1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0024203: Command "sameparameter" in DRAW on attached edge set tolerance equal to 116.

Main problem:
Algorithm of locale extrema, which is called by "sameparameter" command, cannot find extrema because extremal point is far from initial point. Therefore, reparametrization of edge's curve (for same-parameter) cannot be made properly.

Solve:
Using of global extrema (see Approx_SameParameter.cxx).

As the given edge contains two 2d-curves and the second from them is problem, for select needed curve, an interface of "mk2dcurve" DRAW-command is changed. Now there can be used an index of curve (by default, index = 1, as earlier), see help for more detail information.

Test "heal advanced Z3":
Now checkshape finds only two invalid subshapes. Earlier, it found four subshapes. I think it is not regression. Therefore, test case was changed.

Tolerance reducing.

test
This commit is contained in:
nbv 2014-01-20 14:56:15 +04:00 committed by bugmaster
parent 091232bae7
commit a86d3ec04b
6 changed files with 1321 additions and 1179 deletions

View File

@ -26,14 +26,12 @@
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomAdaptor_HSurface.hxx>
//#include <GCPnts_UniformDeflection.hxx>
#include <GCPnts_QuasiUniformDeflection.hxx>
#include <Extrema_LocateExtPC.hxx>
#include <AdvApprox_ApproxAFunction.hxx>
#include <GeomLib_MakeCurvefromApprox.hxx>
#include <Precision.hxx>
#define MAX_ARRAY_SIZE 1000 // IFV, Jan 2000
#include <Extrema_ExtPC.hxx>
#ifdef DEB
#ifdef DRAW
@ -50,32 +48,32 @@ static Standard_Integer NbCurve = 0;
static void ProjectPointOnCurve(const Standard_Real InitValue,
const gp_Pnt APoint,
const Standard_Real Tolerance,
const Standard_Integer NumIteration,
const Adaptor3d_Curve& Curve,
Standard_Boolean& Status,
Standard_Real& Result)
const gp_Pnt APoint,
const Standard_Real Tolerance,
const Standard_Integer NumIteration,
const Adaptor3d_Curve& Curve,
Standard_Boolean& Status,
Standard_Real& Result)
{
Standard_Integer num_iter = 0,
not_done = 1,
ii ;
not_done = 1,
ii ;
gp_Pnt a_point ;
gp_Vec vector,
d1,
d2 ;
d1,
d2 ;
Standard_Real func,
func_derivative,
param = InitValue ;
func_derivative,
param = InitValue ;
Status = Standard_False ;
Standard_Real Toler = 1.0e-12;
do {
num_iter += 1 ;
Curve.D2(param,
a_point,
d1,
d2) ;
a_point,
d1,
d2) ;
for (ii = 1 ; ii <= 3 ; ii++) {
vector.SetCoord(ii, APoint.Coord(ii) - a_point.Coord(ii)) ;
}
@ -87,19 +85,19 @@ static void ProjectPointOnCurve(const Standard_Real InitValue,
Status = Standard_True ;
}
else
{ // fixing a bug PRO18577 : avoid divizion by zero
if( Abs(func_derivative) > Toler ) {
param -= func / func_derivative ;
}
param = Max(param,Curve.FirstParameter()) ;
param = Min(param,Curve.LastParameter()) ;
Status = Standard_True ;
{ // fixing a bug PRO18577 : avoid divizion by zero
if( Abs(func_derivative) > Toler ) {
param -= func / func_derivative ;
}
param = Max(param,Curve.FirstParameter()) ;
param = Min(param,Curve.LastParameter()) ;
//Status = Standard_True ;
}
}
while (not_done && num_iter <= NumIteration) ;
Result = param ;
}
//=======================================================================
@ -109,31 +107,31 @@ static void ProjectPointOnCurve(const Standard_Real InitValue,
class Approx_SameParameter_Evaluator : public AdvApprox_EvaluatorFunction
{
public:
public:
Approx_SameParameter_Evaluator (const TColStd_Array1OfReal& theFlatKnots,
const TColStd_Array1OfReal& thePoles,
const Handle(Adaptor2d_HCurve2d)& theHCurve2d)
const TColStd_Array1OfReal& thePoles,
const Handle(Adaptor2d_HCurve2d)& theHCurve2d)
: FlatKnots(theFlatKnots), Poles(thePoles), HCurve2d(theHCurve2d) {}
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
const TColStd_Array1OfReal& FlatKnots;
const TColStd_Array1OfReal& Poles;
Handle(Adaptor2d_HCurve2d) HCurve2d;
};
void Approx_SameParameter_Evaluator::Evaluate (Standard_Integer *,/*Dimension*/
Standard_Real /*StartEnd*/[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result,
Standard_Integer *ReturnCode)
Standard_Real /*StartEnd*/[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result,
Standard_Integer *ReturnCode)
{
gp_Pnt2d Point ;
gp_Vec2d Vector ;
@ -146,16 +144,16 @@ void Approx_SameParameter_Evaluator::Evaluate (Standard_Integer *,/*Dimension*/
// evaluate the 1D bspline that represents the change in parameterization
//
BSplCLib::Eval(*Parameter,
Standard_False,
*DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
Standard_False,
*DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
if (*DerivativeRequest == 0){
HCurve2d->D0(eval_result[0],Point);
Point.Coord(Result[0],Result[1]);
@ -169,24 +167,22 @@ void Approx_SameParameter_Evaluator::Evaluate (Standard_Integer *,/*Dimension*/
}
static Standard_Real ComputeTolReached(const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
const Standard_Integer nbp)
const Adaptor3d_CurveOnSurface& cons,
const Standard_Integer nbp)
{
Standard_Real d2 = 0.;
Standard_Integer nn = nbp;
Standard_Real unsurnn = 1./nn;
Standard_Real first = c3d->FirstParameter();
