mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0032837: Documentation, Geom_Surface - add references to GeomLib::NormEstim() for Normal computations
References to GeomLib::NormEstim() have been put to Geom_Surface, Adaptor3d_Surface and BRepAdaptor_Surface. Improved documentation of GeomLib::NormEstim().
This commit is contained in:
parent
b9a372bbcd
commit
a9e5f65041
@ -114,19 +114,20 @@ public:
|
||||
Standard_EXPORT virtual Standard_Boolean IsVPeriodic() const;
|
||||
|
||||
Standard_EXPORT virtual Standard_Real VPeriod() const;
|
||||
|
||||
|
||||
//! Computes the point of parameters U,V on the surface.
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
Standard_EXPORT virtual gp_Pnt Value (const Standard_Real U, const Standard_Real V) const;
|
||||
|
||||
|
||||
//! Computes the point of parameters U,V on the surface.
|
||||
Standard_EXPORT virtual void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const;
|
||||
|
||||
//! Computes the point and the first derivatives on
|
||||
//! the surface.
|
||||
//! Raised if the continuity of the current
|
||||
//! intervals is not C1.
|
||||
//! Computes the point and the first derivatives on the surface.
|
||||
//! Raised if the continuity of the current intervals is not C1.
|
||||
//!
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
Standard_EXPORT virtual void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const;
|
||||
|
||||
|
||||
//! Computes the point, the first and second
|
||||
//! derivatives on the surface.
|
||||
//! Raised if the continuity of the current
|
||||
|
@ -141,17 +141,18 @@ public:
|
||||
virtual Standard_Real VPeriod() const Standard_OVERRIDE { return mySurf.VPeriod(); }
|
||||
|
||||
//! Computes the point of parameters U,V on the surface.
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
Standard_EXPORT gp_Pnt Value (const Standard_Real U, const Standard_Real V) const Standard_OVERRIDE;
|
||||
|
||||
|
||||
//! Computes the point of parameters U,V on the surface.
|
||||
Standard_EXPORT void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const Standard_OVERRIDE;
|
||||
|
||||
//! Computes the point and the first derivatives on
|
||||
//! the surface.
|
||||
//! Raised if the continuity of the current
|
||||
//! intervals is not C1.
|
||||
|
||||
//! Computes the point and the first derivatives on the surface.
|
||||
//! Raised if the continuity of the current intervals is not C1.
|
||||
//!
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
Standard_EXPORT void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const Standard_OVERRIDE;
|
||||
|
||||
|
||||
//! Computes the point, the first and second
|
||||
//! derivatives on the surface.
|
||||
//! Raised if the continuity of the current
|
||||
|
@ -27,29 +27,24 @@ class gp_Vec;
|
||||
class Geom_Surface;
|
||||
DEFINE_STANDARD_HANDLE(Geom_Surface, Geom_Geometry)
|
||||
|
||||
//! Describes the common behavior of surfaces in 3D
|
||||
//! space. The Geom package provides many
|
||||
//! implementations of concrete derived surfaces, such as
|
||||
//! planes, cylinders, cones, spheres and tori, surfaces of
|
||||
//! linear extrusion, surfaces of revolution, Bezier and
|
||||
//! BSpline surfaces, and so on.
|
||||
//! The key characteristic of these surfaces is that they
|
||||
//! are parameterized. Geom_Surface demonstrates:
|
||||
//! - how to work with the parametric equation of a
|
||||
//! surface to compute the point of parameters (u,
|
||||
//! v), and, at this point, the 1st, 2nd ... Nth derivative,
|
||||
//! Describes the common behavior of surfaces in 3D space.
|
||||
//! The Geom package provides many implementations of concrete derived surfaces,
|
||||
//! such as planes, cylinders, cones, spheres and tori, surfaces of linear extrusion,
|
||||
//! surfaces of revolution, Bezier and BSpline surfaces, and so on.
|
||||
//! The key characteristic of these surfaces is that they are parameterized.
