1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0032922: Data Exchange, STEP - The torus is stored incorrectly in STEP format

Problem: the complete surface of the torus is not stored correctly in STEP format due to the fact that the edges are not properly ordered.
Change: added a mode for reordering edges in the wire with simultaneous use of 2d and 3d information (ShapeAnalysis_WireOrder). The new mode is used for torus-like surfaces before saving to STEP format.
 Result: Torus correctly stored.
This commit is contained in:
atereshi 2022-04-08 14:16:01 +03:00 committed by afokin
parent 86d6c284c2
commit 9b9aac4a7b
9 changed files with 1058 additions and 608 deletions

View File

@ -260,7 +260,7 @@ void ShapeAnalysis_Wire::SetSurface (const Handle(Geom_Surface)& surface,
const Standard_Boolean mode3d)
{
ShapeAnalysis_WireOrder sawo;
CheckOrder (sawo, isClosed, mode3d);
CheckOrder (sawo, isClosed, mode3d, Standard_False);
myStatusOrder = myStatus;
return StatusOrder (ShapeExtend_DONE);
}
@ -552,20 +552,26 @@ void ShapeAnalysis_Wire::SetSurface (const Handle(Geom_Surface)& surface,
Standard_Boolean ShapeAnalysis_Wire::CheckOrder(ShapeAnalysis_WireOrder &sawo,
const Standard_Boolean isClosed,
const Standard_Boolean mode3d)
const Standard_Boolean theMode3D,
const Standard_Boolean theModeBoth)
{
if ((!theMode3D || theModeBoth) && myFace.IsNull())
{
if ( ! mode3d && myFace.IsNull() ) {
myStatus = ShapeExtend::EncodeStatus (ShapeExtend_FAIL2);
return Standard_False;
}
myStatus = ShapeExtend::EncodeStatus (ShapeExtend_OK);
sawo.SetMode ( mode3d, ( mode3d ? myPrecision : ::Precision::PConfusion() ) );
Standard_Integer i, nb = myWire->NbEdges();
sawo.SetMode(theMode3D, 0.0, theModeBoth);
Standard_Integer nb = myWire->NbEdges();
ShapeAnalysis_Edge EA;
for (i = 1; i <= nb; i ++) {
Standard_Boolean isAll2dEdgesOk = Standard_True;
for (Standard_Integer i = 1; i <= nb; i++)
{
TopoDS_Edge E = myWire->Edge(i);
if ( mode3d ) {
gp_XYZ aP1XYZ, aP2XYZ;
gp_XY aP1XY, aP2XY;
if (theMode3D || theModeBoth)
{
TopoDS_Vertex V1 = EA.FirstVertex(E);
TopoDS_Vertex V2 = EA.LastVertex(E);
if (V1.IsNull() || V2.IsNull())
@ -573,31 +579,65 @@ Standard_Boolean ShapeAnalysis_Wire::CheckOrder(ShapeAnalysis_WireOrder& sawo,
myStatus = ShapeExtend::EncodeStatus (ShapeExtend_FAIL2);
return Standard_False;
}
gp_Pnt p1 = BRep_Tool::Pnt (V1);
gp_Pnt p2 = BRep_Tool::Pnt (V2);
sawo.Add (p1.XYZ(),p2.XYZ());
else
{
aP1XYZ = BRep_Tool::Pnt(V1).XYZ();
aP2XYZ = BRep_Tool::Pnt(V2).XYZ();
}
else {
}
if (!theMode3D || theModeBoth)
{
Standard_Real f, l;
Handle(Geom2d_Curve) c2d;
TopoDS_Shape tmpF = myFace.Oriented (TopAbs_FORWARD);
if ( ! EA.PCurve(E,TopoDS::Face(tmpF),c2d,f,l) ) {
if (!EA.PCurve(E, TopoDS::Face (tmpF), c2d, f, l))
{