Standard_Real last = c3d->LastParameter();
for(Standard_Integer i = 0; i <= nn; i++){
Standard_Real t = unsurnn*i;
const Standard_Real first = c3d->FirstParameter();
const Standard_Real last = c3d->LastParameter();
for(Standard_Integer i = 0; i <= nbp; i++){
Standard_Real t = IntToReal(i)/IntToReal(nbp);
Standard_Real u = first*(1.-t) + last*t;
gp_Pnt Pc3d = c3d->Value(u);
gp_Pnt Pcons = cons.Value(u);
if (Precision::IsInfinite(Pcons.X()) ||
Precision::IsInfinite(Pcons.Y()) ||
Precision::IsInfinite(Pcons.Z())) {
d2=Precision::Infinite();
break;
Precision::IsInfinite(Pcons.Y()) ||
Precision::IsInfinite(Pcons.Z())) {
d2=Precision::Infinite();
break;
}
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp > d2) d2 = temp;
@ -197,15 +193,15 @@ static Standard_Real ComputeTolReached(const Handle(Adaptor3d_HCurve)& c3d,
}
static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Poles,
const Standard_Integer nbp,
const TColStd_Array1OfReal& pc3d,
// const TColStd_Array1OfReal& pcons,
const TColStd_Array1OfReal& ,
const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
Standard_Real& tol,
const Standard_Real oldtol)
const TColStd_Array1OfReal& Poles,
const Standard_Integer nbp,
const TColStd_Array1OfReal& pc3d,
// const TColStd_Array1OfReal& pcons,
const TColStd_Array1OfReal& ,
const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
Standard_Real& tol,
const Standard_Real oldtol)
{
Standard_Real d = tol;
Standard_Integer extrap_mode[2] ;
@ -226,7 +222,7 @@ static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
gp_Pnt Pcons = cons.Value(tcons);
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp >= dglis) dglis = temp;
@ -246,7 +242,7 @@ static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
gp_Pnt Pcons = cons.Value(tcons);
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp >= dglis) dglis = temp;
@ -261,25 +257,25 @@ static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
Standard_Real d2 = 0.;
Standard_Integer nn = 2*nbp;
Standard_Real unsurnn = 1./nn;
// Modified by skv - Wed Jun 2 11:49:59 2004 OCC5898 Begin
// Correction of the interval of valid values. This condition has no sensible
// grounds. But it is better then the old one (which is commented out) because
// it fixes the bug OCC5898. To develop more or less sensible criterion it is
// necessary to deeply investigate this problem which is not possible in frames
// of debugging.
// Modified by skv - Wed Jun 2 11:49:59 2004 OCC5898 Begin
// Correction of the interval of valid values. This condition has no sensible
// grounds. But it is better then the old one (which is commented out) because
// it fixes the bug OCC5898. To develop more or less sensible criterion it is
// necessary to deeply investigate this problem which is not possible in frames
// of debugging.
// Standard_Real firstborne= 2*pc3d(1)-pc3d(nbp);
// Standard_Real lastborne= 2*pc3d(nbp)-pc3d(1);
// Standard_Real firstborne= 2*pc3d(1)-pc3d(nbp);
// Standard_Real lastborne= 2*pc3d(nbp)-pc3d(1);
Standard_Real firstborne= 3.*pc3d(1) - 2.*pc3d(nbp);
Standard_Real lastborne = 3.*pc3d(nbp) - 2.*pc3d(1);
// Modified by skv - Wed Jun 2 11:50:03 2004 OCC5898 End
// Modified by skv - Wed Jun 2 11:50:03 2004 OCC5898 End
for(i = 0; i <= nn; i++){
Standard_Real t = unsurnn*i;
Standard_Real tc3d = pc3d(1)*(1.-t) + pc3d(nbp)*t;
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
if (tcons < firstborne || tcons > lastborne) {
tol=Precision::Infinite();
return Standard_False;
@ -303,10 +299,10 @@ static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Geom_Curve)& C3D,
const Handle(Geom2d_Curve)& C2D,
const Handle(Geom_Surface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Geom2d_Curve)& C2D,
const Handle(Geom_Surface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
{
myHCurve2d = new Geom2dAdaptor_HCurve(C2D);
myC3d = new GeomAdaptor_HCurve(C3D);
@ -321,10 +317,10 @@ Approx_SameParameter::Approx_SameParameter(const Handle(Geom_Curve)& C3D,
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D,
const Handle(Geom2d_Curve)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Geom2d_Curve)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
{
myC3d = C3D;
mySurf = S;
@ -339,10 +335,10 @@ Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D,
const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
{
myC3d = C3D;
mySurf = S;
@ -355,9 +351,12 @@ Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D
//function : Build
//purpose :
//=======================================================================
void Approx_SameParameter::Build(const Standard_Real Tolerance)
{
const Standard_Real anErrorMAX = 1.0e15;
const Standard_Integer aMaxArraySize = 1000;
const Standard_Integer NCONTROL = 22;
Standard_Integer ii ;
Adaptor3d_CurveOnSurface CurveOnSurface(myHCurve2d,mySurf);
Standard_Real fcons = CurveOnSurface.FirstParameter();
@ -412,11 +411,10 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
//Take a multiple of the sample pof CheckShape,
//at least the control points will be correct. No comment!!!
