mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0033560: PARASOLID Import - XT importer raises exception SIGFPE Arithmetic Exception
Prevent division by zero in exceptional cases when vector of parameters contains only a single value.
This commit is contained in:
parent
44cbb3d8e7
commit
9efc032b9a
@ -808,8 +808,11 @@ void Approx_BSplComputeLine::Parameters(const MultiLine& Line,
|
|||||||
const Standard_Integer aNbp = lastP - firstP + 1;
|
const Standard_Integer aNbp = lastP - firstP + 1;
|
||||||
|
|
||||||
|
|
||||||
|
// The first parameter should always be zero according to all the logic below,
|
||||||
|
// so division by any value will give zero anyway, so it should never be scaled
|
||||||
|
// to avoid case when there is only one parameter in the array thus division by zero happens.
|
||||||
|
TheParameters(firstP) = 0.0;
|
||||||
if (aNbp == 2) {
|
if (aNbp == 2) {
|
||||||
TheParameters(firstP) = 0.0;
|
|
||||||
TheParameters(lastP) = 1.0;
|
TheParameters(lastP) = 1.0;
|
||||||
}
|
}
|
||||||
else if (Par == Approx_ChordLength || Par == Approx_Centripetal)
|
else if (Par == Approx_ChordLength || Par == Approx_Centripetal)
|
||||||
@ -820,7 +823,6 @@ void Approx_BSplComputeLine::Parameters(const MultiLine& Line,
|
|||||||
if (nbP3d == 0) mynbP3d = 1;
|
if (nbP3d == 0) mynbP3d = 1;
|
||||||
if (nbP2d == 0) mynbP2d = 1;
|
if (nbP2d == 0) mynbP2d = 1;
|
||||||
|
|
||||||
TheParameters(firstP) = 0.0;
|
|
||||||
dist = 0.0;
|
dist = 0.0;
|
||||||
TColgp_Array1OfPnt tabP(1, mynbP3d);
|
TColgp_Array1OfPnt tabP(1, mynbP3d);
|
||||||
TColgp_Array1OfPnt tabPP(1, mynbP3d);
|
TColgp_Array1OfPnt tabPP(1, mynbP3d);
|
||||||
@ -861,10 +863,10 @@ void Approx_BSplComputeLine::Parameters(const MultiLine& Line,
|
|||||||
TheParameters(i) = TheParameters(i - 1) + Sqrt(dist);
|
TheParameters(i) = TheParameters(i - 1) + Sqrt(dist);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (i = firstP; i <= lastP; i++) TheParameters(i) /= TheParameters(lastP);
|
for (i = firstP + 1; i <= lastP; i++) TheParameters(i) /= TheParameters(lastP);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
for (i = firstP; i <= lastP; i++) {
|
for (i = firstP + 1; i <= lastP; i++) {
|
||||||
TheParameters(i) = (Standard_Real(i) - firstP) /
|
TheParameters(i) = (Standard_Real(i) - firstP) /
|
||||||
(Standard_Real(lastP - Standard_Real(firstP)));
|
(Standard_Real(lastP - Standard_Real(firstP)));
|
||||||
}
|
}
|
||||||
|
@ -515,8 +515,13 @@ BSplCLib::EvalBsplineBasis
|
|||||||
//
|
//
|
||||||
// this should be always invertible if ii is correctly computed
|
// this should be always invertible if ii is correctly computed
|
||||||
//
|
//
|
||||||
Factor = (Parameter - FlatKnots(ii - qq + pp + 1))
|
const Standard_Real aScale = (FlatKnots(ii + pp) - FlatKnots(ii - qq + pp + 1));
|
||||||
/ (FlatKnots(ii + pp) - FlatKnots(ii - qq + pp + 1)) ;
|
if (Abs (aScale) < gp::Resolution())
|
||||||
|
{
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
Factor = (Parameter - FlatKnots(ii - qq + pp + 1)) / aScale;
|
||||||
Saved = Factor * BsplineBasis(1,pp) ;
|
Saved = Factor * BsplineBasis(1,pp) ;
|
||||||
BsplineBasis(1,pp) *= (1.0e0 - Factor) ;
|
BsplineBasis(1,pp) *= (1.0e0 - Factor) ;
|
||||||
BsplineBasis(1,pp) += BsplineBasis(1,qq) ;
|
BsplineBasis(1,pp) += BsplineBasis(1,qq) ;
|
||||||
@ -536,7 +541,13 @@ BSplCLib::EvalBsplineBasis
|
|||||||
}
|
}
|
||||||
|
|
||||||
for (pp = 1 ; pp <= qq - 1 ; pp++) {
|
for (pp = 1 ; pp <= qq - 1 ; pp++) {
|
||||||
Inverse = 1.0e0 / (FlatKnots(ii + pp) - FlatKnots(ii - qq + pp + 1)) ;
|
const Standard_Real aScale = (FlatKnots(ii + pp) - FlatKnots(ii - qq + pp + 1));
|
||||||
|
if (Abs (aScale) < gp::Resolution())
|
||||||
|
{
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
Inverse = 1.0e0 / aScale;
|
||||||
Factor = (Parameter - FlatKnots(ii - qq + pp + 1)) * Inverse ;
|
Factor = (Parameter - FlatKnots(ii - qq + pp + 1)) * Inverse ;
|
||||||
Saved = Factor * BsplineBasis(1,pp) ;
|
Saved = Factor * BsplineBasis(1,pp) ;
|
||||||
BsplineBasis(1,pp) *= (1.0e0 - Factor) ;
|
BsplineBasis(1,pp) *= (1.0e0 - Factor) ;
|
||||||
|
Loading…
x
Reference in New Issue
Block a user