// if mode is 2d, then we can nothing to do, else we can switch to 3d mode
if (!theMode3D && !theModeBoth)
{
myStatus = ShapeExtend::EncodeStatus (ShapeExtend_FAIL2);
return Standard_False;
}
sawo.Add(c2d->Value(f).XY(),c2d->Value(l).XY());
else
{
isAll2dEdgesOk = Standard_False;
}
}
else
{
aP1XY = c2d->Value(f).XY();
aP2XY = c2d->Value(l).XY();
}
}
if (theMode3D && !theModeBoth)
{
sawo.Add (aP1XYZ, aP2XYZ);
}
else if (!theMode3D && !theModeBoth)
{
sawo.Add (aP1XY, aP2XY);
}
else
{
sawo.Add (aP1XYZ, aP2XYZ, aP1XY, aP2XY);
}
}
// need to switch to 3d mode
if (theModeBoth && !isAll2dEdgesOk)
{
sawo.SetMode (Standard_True, 0.0, Standard_False);
}
sawo.Perform (isClosed);
Standard_Integer stat = sawo.Status();
switch (stat) {
switch (stat)
{
case 0: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_OK); break;
case 1: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE1); break;
case 2: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE2); break;
case 2: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE2); break; // this value is not returned
case -1: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE3); break;
case -2: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE4); break;
case -2: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE4); break; // this value is not returned
case 3: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_DONE5); break; // only shifted
case -10: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_FAIL1); break;
case -10: myStatus = ShapeExtend::EncodeStatus (ShapeExtend_FAIL1); break; // this value is not returned
}
return LastCheckStatus (ShapeExtend_DONE);
}

View File

@ -232,7 +232,8 @@ public:
//! Analyzes the order of the edges in the wire,
//! uses class WireOrder for that purpose.
//! Flag <isClosed> defines if the wire is closed or not
//! Flag <mode3d> defines which mode is used (3d or 2d)
//! Flag <theMode3D> defines 3D or 2d mode.
//! Flag <theModeBoth> defines miscible mode and the flag <theMode3D> is ignored.
//! Returns False if wire is already ordered (tail-to-head),
//! True otherwise.
//! Use returned WireOrder object for deeper analysis.
@ -243,7 +244,10 @@ public:
//! DONE3: not the same edges orientation (some need to be reversed)
//! DONE4: as DONE3 and gaps more than myPrecision
//! FAIL : algorithm failed (could not detect order)
Standard_EXPORT Standard_Boolean CheckOrder (ShapeAnalysis_WireOrder& sawo, const Standard_Boolean isClosed = Standard_True, const Standard_Boolean mode3d = Standard_True);
Standard_EXPORT Standard_Boolean CheckOrder(ShapeAnalysis_WireOrder &sawo,
Standard_Boolean isClosed = Standard_True,
Standard_Boolean theMode3D = Standard_True,
Standard_Boolean theModeBoth = Standard_False);
//! Checks connected edges (num-th and preceding).