Standard_Integer NCONTROL = 22;
#ifdef DEB
Standard_Integer nbcoups = 0;
#endif
Standard_Boolean interpolok = 0;
Standard_Real tolsov = 1.e200;
//Take parameters with constant step on the curve on surface
@ -428,9 +426,9 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_Real wcons = fcons;
Standard_Real wc3d = fc3d;
Standard_Real qpcons[MAX_ARRAY_SIZE], qnewpcons[MAX_ARRAY_SIZE],
qpc3d[MAX_ARRAY_SIZE], qnewpc3d[MAX_ARRAY_SIZE];
Standard_Real qpcons[aMaxArraySize], qnewpcons[aMaxArraySize],
qpc3d[aMaxArraySize], qnewpc3d[aMaxArraySize];
Standard_Real * pcons = qpcons; Standard_Real * newpcons = qnewpcons;
Standard_Real * pc3d = qpc3d; Standard_Real * newpc3d = qnewpc3d;
@ -445,51 +443,51 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_Integer New_NCONTROL = NCONTROL;
if(Continuity < GeomAbs_C1) {
Standard_Integer NbInt = myHCurve2d->NbIntervals(GeomAbs_C1) + 1;
TColStd_Array1OfReal Param_de_decoupeC1 (1, NbInt);
myHCurve2d->Intervals(Param_de_decoupeC1, GeomAbs_C1);
TColStd_SequenceOfReal new_par;
Standard_Integer inter = 1;
ii =1;
new_par.Append(fcons);
Standard_Integer NbInt = myHCurve2d->NbIntervals(GeomAbs_C1) + 1;
TColStd_Array1OfReal Param_de_decoupeC1 (1, NbInt);
myHCurve2d->Intervals(Param_de_decoupeC1, GeomAbs_C1);
TColStd_SequenceOfReal new_par;
Standard_Integer inter = 1;
ii =1;
new_par.Append(fcons);
while(Param_de_decoupeC1(inter) <= fcons + deltamin) inter++;
while(Param_de_decoupeC1(NbInt) >= lcons - deltamin) NbInt--;
while(Param_de_decoupeC1(inter) <= fcons + deltamin) inter++;
while(Param_de_decoupeC1(NbInt) >= lcons - deltamin) NbInt--;
while(inter <= NbInt || ii < NCONTROL) {
if(Param_de_decoupeC1(inter) < pcons[ii]) {
new_par.Append(Param_de_decoupeC1(inter));
if((pcons[ii] - Param_de_decoupeC1(inter)) <= deltamin) {
ii++;
if(ii > NCONTROL) {ii = NCONTROL;}
}
inter++;
}
else {
if((Param_de_decoupeC1(inter) - pcons[ii]) > deltamin) {
new_par.Append(pcons[ii]);
}
ii++;
}
}
new_par.Append(lcons);
New_NCONTROL = new_par.Length() - 1;
//simple protection if New_NCONTROL > allocated elements in array
if (New_NCONTROL > aMaxArraySize) {
mySameParameter = Standard_False;
return;
}
for(ii = 1; ii <= New_NCONTROL; ii++){
pcons[ii] = pc3d[ii] = new_par.Value(ii + 1);
}
pc3d[New_NCONTROL] = lc3d;
}
while(inter <= NbInt || ii < NCONTROL) {
if(Param_de_decoupeC1(inter) < pcons[ii]) {
new_par.Append(Param_de_decoupeC1(inter));
if((pcons[ii] - Param_de_decoupeC1(inter)) <= deltamin) {
ii++;
if(ii > NCONTROL) {ii = NCONTROL;}
}
inter++;
}
else {
if((Param_de_decoupeC1(inter) - pcons[ii]) > deltamin) {
new_par.Append(pcons[ii]);
}
ii++;
}
}
new_par.Append(lcons);
New_NCONTROL = new_par.Length() - 1;
//simple protection if New_NCONTROL > allocated elements in array
if (New_NCONTROL > MAX_ARRAY_SIZE) {
mySameParameter = Standard_False;
return;
}
for(ii = 1; ii <= New_NCONTROL; ii++){
pcons[ii] = pc3d[ii] = new_par.Value(ii + 1);
}
pc3d[New_NCONTROL] = lc3d;
}
Extrema_LocateExtPC Projector;
Projector.Initialize(myC3d->Curve(),fc3d,lc3d,Tol);
Standard_Integer count = 1;
Standard_Real previousp = fc3d, initp=0, curp;//, deltamin = 50*Tolp;
Standard_Real bornesup = lc3d - deltamin;
@ -501,7 +499,7 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
dist2 = Pcons.SquareDistance(Pc3d);
use_parameter = (dist2 <= Tol2 && (pc3d[ii] > pc3d[count-1] + deltamin)) ;
if(use_parameter) {
if(dist2 > dmax2) dmax2 = dist2;
initp = previousp = pc3d[count] = pc3d[ii];
pcons[count] = pcons[ii];
@ -512,34 +510,72 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
projok = mySameParameter = Standard_False;
Projector.Perform(Pcons, initp);
if (Projector.IsDone()) {
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
}
else {
ProjectPointOnCurve(initp,Pcons,Tol,30,myC3d->Curve(),projok,curp);
else
{
ProjectPointOnCurve(initp,Pcons,Tol,30,myC3d->Curve(),projok,curp);
}
if(projok){
if(curp > previousp + deltamin && curp < bornesup){
initp = previousp = pc3d[count] = curp;
pcons[count] = pcons[ii];
count++;
}
if(projok)
{
if(curp > previousp + deltamin && curp < bornesup){
initp = previousp = pc3d[count] = curp;
pcons[count] = pcons[ii];
count++;
}
}
else {
#ifdef DEB
// JAG
cout << "Projection not done" << endl;
else
{
Extrema_ExtPC PR(Pcons,myC3d->Curve(),fc3d,lc3d,Tol);
if(PR.IsDone())
{
const Standard_Integer aNbExt = PR.NbExt();
if(aNbExt > 0)
{
Standard_Integer anIndMin = 0;
Standard_Real aDistMin = RealLast();
for(Standard_Integer i = 1; i <= aNbExt; i++)
{
const gp_Pnt &aP = PR.Point(i).Value();
Standard_Real aDist2 = aP.SquareDistance(Pcons);
if(aDist2 < aDistMin)
{
aDistMin = aDist2;
anIndMin = i;
}
}
curp = PR.Point(anIndMin).Parameter();
if(curp > previousp + deltamin && curp < bornesup)
{
initp = previousp = pc3d[count] = curp;
pcons[count] = pcons[ii];
count++;
projok = Standard_True;
}
}
}
}
if(!projok)
{
//Projector
#ifdef DEB
// JAG
cout << "Projection not done" << endl;
#endif
}
}
}
if(mySameParameter){
myTolReached = 1.5*sqrt(dmax2);
return;
}
if(!extrok) { // If not already SameP and tangent to mill, abandon.