|
||||
//! Geom_Surface demonstrates:
|
||||
//! - how to work with the parametric equation of a surface
|
||||
//! to compute the point of parameters (u, v), and, at this point, the 1st, 2nd ... Nth derivative;
|
||||
//! - how to find global information about a surface in
|
||||
//! each parametric direction (for example, level of
|
||||
//! continuity, whether the surface is closed, its
|
||||
//! periodicity, the bounds of the parameters and so on), and
|
||||
//! - how the parameters change when geometric
|
||||
//! transformations are applied to the surface, or the
|
||||
//! orientation is modified.
|
||||
//! Note that all surfaces must have a geometric
|
||||
//! continuity, and any surface is at least "C0". Generally,
|
||||
//! continuity is checked at construction time or when the
|
||||
//! curve is edited. Where this is not the case, the
|
||||
//! documentation makes this explicit.
|
||||
//! each parametric direction (for example, level of continuity, whether the surface is closed,
|
||||
//! its periodicity, the bounds of the parameters and so on);
|
||||
//! - how the parameters change when geometric transformations are applied to the surface,
|
||||
//! or the orientation is modified.
|
||||
//!
|
||||
//! Note that all surfaces must have a geometric continuity, and any surface is at least "C0".
|
||||
//! Generally, continuity is checked at construction time or when the curve is edited.
|
||||
//! Where this is not the case, the documentation makes this explicit.
|
||||
//!
|
||||
//! Warning
|
||||
//! The Geom package does not prevent the construction of
|
||||
//! surfaces with null areas, or surfaces which self-intersect.
|
||||
@ -142,47 +137,42 @@ public:
|
||||
//! equal to Precision::Infinite: instead of Standard_Real::LastReal.
|
||||
Standard_EXPORT virtual void Bounds (Standard_Real& U1, Standard_Real& U2, Standard_Real& V1, Standard_Real& V2) const = 0;
|
||||
|
||||
//! Checks whether this surface is closed in the u
|
||||
//! parametric direction.
|
||||
//! Returns true if, in the u parametric direction: taking
|
||||
//! uFirst and uLast as the parametric bounds in
|
||||
//! the u parametric direction, for each parameter v, the
|
||||
//! distance between the points P(uFirst, v) and
|
||||
//! Checks whether this surface is closed in the u parametric direction.
|
||||
//! Returns true if, in the u parametric direction:
|
||||
//! taking uFirst and uLast as the parametric bounds in
|
||||
//! the u parametric direction, for each parameter v,
|
||||
//! the distance between the points P(uFirst, v) and
|
||||
//! P(uLast, v) is less than or equal to gp::Resolution().
|
||||
Standard_EXPORT virtual Standard_Boolean IsUClosed() const = 0;
|
||||
|
||||
//! Checks whether this surface is closed in the u
|
||||
//! parametric direction.
|
||||
//! Returns true if, in the v parametric
|
||||
//! direction: taking vFirst and vLast as the
|
||||
//! parametric bounds in the v parametric direction, for
|
||||
//! each parameter u, the distance between the points
|
||||
//! P(u, vFirst) and P(u, vLast) is less than
|
||||
//! or equal to gp::Resolution().
|
||||
//! Checks whether this surface is closed in the u parametric direction.
|
||||
//! Returns true if, in the v parametric direction:
|
||||
//! taking vFirst and vLast as the parametric bounds in the v parametric direction,
|
||||
//! for each parameter u, the distance between the points
|
||||
//! P(u, vFirst) and P(u, vLast) is less than or equal to gp::Resolution().
|
||||
Standard_EXPORT virtual Standard_Boolean IsVClosed() const = 0;
|
||||
|
||||
//! Checks if this surface is periodic in the u
|
||||
//! parametric direction. Returns true if:
|
||||
//! Checks if this surface is periodic in the u parametric direction.