//! Tests with starting preci from <SBWD> or with <prec> if

View File

@ -21,10 +21,9 @@
#include <gp_XYZ.hxx>
#include <Precision.hxx>
#include <ShapeAnalysis_WireOrder.hxx>
#include <Standard_TypeMismatch.hxx>
#include <TColgp_Array1OfXYZ.hxx>
#include <TColgp_Array1OfXY.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_HSequenceOfInteger.hxx>
#include <TColStd_SequenceOfInteger.hxx>
#include <TColStd_SequenceOfTransient.hxx>
@ -34,7 +33,7 @@
//purpose :
//=======================================================================
ShapeAnalysis_WireOrder::ShapeAnalysis_WireOrder()
: myKeepLoops(Standard_False) , myGap (0.) , myStat (0) , myMode (Standard_True)
: myGap (0.0), myStat (0), myKeepLoops (Standard_False), myMode (Mode3D)
{
myTol = Precision::Confusion();
Clear();
@ -45,10 +44,26 @@ ShapeAnalysis_WireOrder::ShapeAnalysis_WireOrder()
//purpose :
//=======================================================================
ShapeAnalysis_WireOrder::ShapeAnalysis_WireOrder(const Standard_Boolean mode3d,
const Standard_Real tol)
: myKeepLoops(Standard_False), myTol (tol), myGap (0.), myStat (0), myMode (mode3d)
ShapeAnalysis_WireOrder::ShapeAnalysis_WireOrder (const Standard_Boolean theMode3D,
const Standard_Real theTolerance,
const Standard_Boolean theModeBoth)
: myTol (theTolerance), myGap (0.0), myStat (0), myKeepLoops (Standard_False)
{
if (theModeBoth)
{
myMode = ModeBoth;
}
else
{
if (theMode3D)
{
myMode = Mode3D;
}
else
{
myMode = Mode2D;
}
}
Clear();
}
@ -57,12 +72,36 @@ ShapeAnalysis_WireOrder::ShapeAnalysis_WireOrder(const Standard_Boolean mode3d,
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::SetMode(const Standard_Boolean mode3d,const Standard_Real tol)
void ShapeAnalysis_WireOrder::SetMode (const Standard_Boolean theMode3D,
const Standard_Real theTolerance,
const Standard_Boolean theModeBoth)
{
if (mode3d != myMode) Clear();
myOrd.Nullify(); myStat = 0; myGap = 0.;
myMode = mode3d;
myTol = (tol > 0.)? tol : 1.e-08; //szv#4:S4163:12Mar99 optimized
ModeType aNewMode;
if (theModeBoth)
{
aNewMode = ModeBoth;
}
else
{
if (theMode3D)
{
aNewMode = Mode3D;
}
else
{
aNewMode = Mode2D;
}
}
if (myMode != aNewMode)
{
Clear();
}
myMode = aNewMode;
myOrd.Nullify();
myStat = 0;
myGap = 0.0;
myTol = (theTolerance > 0.0) ? theTolerance : 1.e-08;
}
//=======================================================================
@ -83,8 +122,9 @@ Standard_Real ShapeAnalysis_WireOrder::Tolerance() const
void ShapeAnalysis_WireOrder::Clear()
{
myXYZ = new TColgp_HSequenceOfXYZ();
myXY = new TColgp_HSequenceOfXY();
myStat = 0;
myGap = 0.;
myGap = 0.0;
}
//=======================================================================
@ -92,13 +132,12 @@ void ShapeAnalysis_WireOrder::Clear()
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::Add(const gp_XYZ& start3d,const gp_XYZ& end3d)
void ShapeAnalysis_WireOrder::Add (const gp_XYZ& theStart3d, const gp_XYZ& theEnd3d)
{
//szv#4:S4163:12Mar99 waste raise
//if (!myMode)
//throw Standard_TypeMismatch("ShapeAnalysis_WireOrder : AddXYZ");
if (myMode) {
myXYZ->Append (start3d); myXYZ->Append (end3d);
if (myMode == Mode3D)
{
myXYZ->Append (theStart3d);
myXYZ->Append (theEnd3d);
}
}
@ -107,20 +146,38 @@ void ShapeAnalysis_WireOrder::Add(const gp_XYZ& start3d,const gp_XYZ& end3d)
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::Add(const gp_XY& start2d,const gp_XY& end2d)
void ShapeAnalysis_WireOrder::Add (const gp_XY& theStart2d, const gp_XY& theEnd2d)
{
if (myMode == Mode2D)
{
//szv#4:S4163:12Mar99 waste raise
//if ( myMode)
//throw Standard_TypeMismatch("ShapeAnalysis_WireOrder : AddXY");
if (!myMode) {
gp_XYZ val;
val.SetCoord (start2d.X(),start2d.Y(),0.);
val.SetCoord (theStart2d.X(), theStart2d.Y(), 0.0);
myXYZ->Append (val);
val.SetCoord (end2d.X(),end2d.Y(),0.);
val.SetCoord (theEnd2d.X(), theEnd2d.Y(), 0.0);
myXYZ->Append (val);
}
}
//=======================================================================
//function : Add
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::Add (const gp_XYZ& theStart3d,
const gp_XYZ& theEnd3d,
const gp_XY& theStart2d,
const gp_XY& theEnd2d)
{
if (myMode == ModeBoth)
{
myXYZ->Append (theStart3d);
myXYZ->Append (theEnd3d);
myXY->Append (theStart2d);
myXY->Append (theEnd2d);
}
}
//=======================================================================
//function : NbEdges
//purpose :
@ -166,234 +223,480 @@ Standard_Boolean& ShapeAnalysis_WireOrder::KeepLoopsMode()
//=======================================================================
//function : Perform
//purpose :
//purpose : Make wire order analysis and propose the better order of the edges
// taking into account the gaps between edges.