mySameParameter = Standard_False;
#ifdef DEB
@ -571,8 +607,11 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
#endif
}
#endif
while(!interpolok){
Standard_Boolean hasCountChanged = Standard_False;
while(!interpolok)
{
// The tables and their limits for the interpolation.
Standard_Integer num_knots = count + 7;
Standard_Integer num_poles = count + 3;
@ -582,79 +621,79 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
TColStd_Array1OfReal Poles(1,num_poles) ;
TColStd_Array1OfReal InterpolationParameters(1,num_poles) ;
TColStd_Array1OfReal FlatKnots(1,num_knots) ;
// Fill tables taking attention to end values.
ContactOrder.Init(0);
ContactOrder(2) = ContactOrder(num_poles - 1) = 1;
FlatKnots(1) = FlatKnots(2) = FlatKnots(3) = FlatKnots(4) = fc3d;
FlatKnots(num_poles + 1) = FlatKnots(num_poles + 2) =
FlatKnots(num_poles + 3) = FlatKnots(num_poles + 4) = lc3d;
Poles(1) = fcons; Poles(num_poles) = lcons;
Poles(2) = tangent[0]; Poles(num_poles - 1) = tangent[1];
InterpolationParameters(1) = InterpolationParameters(2) = fc3d;
InterpolationParameters(num_poles - 1) = InterpolationParameters(num_poles) = lc3d;
for (ii = 3; ii <= num_poles - 2; ii++) {
Poles(ii) = Paramcons(ii - 1);
InterpolationParameters(ii) = FlatKnots(ii+2) = Paramc3d(ii - 1);
}
Standard_Integer inversion_problem;
BSplCLib::Interpolate(3,FlatKnots,InterpolationParameters,ContactOrder,
1,Poles(1),inversion_problem);
1,Poles(1),inversion_problem);
if(inversion_problem) {
Standard_ConstructionError::Raise();
}
//-------------------------------------------
#ifdef DEB
if (AffichFw) {
nbcoups ++;
char Name[17];
Name[0] = '\0';
Standard_Integer nnn = 100;
TColgp_Array1OfPnt2d DEBP2d (0,nnn);
TColStd_Array1OfInteger DEBMults(0,nnn);
DEBMults.Init(1); DEBMults(0) = 2; DEBMults(nnn) = 2;
TColStd_Array1OfReal DEBKnots(0,nnn);
Standard_Real du = (lc3d - fc3d) / nnn;
Standard_Real u3d = fc3d;
Standard_Integer extrap_mode[2] ;
extrap_mode[0] = extrap_mode[1] = 3;
Standard_Real eval_result[2] ;
Standard_Integer DerivativeRequest = 0;
Standard_Real *PolesArray =
(Standard_Real *) &Poles(Poles.Lower()) ;
if (AffichFw) {
nbcoups ++;
char Name[17];
Name[0] = '\0';
Standard_Integer nnn = 100;
TColgp_Array1OfPnt2d DEBP2d (0,nnn);
TColStd_Array1OfInteger DEBMults(0,nnn);
DEBMults.Init(1); DEBMults(0) = 2; DEBMults(nnn) = 2;
TColStd_Array1OfReal DEBKnots(0,nnn);
Standard_Real du = (lc3d - fc3d) / nnn;
Standard_Real u3d = fc3d;
Standard_Integer extrap_mode[2] ;
extrap_mode[0] = extrap_mode[1] = 3;
Standard_Real eval_result[2] ;
Standard_Integer DerivativeRequest = 0;
Standard_Real *PolesArray =
(Standard_Real *) &Poles(Poles.Lower()) ;
for (Standard_Integer DEBi = 0; DEBi <= nnn; DEBi++) {
DEBKnots(DEBi) = DEBi;
BSplCLib::Eval(u3d,
Standard_False,
DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
for (Standard_Integer DEBi = 0; DEBi <= nnn; DEBi++) {
DEBKnots(DEBi) = DEBi;
BSplCLib::Eval(u3d,
Standard_False,
DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
DEBP2d (DEBi) = gp_Pnt2d(u3d,eval_result[0]);
u3d += du;
}
DEBP2d (DEBi) = gp_Pnt2d(u3d,eval_result[0]);
u3d += du;
}
Handle(Geom2d_BSplineCurve) DEBBS =
new Geom2d_BSplineCurve(DEBP2d,DEBKnots,DEBMults,1);
Sprintf(Name,"DEBC2d_%d_%d",NbCurve,nbcoups );
Handle(Geom2d_BSplineCurve) DEBBS =
new Geom2d_BSplineCurve(DEBP2d,DEBKnots,DEBMults,1);
Sprintf(Name,"DEBC2d_%d_%d",NbCurve,nbcoups );
#ifdef DRAW
DrawTrSurf::Set(Name,DEBBS);
DrawTrSurf::Set(Name,DEBBS);
#endif
}
}
#endif
//-------------------------------------------
//-------------------------------------------
//-------------------------------------------
//-------------------------------------------
// Test if par2d(par3d) is monotonous function or not ----- IFV, Jan 2000
// and try to insert new point to improve BSpline interpolation
@ -667,46 +706,46 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_Integer newcount = 0;