|
||||
//! Returns true if:
|
||||
//! - this surface is closed in the u parametric direction, and
|
||||
//! - there is a constant T such that the distance
|
||||
//! between the points P (u, v) and P (u + T,
|
||||
//! v) (or the points P (u, v) and P (u, v +
|
||||
//! T)) is less than or equal to gp::Resolution().
|
||||
//! between the points P (u, v) and P (u + T, v)
|
||||
//! (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
|
||||
//!
|
||||
//! Note: T is the parametric period in the u parametric direction.
|
||||
Standard_EXPORT virtual Standard_Boolean IsUPeriodic() const = 0;
|
||||
|
||||
//! Returns the period of this surface in the u
|
||||
//! parametric direction.
|
||||
//! raises if the surface is not uperiodic.
|
||||
//! Returns the period of this surface in the u parametric direction.
|
||||
//! Raises if the surface is not uperiodic.
|
||||
Standard_EXPORT virtual Standard_Real UPeriod() const;
|
||||
|
||||
//! Checks if this surface is periodic in the v
|
||||
//! parametric direction. Returns true if:
|
||||
//! Checks if this surface is periodic in the v parametric direction.
|
||||
//! Returns true if:
|
||||
//! - this surface is closed in the v parametric direction, and
|
||||
//! - there is a constant T such that the distance
|
||||
//! between the points P (u, v) and P (u + T,
|
||||
//! v) (or the points P (u, v) and P (u, v +
|
||||
//! T)) is less than or equal to gp::Resolution().
|
||||
//! between the points P (u, v) and P (u + T, v)
|
||||
//! (or the points P (u, v) and P (u, v + T)) is less than or equal to gp::Resolution().
|
||||
//!
|
||||
//! Note: T is the parametric period in the v parametric direction.
|
||||
Standard_EXPORT virtual Standard_Boolean IsVPeriodic() const = 0;
|
||||
|
||||
@ -197,25 +187,24 @@ public:
|
||||
Standard_EXPORT virtual Handle(Geom_Curve) VIso (const Standard_Real V) const = 0;
|
||||
|
||||
//! Returns the Global Continuity of the surface in direction U and V :
|
||||
//! C0 : only geometric continuity,
|
||||
//! C1 : continuity of the first derivative all along the surface,
|
||||
//! C2 : continuity of the second derivative all along the surface,
|
||||
//! C3 : continuity of the third derivative all along the surface,
|
||||
//! G1 : tangency continuity all along the surface,
|
||||
//! G2 : curvature continuity all along the surface,
|
||||
//! CN : the order of continuity is infinite.
|
||||
//! Example :
|
||||
//! - C0: only geometric continuity,
|
||||
//! - C1: continuity of the first derivative all along the surface,
|
||||
//! - C2: continuity of the second derivative all along the surface,
|
||||
//! - C3: continuity of the third derivative all along the surface,
|
||||
//! - G1: tangency continuity all along the surface,
|
||||
//! - G2: curvature continuity all along the surface,
|
||||
//! - CN: the order of continuity is infinite.
|
||||
//!
|
||||
//! Example:
|
||||
//! If the surface is C1 in the V parametric direction and C2
|
||||
//! in the U parametric direction Shape = C1.
|
||||
Standard_EXPORT virtual GeomAbs_Shape Continuity() const = 0;
|
||||
|
||||
//! Returns the order of continuity of the surface in the
|
||||
//! U parametric direction.
|
||||
//! Returns the order of continuity of the surface in the U parametric direction.
|
||||
//! Raised if N < 0.
|
||||
Standard_EXPORT virtual Standard_Boolean IsCNu (const Standard_Integer N) const = 0;
|
||||
|
||||
//! Returns the order of continuity of the surface in the
|
||||
//! V parametric direction.
|
||||
//! Returns the order of continuity of the surface in the V parametric direction.
|
||||
//! Raised if N < 0.
|
||||
Standard_EXPORT virtual Standard_Boolean IsCNv (const Standard_Integer N) const = 0;
|
||||
|
||||
@ -226,9 +215,10 @@ public:
|
||||
Standard_EXPORT virtual void D0 (const Standard_Real U, const Standard_Real V, gp_Pnt& P) const = 0;
|
||||
|
||||
|
||||
//! Computes the point P and the first derivatives in the
|
||||
//! directions U and V at this point.
|
||||
//! Computes the point P and the first derivatives in the directions U and V at this point.
|
||||
//! Raised if the continuity of the surface is not C1.
|
||||
//!