//=======================================================================
static Standard_Boolean IsBetter(const Standard_Integer first,
const Standard_Integer second)
{
//rln 23.03.99 bm4_al_eye.stp, entity 5281
//Order in the file is better even if another order has the same distance
//Lexicograhical order of preference: 0 > 2 > 1 > 3
if (first == 0 && second > 0 ) return Standard_True;
if (first == 2 && (second == 1 || second == 3)) return Standard_True;
if (first == 1 && second == 3 ) return Standard_True;
return Standard_False;
}
void ShapeAnalysis_WireOrder::Perform (const Standard_Boolean /*closed*/)
{
myStat = 0;
Standard_Integer i, nb = NbEdges();
if(nb == 0)
return; // no edges loaded, nothing to do -- return with status OK
myOrd = new TColStd_HArray1OfInteger(1,nb);
myOrd->Init(0);
Handle(TColStd_HSequenceOfInteger) seq = new TColStd_HSequenceOfInteger;
TColStd_SequenceOfTransient loops;
TColgp_Array1OfXYZ debs(0,nb);
TColgp_Array1OfXYZ fins(0,nb);
TColStd_Array1OfBoolean idone (1, nb);
idone.Init (Standard_False);
// Calcul des precedents-suivants
for (i = 1; i <= nb; i ++) {
debs(i) = myXYZ->Value(2*i-1);
fins(i) = myXYZ->Value(2*i);
}
Standard_Real tol2 = Precision::SquareConfusion();
idone(1) = Standard_True;
gp_Pnt wireFirst = debs(1);
gp_Pnt wireLast = fins(1);
seq->Append(1);
Standard_Boolean done = Standard_False;
//pdn 11.03.99 S4135 constructing closed loops of edges
while(!done) {
Standard_Integer resultType = 3;
Standard_Real distmin = RealLast();
Standard_Integer ledge = 0;
Standard_Boolean found = Standard_False;
Standard_Real closeDist = wireFirst.SquareDistance(wireLast);
for(Standard_Integer iedge = 1; (iedge <= nb) && (distmin||resultType||(resultType!=2)); iedge++)
if(!idone(iedge)) {
Standard_Real tailhead = wireLast.SquareDistance(debs(iedge));
Standard_Real tailtail = wireLast.SquareDistance(fins(iedge));
Standard_Real headtail = wireFirst.SquareDistance(fins(iedge));
Standard_Real headhead = wireFirst.SquareDistance(debs(iedge));
Standard_Real dm1 = tailhead, dm2 = headtail;
Standard_Integer res1 = 0, res2 = 2;
if (tailhead > tailtail) {res1 = 1; dm1 = tailtail;}
if (headtail > headhead) {res2 = 3; dm2 = headhead;}
Standard_Integer result =0;
Standard_Real myMin3d = Min (dm1, dm2);
if(fabs(dm1 - dm2) < tol2 ) {
Standard_Boolean isB = IsBetter(res1,res2);
result = (isB ? res1 : res2);
}
else
result = ((dm1 > dm2) ? res2 : res1); // 0 > 2 > 1 > 3
if (distmin > tol2 || IsBetter(result,resultType))
if (myMin3d < distmin || ((myMin3d == distmin || myMin3d < tol2) && IsBetter(result,resultType))) {
found = Standard_True;