for (ii = 0; ii < count; ii++) {
newpcons[newcount] = pcons[ii];
newpc3d[newcount] = pc3d[ii];
newcount++;
if(count - ii + newcount == MAX_ARRAY_SIZE) continue;
if(count - ii + newcount == aMaxArraySize) continue;
BSplCLib::Eval(.5*(pc3d[ii]+pc3d[ii+1]), Standard_False, DerivativeRequest,
extrap_mode[0], 3, FlatKnots, 1, PolesArray[0], eval_result[0]);
extrap_mode[0], 3, FlatKnots, 1, PolesArray[0], eval_result[0]);
if(eval_result[0] < pcons[ii] || eval_result[0] > pcons[ii+1]) {
Standard_Real ucons = 0.5*(pcons[ii]+pcons[ii+1]);
Standard_Real uc3d = 0.5*(pc3d[ii]+pc3d[ii+1]);
CurveOnSurface.D0(ucons,Pcons);
Projector.Perform(Pcons, uc3d);
if (Projector.IsDone()) {
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
}
else {
ProjectPointOnCurve(uc3d,Pcons,Tol,30,myC3d->Curve(),projok,curp);
}
if(projok){
if(curp > pc3d[ii] + deltamin && curp < pc3d[ii+1] - deltamin){
newpc3d[newcount] = curp;
newpcons[newcount] = ucons;
newcount ++;
}
}
else {
Standard_Real ucons = 0.5*(pcons[ii]+pcons[ii+1]);
Standard_Real uc3d = 0.5*(pc3d[ii]+pc3d[ii+1]);
CurveOnSurface.D0(ucons,Pcons);
Projector.Perform(Pcons, uc3d);
if (Projector.IsDone()) {
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
}
else {
ProjectPointOnCurve(uc3d,Pcons,Tol,30,myC3d->Curve(),projok,curp);
}
if(projok){
if(curp > pc3d[ii] + deltamin && curp < pc3d[ii+1] - deltamin){
newpc3d[newcount] = curp;
newpcons[newcount] = ucons;
newcount ++;
}
}
else {
#ifdef DEB
// JAG
cout << "Projection not done" << endl;
// JAG
cout << "Projection not done" << endl;
#endif
}
}
}
}
newpc3d[newcount] = pc3d[count];
@ -719,14 +758,14 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
pcons = newpcons;
newpcons = temp;
if((count != newcount) && newcount < MAX_ARRAY_SIZE) { count = newcount; continue;}
if((count != newcount) && newcount < aMaxArraySize) { count = newcount; continue;}
count = newcount;
Standard_Real algtol = sqrt(besttol2);
interpolok = Check (FlatKnots, Poles, count+1, Paramc3d, Paramcons,
myC3d, CurveOnSurface, algtol, tolsov);
myC3d, CurveOnSurface, algtol, tolsov);
if (Precision::IsInfinite(algtol)) {
mySameParameter = Standard_False;
@ -738,15 +777,15 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
tolsov = algtol;
interpolok = (interpolok || count >= MAX_ARRAY_SIZE);
interpolok = (interpolok || count >= aMaxArraySize);
if(interpolok) {
Standard_Real besttol = sqrt(besttol2);
Standard_Real besttol = sqrt(besttol2);
#ifdef DEB
if (Voir) {
if(algtol > besttol){
cout<<"SameParameter : Tol can't be reached before approx"<<endl;
}
if(algtol > besttol){
cout<<"SameParameter : Tol can't be reached before approx"<<endl;
}
}
#endif
Handle(TColStd_HArray1OfReal) tol1d,tol2d,tol3d;
@ -756,58 +795,85 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Approx_SameParameter_Evaluator ev (FlatKnots, Poles, myHCurve2d);
AdvApprox_ApproxAFunction anApproximator(2,0,0,tol1d,tol2d,tol3d,fc3d,lc3d,
Continuity,11,40,ev);
Continuity,11,40,ev);
if (anApproximator.IsDone() || anApproximator.HasResult()) {
GeomLib_MakeCurvefromApprox aCurveBuilder(anApproximator) ;
myCurve2d = aCurveBuilder.Curve2dFromTwo1d(1,2) ;
myHCurve2d = new Geom2dAdaptor_HCurve(myCurve2d);
CurveOnSurface.Load(myHCurve2d);
myTolReached = ComputeTolReached(myC3d,CurveOnSurface,NCONTROL);
myDone = Standard_True;
Adaptor3d_CurveOnSurface ACS = CurveOnSurface;
GeomLib_MakeCurvefromApprox aCurveBuilder(anApproximator) ;
Handle(Geom2d_BSplineCurve) aC2d = aCurveBuilder.Curve2dFromTwo1d(1,2) ;
Handle(Adaptor2d_HCurve2d) aHCurve2d = new Geom2dAdaptor_HCurve(aC2d);
CurveOnSurface.Load(aHCurve2d);
myTolReached = ComputeTolReached(myC3d,CurveOnSurface,NCONTROL);
if(myTolReached > anErrorMAX)
{
//This tolerance is too big. Probably, we will not can get
//edge with sameparameter in this case.
