|
||||
checkreal "Tolerance Reached" ${Tolerance_Reached} ${expected_Tolerance_Reached} ${tol_abs_Tolerance_Reached} ${tol_rel_Tolerance_Reached}
|
||||
|
@ -31,7 +31,7 @@ regexp {Tolerance Reached=+([-0-9.+eE]+)\n+([-0-9.+eE]+)} ${log} full Tolerance_
|
||||
|
||||
set GoodNbCurv 2
|
||||
|
||||
set expected_Tolerance_Reached 1.2482990218170969e-007
|
||||
set expected_Tolerance_Reached 1.0420959841458885e-05
|
||||
set tol_abs_Tolerance_Reached 1.0e-7
|
||||
set tol_rel_Tolerance_Reached 0.0
|
||||
checkreal "Tolerance Reached" ${Tolerance_Reached} ${expected_Tolerance_Reached} ${tol_abs_Tolerance_Reached} ${tol_rel_Tolerance_Reached}
|
||||
|
@ -26,6 +26,6 @@ checkreal "Reached tolerance" ${Tolerance} 5.8654166482879483e-009 1.e-7 0
|
||||
set bop_info_2d [bopcurves f1 f2 -2d]
|
||||
regexp {Tolerance Reached=([-0-9.+eE]+)} $bop_info_2d full Tolerance_2d
|
||||
|
||||
checkreal "Reached tolerance" ${Tolerance_2d} 1.4569392656749484e-008 1.e-7 0
|
||||
checkreal "Reached tolerance" ${Tolerance_2d} 1.4915699300398263e-07 1.e-7 0
|
||||
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
|
||||
|
@ -26,6 +26,6 @@ checkreal "Reached tolerance" ${Tolerance} 1.2530391548405894e-008 1.e-7 0
|
||||
set bop_info_2d [bopcurves f1 f2 -2d]
|
||||
regexp {Tolerance Reached=([-0-9.+eE]+)} $bop_info_2d full Tolerance_2d
|
||||
|
||||
checkreal "Reached tolerance" ${Tolerance_2d} 1.4134494834137484e-005 0 1.e-2
|
||||
checkreal "Reached tolerance" ${Tolerance_2d} 0.00040497924613267194 0 1.e-2
|
||||
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
|
||||
|
19
tests/perf/modalg/bug30489
Normal file
19
tests/perf/modalg/bug30489
Normal file
@ -0,0 +1,19 @@
|
||||
puts "============"
|
||||
puts "BUC30489"
|
||||
puts "============"
|
||||
puts ""
|
||||
###############################
|
||||
## 0030489: Modeling Algorithms - BRepBuilderAPI_GTransform hangs
|
||||
###############################
|
||||
|
||||
|
||||
restore [locate_data_file bug30489.brep] a
|
||||
dchrono h restart
|
||||
scalexyz r a 1. 1. 1.
|
||||
dchrono h stop counter scalexyz
|
||||
|
||||
checkprops r -s 2.86706e+007
|
||||
checkshape r
|
||||
checkview -display r -2d -path ${imagedir}/${test_image}.png
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user