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
Standard_EXPORT virtual void D1 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V) const = 0;
|
||||
|
||||
//! Computes the point P, the first and the second derivatives in
|
||||
@ -241,21 +231,18 @@ public:
|
||||
//! Raised if the continuity of the surface is not C2.
|
||||
Standard_EXPORT virtual void D3 (const Standard_Real U, const Standard_Real V, gp_Pnt& P, gp_Vec& D1U, gp_Vec& D1V, gp_Vec& D2U, gp_Vec& D2V, gp_Vec& D2UV, gp_Vec& D3U, gp_Vec& D3V, gp_Vec& D3UUV, gp_Vec& D3UVV) const = 0;
|
||||
|
||||
//! ---Purpose ;
|
||||
//! Computes the derivative of order Nu in the direction U and Nv
|
||||
//! in the direction V at the point P(U, V).
|
||||
//! Computes the derivative of order Nu in the direction U and Nv in the direction V at the point P(U, V).
|
||||
//!
|
||||
//! Raised if the continuity of the surface is not CNu in the U
|
||||
//! direction or not CNv in the V direction.
|
||||
//! Raised if the continuity of the surface is not CNu in the U direction or not CNv in the V direction.
|
||||
//! Raised if Nu + Nv < 1 or Nu < 0 or Nv < 0.
|
||||
Standard_EXPORT virtual gp_Vec DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv) const = 0;
|
||||
|
||||
//! Computes the point of parameter U on the surface.
|
||||
//! Computes the point of parameter (U, V) on the surface.
|
||||
//!
|
||||
//! It is implemented with D0
|
||||
//! It is implemented with D0.
|
||||
//! Tip: use GeomLib::NormEstim() to calculate surface normal at specified (U, V) point.
|
||||
//!
|
||||
//! Raised only for an "OffsetSurface" if it is not possible to
|
||||
//! compute the current point.
|
||||
//! Raised only for an "OffsetSurface" if it is not possible to compute the current point.
|
||||
Standard_EXPORT gp_Pnt Value (const Standard_Real U, const Standard_Real V) const;
|
||||
|
||||
//! Dumps the content of me into the stream
|
||||
|
@ -2371,119 +2371,143 @@ void GeomLib::CancelDenominatorDerivative(Handle(Geom_BSplineSurface) &
|
||||
|
||||
//=======================================================================
|
||||
//function : NormEstim
|
||||
//purpose :
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
Standard_Integer GeomLib::NormEstim(const Handle(Geom_Surface)& S,
|
||||
const gp_Pnt2d& UV,
|
||||
const Standard_Real Tol, gp_Dir& N)
|
||||
Standard_Integer GeomLib::NormEstim (const Handle(Geom_Surface)& theSurf,
|
||||
const gp_Pnt2d& theUV,
|
||||
const Standard_Real theTol,
|
||||
gp_Dir& theNorm)
|
||||
{
|
||||
const Standard_Real aTol2 = Square (theTol);
|
||||
|
||||
gp_Vec DU, DV;
|
||||
gp_Pnt DummyPnt;
|
||||
Standard_Real aTol2 = Square(Tol);