myDone = Standard_False;
return;
}
if( (myTolReached < 250.0*besttol) ||
(count >= aMaxArraySize-2) ||
!hasCountChanged) //if count does not change after adding new point
//(else we can have circularity)
{
myCurve2d = aC2d;
myHCurve2d = new Geom2dAdaptor_HCurve(myCurve2d);
myDone = Standard_True;
}
else
{
interpolok = Standard_False;
CurveOnSurface = ACS;
}
}
}
else {
if(!interpolok)
{
#ifdef DEB
if (Voir)
cout<<"SameParameter : Not enough points, enrich"<<endl;
cout<<"SameParameter : Not enough points, enrich"<<endl;
#endif
Standard_Integer newcount = 0;
newcount = 0;
for(Standard_Integer n = 0; n < count; n++){
newpc3d[newcount] = pc3d[n];
newpcons[newcount] = pcons[n];
newcount ++;
newpc3d[newcount] = pc3d[n];
newpcons[newcount] = pcons[n];
newcount ++;
if(count - n + newcount == MAX_ARRAY_SIZE) continue;
if(count - n + newcount == aMaxArraySize) continue;
Standard_Real ucons = 0.5*(pcons[n]+pcons[n+1]);
Standard_Real uc3d = 0.5*(pc3d[n]+pc3d[n+1]);
CurveOnSurface.D0(ucons,Pcons);
Projector.Perform(Pcons, uc3d);
if (Projector.IsDone()) {
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
}
else {
ProjectPointOnCurve(uc3d,Pcons,Tol,30,myC3d->Curve(),projok,curp);
}
if(projok){
if(curp > pc3d[n] + deltamin && curp < pc3d[n+1] - deltamin){
newpc3d[newcount] = curp;
newpcons[newcount] = ucons;
newcount ++;
}
}
else {
Standard_Real ucons = 0.5*(pcons[n]+pcons[n+1]);
Standard_Real uc3d = 0.5*(pc3d[n]+pc3d[n+1]);
CurveOnSurface.D0(ucons,Pcons);
Projector.Perform(Pcons, uc3d);
if (Projector.IsDone()) {
curp = Projector.Point().Parameter();
Standard_Real dist_2 = Projector.SquareDistance();
if(dist_2 > besttol2) besttol2 = dist_2;
projok = 1;
}
else {
ProjectPointOnCurve(uc3d,Pcons,Tol,30,myC3d->Curve(),projok,curp);
}
if(projok){
if(curp > pc3d[n] + deltamin && curp < pc3d[n+1] - deltamin){
newpc3d[newcount] = curp;
newpcons[newcount] = ucons;
newcount ++;
}
}
else {
#ifdef DEB
// JAG
cout << "Projection not done" << endl;
// JAG
cout << "Projection not done" << endl;
#endif
}
}
}
newpc3d[newcount] = pc3d[count];
newpcons[newcount] = pcons[count];
@ -818,7 +884,16 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
tempx = pcons;
pcons = newpcons;
newpcons = tempx;
count = newcount;
if(count != newcount)
{
count = newcount;
hasCountChanged = Standard_True;
}
else
{
hasCountChanged = Standard_False;
}
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -379,7 +379,10 @@ static Standard_Integer mk2dcurve(Draw_Interpretor& di,
if (na < 3) return 1;
TopoDS_Shape S;
S = DBRep::Get(a[2],TopAbs_EDGE); if (S.IsNull()) return 1;
S = DBRep::Get(a[2],TopAbs_EDGE);
if (S.IsNull())
return 1;
TopoDS_Edge E = TopoDS::Edge(S);
TopLoc_Location L;
@ -387,20 +390,38 @@ static Standard_Integer mk2dcurve(Draw_Interpretor& di,
Handle(Geom2d_Curve) C;
Handle(Geom_Surface) Surf;
Standard_Boolean hasFace = Standard_False;
if ( na == 3 ) {
// get the first PCurve connected to edge E
BRep_Tool::CurveOnSurface(E,C,Surf,L,f,l);
}
else if ( na == 4 ) {
S = DBRep::Get(a[3],TopAbs_FACE); if (S.IsNull()) return 1;
TopoDS_Face F = TopoDS::Face(S);
C = BRep_Tool::CurveOnSurface(E,F,f,l);
else if ( na == 4 )
{
S = DBRep::Get(a[3],TopAbs_FACE);
if (S.IsNull())
{
Standard_Integer ind = Draw::Atoi(a[3]);
BRep_Tool::CurveOnSurface(E,C,Surf,L,f,l,ind);
}
else
{
hasFace = Standard_True;
TopoDS_Face F = TopoDS::Face(S);
C = BRep_Tool::CurveOnSurface(E,F,f,l);
}
}
if (C.IsNull()) {
//cout << a[2] << " has no 2d curve"; if (na == 4) cout << " on " << a[3];
//cout << endl;
di << a[2] << " has no 2d curve"; if (na == 4) di << " on " << a[3];
di << a[2] << " has no 2d curve";
if (hasFace)
{
di << " on " << a[3];
}
di << "\n";
return 1;
}
@ -1805,7 +1826,7 @@ void BRepTest::CurveCommands(Draw_Interpretor& theCommands)
mkcurve,g);
theCommands.Add("mk2dcurve",
"mk2dcurve curve edge [face]",__FILE__,
"mk2dcurve curve edge [face OR index]",__FILE__,
mk2dcurve,g);
theCommands.Add("mkpoint",

View File

@ -45,9 +45,9 @@ Extrema_GLocateExtPC::Extrema_GLocateExtPC() { }
//=======================================================================
Extrema_GLocateExtPC::Extrema_GLocateExtPC (const ThePoint& P,
const TheCurve& C,
const Standard_Real U0,
const Standard_Real TolF)
const TheCurve& C,
const Standard_Real U0,
const Standard_Real TolF)
{
Initialize(C, TheCurveTool::FirstParameter(C), TheCurveTool::LastParameter(C), TolF);
Perform(P, U0);
@ -59,11 +59,11 @@ Extrema_GLocateExtPC::Extrema_GLocateExtPC (const ThePoint& P,
//=======================================================================
Extrema_GLocateExtPC::Extrema_GLocateExtPC (const ThePoint& P,
const TheCurve& C,
const Standard_Real U0,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real TolF)
const TheCurve& C,
const Standard_Real U0,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real TolF)
{
Initialize(C, Umin, Usup, TolF);
Perform(P, U0);
@ -77,9 +77,9 @@ Extrema_GLocateExtPC::Extrema_GLocateExtPC (const ThePoint& P,
//=======================================================================
void Extrema_GLocateExtPC::Initialize(const TheCurve& C,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real TolF)
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real TolF)
{
myC = (Standard_Address)&C;
mytol = TolF;
@ -88,9 +88,9 @@ void Extrema_GLocateExtPC::Initialize(const TheCurve& C,
type = TheCurveTool::GetType(C);
Standard_Real tolu = TheCurveTool::Resolution(C, Precision::Confusion());
if ((type == GeomAbs_BSplineCurve) ||
(type == GeomAbs_BezierCurve) ||
(type == GeomAbs_OtherCurve)) {
myLocExtPC.Initialize(C, Umin, Usup, tolu);
(type == GeomAbs_BezierCurve) ||
(type == GeomAbs_OtherCurve)) {
myLocExtPC.Initialize(C, Umin, Usup, tolu);
}
else {
myExtremPC.Initialize(C, Umin, Usup, tolu);
@ -106,29 +106,31 @@ void Extrema_GLocateExtPC::Initialize(const TheCurve& C,
//=======================================================================
void Extrema_GLocateExtPC::Perform(const ThePoint& P,
const Standard_Real U0)
const Standard_Real U0)
{
Standard_Integer i, i1, i2, inter;
Standard_Real Par, valU, valU2 = RealLast(),
local_u0 ;
local_u0 ;
Standard_Real myintuinf=0, myintusup=0;
local_u0 = U0 ;
switch(type) {
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
switch(type)
{
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve:
{
// La recherche de l extremum est faite intervalle continu C2 par
// intervalle continu C2 de la courbe
Standard_Integer n = TheCurveTool::NbIntervals(*((TheCurve*)myC), GeomAbs_C2);
TColStd_Array1OfReal theInter(1, n+1);
TheCurveTool::Intervals(*((TheCurve*)myC), theInter, GeomAbs_C2);
//
// be gentle with the caller
//
//
// be gentle with the caller
//
if (local_u0 < myumin) {
local_u0 = myumin ;
local_u0 = myumin ;
}
else if (local_u0 > myusup) {
local_u0 = myusup ;
local_u0 = myusup ;
}
// Recherche de l intervalle ou se trouve U0
Standard_Boolean found = Standard_False;
@ -140,120 +142,144 @@ void Extrema_GLocateExtPC::Perform(const ThePoint& P,
// pas, mais il n'y avait aucune raison de sortir en "return")
myintuinf = Max(theInter(inter), myumin);
myintusup = Min(theInter(inter+1), myusup);
if ((local_u0 >= myintuinf) && (local_u0 < myintusup)) found = Standard_True;
inter++;
if ((local_u0 >= myintuinf) && (local_u0 < myintusup)) found = Standard_True;
inter++;
}
if( found ) inter--; //IFV 16.06.00 - inter is increased after found!