|
||||
gp_Pnt aDummyPnt;
|
||||
theSurf->D1 (theUV.X(), theUV.Y(), aDummyPnt, DU, DV);
|
||||
|
||||
S->D1(UV.X(), UV.Y(), DummyPnt, DU, DV);
|
||||
|
||||
Standard_Real MDU = DU.SquareMagnitude(), MDV = DV.SquareMagnitude();
|
||||
|
||||
if(MDU >= aTol2 && MDV >= aTol2) {
|
||||
gp_Vec Norm = DU^DV;
|
||||
Standard_Real Magn = Norm.SquareMagnitude();
|
||||
if(Magn < aTol2) return 3;
|
||||
|
||||
//Magn = sqrt(Magn);
|
||||
N.SetXYZ(Norm.XYZ());
|
||||
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
gp_Vec D2U, D2V, D2UV;
|
||||
Standard_Boolean isDone;
|
||||
CSLib_NormalStatus aStatus;
|
||||
gp_Dir aNormal;
|
||||
|
||||
S->D2(UV.X(), UV.Y(), DummyPnt, DU, DV, D2U, D2V, D2UV);
|
||||
CSLib::Normal(DU, DV, D2U, D2V, D2UV, Tol, isDone, aStatus, aNormal);
|
||||
|
||||
if (isDone) {
|
||||
Standard_Real Umin, Umax, Vmin, Vmax;
|
||||
Standard_Real step = 1.0e-5;
|
||||
Standard_Real eps = 1.0e-16;
|
||||
Standard_Real sign = -1.0;
|
||||
|
||||
S->Bounds(Umin, Umax, Vmin, Vmax);
|
||||
|
||||
// check for cone apex singularity point
|
||||
if ((UV.Y() > Vmin + step) && (UV.Y() < Vmax - step))
|
||||
{
|
||||
gp_Dir aNormal1, aNormal2;
|
||||
Standard_Real aConeSingularityAngleEps = 1.0e-4;
|
||||
S->D1(UV.X(), UV.Y() - sign * step, DummyPnt, DU, DV);
|
||||
if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
|
||||
aNormal1 = DU^DV;
|
||||
S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
|
||||
if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps)) {
|
||||
aNormal2 = DU^DV;
|
||||
if (aNormal1.IsOpposite(aNormal2, aConeSingularityAngleEps))
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Along V
|
||||
if(MDU < aTol2 && MDV >= aTol2) {
|
||||
if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
|
||||
sign = 1.0;
|
||||
S->D1(UV.X(), UV.Y() + sign * step, DummyPnt, DU, DV);
|
||||
gp_Vec Norm = DU^DV;
|
||||
if (Norm.SquareMagnitude() < eps) {
|
||||
Standard_Real sign1 = -1.0;
|
||||
if ((Umax - UV.X()) > (UV.X() - Umin))
|
||||
sign1 = 1.0;
|
||||
S->D1(UV.X() + sign1 * step, UV.Y() + sign * step, DummyPnt, DU, DV);
|
||||
Norm = DU^DV;
|
||||
}
|
||||
if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
|
||||
aNormal.Reverse();
|
||||
}
|
||||
|
||||
// Along U
|
||||
if(MDV < aTol2 && MDU >= aTol2) {
|
||||
if ((Umax - UV.X()) > (UV.X() - Umin))
|
||||
sign = 1.0;
|
||||
S->D1(UV.X() + sign * step, UV.Y(), DummyPnt, DU, DV);
|
||||
gp_Vec Norm = DU^DV;
|
||||
if (Norm.SquareMagnitude() < eps) {
|
||||
Standard_Real sign1 = -1.0;
|
||||
if ((Vmax - UV.Y()) > (UV.Y() - Vmin))
|
||||
sign1 = 1.0;
|
||||
S->D1(UV.X() + sign * step, UV.Y() + sign1 * step, DummyPnt, DU, DV);
|
||||
Norm = DU^DV;
|
||||
}
|
||||
if ((Norm.SquareMagnitude() >= eps) && (Norm.Dot(aNormal) < 0.0))
|
||||
aNormal.Reverse();
|
||||
}
|
||||
|
||||
// quasysingular
|
||||
if ((aStatus == CSLib_D1NuIsNull) || (aStatus == CSLib_D1NvIsNull) ||
|
||||
(aStatus == CSLib_D1NuIsParallelD1Nv)) {
|
||||
N.SetXYZ(aNormal.XYZ());
|
||||
return 1;
|
||||
}
|
||||
// conical
|
||||
if (aStatus == CSLib_InfinityOfSolutions)
|
||||
return 2;
|
||||
}
|
||||
// computation is impossible
|
||||
else {
|
||||
// conical
|
||||
if (aStatus == CSLib_D1NIsNull) {
|
||||
return 2;
|
||||
}
|
||||
const Standard_Real MDU = DU.SquareMagnitude(), MDV = DV.SquareMagnitude();
|
||||
if (MDU >= aTol2
|
||||
&& MDV >= aTol2)
|
||||
{
|
||||
gp_Vec aNorm = DU ^ DV;
|
||||
Standard_Real aMagn = aNorm.SquareMagnitude();
|
||||
if (aMagn < aTol2)
|
||||
{
|
||||
return 3;
|
||||
}
|
||||
|
||||
theNorm.SetXYZ (aNorm.XYZ());
|
||||
return 0;
|
||||
}
|
||||
return 3;
|
||||
|
||||
gp_Vec D2U, D2V, D2UV;
|
||||
Standard_Boolean isDone = false;
|
||||
CSLib_NormalStatus aStatus;
|
||||
gp_Dir aNormal;
|
||||
|
||||
theSurf->D2 (theUV.X(), theUV.Y(), aDummyPnt, DU, DV, D2U, D2V, D2UV);
|
||||
CSLib::Normal (DU, DV, D2U, D2V, D2UV, theTol, isDone, aStatus, aNormal);
|
||||
if (!isDone)
|
||||
{
|
||||
// computation is impossible
|
||||
return aStatus == CSLib_D1NIsNull ? 2 : 3;
|
||||
}
|
||||
|
||||
Standard_Real Umin, Umax, Vmin, Vmax;
|
||||
Standard_Real step = 1.0e-5;
|
||||
Standard_Real eps = 1.0e-16;
|
||||
Standard_Real sign = -1.0;
|
||||
theSurf->Bounds (Umin, Umax, Vmin, Vmax);
|
||||
|
||||
// check for cone apex singularity point
|
||||
if ((theUV.Y() > Vmin + step)
|
||||
&& (theUV.Y() < Vmax - step))
|
||||
{
|
||||
gp_Dir aNormal1, aNormal2;
|
||||
Standard_Real aConeSingularityAngleEps = 1.0e-4;
|
||||
theSurf->D1(theUV.X(), theUV.Y() - sign * step, aDummyPnt, DU, DV);
|
||||
if ((DU.XYZ().SquareModulus() > eps) && (DV.XYZ().SquareModulus() > eps))
|
||||
{
|
||||
aNormal1 = DU ^ DV;
|
||||
theSurf->D1 (theUV.X(), theUV.Y() + sign * step, aDummyPnt, DU, DV);
|
||||
if ((DU.XYZ().SquareModulus() > eps)
|
||||
&& (DV.XYZ().SquareModulus() > eps))
|
||||
{
|
||||
aNormal2 = DU^DV;
|
||||
if (aNormal1.IsOpposite (aNormal2, aConeSingularityAngleEps))
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Along V
|
||||
if (MDU < aTol2
|
||||
&& MDV >= aTol2)
|
||||
{
|
||||
if ((Vmax - theUV.Y()) > (theUV.Y() - Vmin))
|
||||
{
|
||||
sign = 1.0;
|
||||
}
|
||||
|
||||
theSurf->D1 (theUV.X(), theUV.Y() + sign * step, aDummyPnt, DU, DV);
|
||||
gp_Vec Norm = DU ^ DV;
|
||||
if (Norm.SquareMagnitude() < eps)
|
||||
{
|
||||
Standard_Real sign1 = -1.0;
|
||||