// Essai sur l intervalle trouve
myLocExtPC.Initialize((*((TheCurve*)myC)), myintuinf,
myintusup, mytol);
myintusup, mytol);
myLocExtPC.Perform(P, local_u0);
myDone = myLocExtPC.IsDone();
if (myDone) {
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
}
else {
Standard_Integer k = 1;
// Essai sur les intervalles alentours:
i1 = inter;
i2 = inter;
Standard_Real s1inf, s2inf, s1sup, s2sup;
ThePoint P1;
TheVector V1;
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2inf = (TheVector(P, P1)*V1);
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1sup = (TheVector(P, P1)*V1);
Standard_Integer k = 1;
// Essai sur les intervalles alentours:
i1 = inter;
i2 = inter;
Standard_Real s1inf, s2inf, s1sup, s2sup;
ThePoint P1;
TheVector V1;
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2inf = (TheVector(P, P1)*V1);
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1sup = (TheVector(P, P1)*V1);
while (!myDone && (i2 > 0) && (i1 <= n)) {
i1 = inter + k;
i2 = inter - k;
if (i1 <= n) {
myintuinf = Max(theInter(i1), myumin);
myintusup = Min(theInter(i1+1), myusup);
if (myintuinf < myintusup) {
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2sup = (TheVector(P, P1)*V1);
if (s1sup*s2sup <= RealEpsilon()) {
// extremum:
myDone = Standard_True;
mypp.SetValues(myintuinf, P1);
myismin = (s1sup <= 0.0);
mydist2 = P.SquareDistance(P1);
break;
}
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1sup = (TheVector(P, P1)*V1);
myLocExtPC.Initialize((*((TheCurve*)myC)), myintuinf,
myintusup, mytol);
myLocExtPC.Perform(P, (myintuinf + myintusup)*0.5);
myDone = myLocExtPC.IsDone();
if (myDone) {
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
break;
}
}
}
if (i2 > 0) {
myintuinf = Max(theInter(i2), myumin);
myintusup = Min(theInter(i2+1), myusup);
if (myintuinf < myintusup) {
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1inf = (TheVector(P, P1)*V1);
if (s1inf*s2inf <= RealEpsilon()) {
// extremum:
myDone = Standard_True;
mypp.SetValues(myintusup, P1);
myismin = (s1inf <= 0.0);
mydist2 = P.SquareDistance(P1);
break;
}
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2inf = (TheVector(P, P1)*V1);
myLocExtPC.Initialize((*((TheCurve*)myC)), myintuinf,
myintusup, mytol);
myLocExtPC.Perform(P, (myintuinf+myintusup)*0.5 );
myDone = myLocExtPC.IsDone();
if (myDone) {
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
break;
}
}
}
k++;
}
while (!myDone && (i2 > 0) && (i1 <= n))
{
i1 = inter + k;
i2 = inter - k;
if (i1 <= n)
{
myintuinf = Max(theInter(i1), myumin);
myintusup = Min(theInter(i1+1), myusup);
if (myintuinf < myintusup)
{
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2sup = (TheVector(P, P1)*V1);
if (s1sup*s2sup <= RealEpsilon())
{
// extremum:
myDone = Standard_True;
mypp.SetValues(myintuinf, P1);
myismin = (s1sup <= 0.0);
mydist2 = P.SquareDistance(P1);
break;
}
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1sup = (TheVector(P, P1)*V1);
myLocExtPC.Initialize((*((TheCurve*)myC)), myintuinf,
myintusup, mytol);
myLocExtPC.Perform(P, (myintuinf + myintusup)*0.5);
myDone = myLocExtPC.IsDone();
if (myDone) {
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
break;
}
}
}
if (i2 > 0)
{
myintuinf = Max(theInter(i2), myumin);
myintusup = Min(theInter(i2+1), myusup);
if (myintuinf < myintusup)
{
TheCurveTool::D1(*((TheCurve*)myC), myintusup, P1, V1);
s1inf = (TheVector(P, P1)*V1);
if (s1inf*s2inf <= RealEpsilon())
{
// extremum:
myDone = Standard_True;
mypp.SetValues(myintusup, P1);
myismin = (s1inf <= 0.0);
mydist2 = P.SquareDistance(P1);
break;
}
TheCurveTool::D1(*((TheCurve*)myC), myintuinf, P1, V1);
s2inf = (TheVector(P, P1)*V1);
myLocExtPC.Initialize((*((TheCurve*)myC)), myintuinf,
myintusup, mytol);
myLocExtPC.Perform(P, (myintuinf+myintusup)*0.5 );
myDone = myLocExtPC.IsDone();
if (myDone)
{
mypp = myLocExtPC.Point();
myismin = myLocExtPC.IsMin();
mydist2 = myLocExtPC.SquareDistance();
break;
}
}
}
k++;
}
}
}
break;
case GeomAbs_BezierCurve: {
break;
case GeomAbs_BezierCurve:
{
myLocExtPC.Perform(P, U0);
myDone = myLocExtPC.IsDone();
}
break;
default:{
break;
default:
{
myExtremPC.Perform(P);
numberext = 0;
if (myExtremPC.IsDone()) {
for (i = 1; i <= myExtremPC.NbExt(); i++) {
Par = myExtremPC.Point(i).Parameter();
valU = Abs(Par - U0);
if (valU <= valU2) {
valU2 = valU;
numberext = i;
myDone = Standard_True;
}
}
if (myExtremPC.IsDone())
{
for (i = 1; i <= myExtremPC.NbExt(); i++)
{
Par = myExtremPC.Point(i).Parameter();
valU = Abs(Par - U0);
if (valU <= valU2)
{
valU2 = valU;
numberext = i;
myDone = Standard_True;
}
}
}
if (numberext == 0) myDone = Standard_False;
if (numberext == 0)
myDone = Standard_False;
break;
}
}

View File

@ -0,0 +1,25 @@
puts "============"
puts "OCC24203"
puts "============"
puts ""
#######################################################################
## Command "sameparameter" in DRAW on attached edge set tolerance equal to 116.
#######################################################################
pload DATAEXCHANGEKERNEL
restore [locate_data_file bug24203_notspedge.brep] e1
sameparameter e1
regexp {Tolerance +MAX=([-0-9.+eE]+)} [tolerance e1] full MaxTol_1
puts "MaxTolerance = $MaxTol_1"
set MaxTol 0.20
if { $MaxTol_1 > $MaxTol } {
puts "Faulty OCC24203"
} else {
puts "OCC24203 OK"
}

View File

@ -1,5 +1,5 @@
if {[string compare $command "SplitAngle"] == 0 } {
puts "TODO OCC23127 ALL: Faulty shapes in variables faulty_1 to faulty_4 "
puts "TODO OCC23127 ALL: Faulty shapes in variables faulty_1 to faulty_ "
}
restore [locate_data_file METABO9.brep] a