if ((Umax - theUV.X()) > (theUV.X() - Umin))
|
||||
{
|
||||
sign1 = 1.0;
|
||||
}
|
||||
theSurf->D1 (theUV.X() + sign1 * step, theUV.Y() + sign * step, aDummyPnt, DU, DV);
|
||||
Norm = DU ^ DV;
|
||||
}
|
||||
if (Norm.SquareMagnitude() >= eps
|
||||
&& Norm.Dot (aNormal) < 0.0)
|
||||
{
|
||||
aNormal.Reverse();
|
||||
}
|
||||
}
|
||||
|
||||
// Along U
|
||||
if (MDV < aTol2
|
||||
&& MDU >= aTol2)
|
||||
{
|
||||
if ((Umax - theUV.X()) > (theUV.X() - Umin))
|
||||
{
|
||||
sign = 1.0;
|
||||
}
|
||||
|
||||
theSurf->D1 (theUV.X() + sign * step, theUV.Y(), aDummyPnt, DU, DV);
|
||||
gp_Vec Norm = DU ^ DV;
|
||||
if (Norm.SquareMagnitude() < eps)
|
||||
{
|
||||
Standard_Real sign1 = -1.0;
|
||||
if ((Vmax - theUV.Y()) > (theUV.Y() - Vmin))
|
||||
{
|
||||
sign1 = 1.0;
|
||||
}
|
||||
|
||||
theSurf->D1 (theUV.X() + sign * step, theUV.Y() + sign1 * step, aDummyPnt, DU, DV);
|
||||
Norm = DU ^ DV;
|
||||
}
|
||||
if (Norm.SquareMagnitude() >= eps
|
||||
&& Norm.Dot (aNormal) < 0.0)
|
||||
{
|
||||
aNormal.Reverse();
|
||||
}
|
||||
}
|
||||
|
||||
// quasysingular
|
||||
if (aStatus == CSLib_D1NuIsNull
|
||||
|| aStatus == CSLib_D1NvIsNull
|
||||
|| aStatus == CSLib_D1NuIsParallelD1Nv)
|
||||
{
|
||||
theNorm.SetXYZ (aNormal.XYZ());
|
||||
return 1;
|
||||
}
|
||||
|
||||
return aStatus == CSLib_InfinityOfSolutions ? 2 : 3;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
|
@ -183,8 +183,19 @@ public:
|
||||
//! Cancel,on the boundaries,the denominator first derivative
|
||||
//! in the directions wished by the user and set its value to 1.
|
||||
Standard_EXPORT static void CancelDenominatorDerivative (Handle(Geom_BSplineSurface)& BSurf, const Standard_Boolean UDirection, const Standard_Boolean VDirection);
|
||||
|
||||
Standard_EXPORT static Standard_Integer NormEstim (const Handle(Geom_Surface)& S, const gp_Pnt2d& UV, const Standard_Real Tol, gp_Dir& N);
|
||||
|
||||
//! Estimate surface normal at the given (U, V) point.
|
||||
//! @param[in] theSurf input surface
|
||||
//! @param[in] theUV (U, V) point coordinates on the surface
|
||||
//! @param[in] theTol estimation tolerance
|
||||
//! @param[out] theNorm computed normal
|
||||
//! @return 0 if normal estimated from D1,
|
||||
//! 1 if estimated from D2 (quasysingular),
|
||||
//! >=2 in case of failure (undefined or infinite solutions)
|
||||
Standard_EXPORT static Standard_Integer NormEstim (const Handle(Geom_Surface)& theSurf,
|
||||
const gp_Pnt2d& theUV,
|
||||
const Standard_Real theTol,
|
||||
gp_Dir& theNorm);
|
||||
|
||||
//! This method defines if opposite boundaries of surface
|
||||
//! coincide with given tolerance
|
||||
|
Loading…
x
Reference in New Issue
Block a user