distmin = myMin3d;
ledge = iedge;
resultType = result;
}
}
if(found) {
if (distmin == 0 || distmin < closeDist) {
switch(resultType){
case 0: seq->Append(ledge); wireLast = fins(ledge); break;
case 1: seq->Append(-ledge); wireLast = debs(ledge); break;
case 2: seq->Prepend(ledge); wireFirst = debs(ledge); break;
case 3: seq->Prepend(-ledge); wireFirst = fins(ledge); break;
}
} else {
//pdn 11.03.99 S4135 closing loop and creating new one
loops.Append(seq);
seq = new TColStd_HSequenceOfInteger;
wireFirst = debs(ledge);
wireLast = fins(ledge);
seq->Append(ledge);
}
idone(ledge) = Standard_True;
} else {
ledge = -1;
for (i = 1 ; i <= nb && ledge == -1; i++)
ledge = idone(i) ? ledge : i;
if (ledge == -1)
done = 1;
else {
wireFirst = debs(ledge);
wireLast = fins(ledge);
seq->Append(ledge);
idone(ledge) = Standard_True;
}
}
}
loops.Append(seq);
Handle(TColStd_HSequenceOfInteger) mainSeq;
if (myKeepLoops) {
//pdn Keeping the loops, adding one after another.
mainSeq = new TColStd_HSequenceOfInteger;
for (Standard_Integer ii = 1; ii <= loops.Length(); ii++) {
Handle(TColStd_HSequenceOfInteger) subLoop =
Handle(TColStd_HSequenceOfInteger)::DownCast(loops(ii));
for (Standard_Integer j = 1; j<= subLoop->Length(); j++)
mainSeq->Append(subLoop->Value(j));
}
}
else {
//pdn 11.03.99 S4135 connecting loops.
mainSeq = Handle(TColStd_HSequenceOfInteger)::DownCast(loops.First());
loops.Remove(1);
while(loops.Length()) {
Standard_Real minLoopDist = RealLast();
Standard_Integer loopNum=0;
Standard_Integer loopShift=0;
Standard_Boolean loopDirect=0;
Standard_Integer numInLoop=0;
for(i = 1; i <= loops.Length(); i++) {
Handle(TColStd_HSequenceOfInteger) loop = Handle(TColStd_HSequenceOfInteger)::DownCast(loops.Value(i));
Standard_Integer num = loop->Length();
Standard_Integer LocShift=0;
Standard_Integer LocNumInLoop=0;
Standard_Boolean LocDirect = Standard_False;
Standard_Real minLocDist = RealLast();
for(Standard_Integer ibegin = 1; ibegin <= loop->Length(); ibegin++) {
Standard_Integer iend = (ibegin==1 ? num : ibegin -1);
gp_Pnt loopFirst = (loop->Value(ibegin) > 0 ? debs(loop->Value(ibegin)) : fins(-loop->Value(ibegin)));
gp_Pnt loopLast = (loop->Value(iend) > 0 ? fins(loop->Value(iend)) : debs(-loop->Value(iend)));
Standard_Real distmin = RealLast();
Standard_Integer lloop=0;
Standard_Boolean direct = Standard_False;
for(Standard_Integer j = 1; (j <= mainSeq->Length())&& distmin; j++) {
Standard_Integer k = (j == mainSeq->Length()? 1 : j+1);
gp_Pnt first = (mainSeq->Value(j) > 0 ? fins(mainSeq->Value(j)) : debs(-mainSeq->Value(j)));
gp_Pnt last = (mainSeq->Value(k) > 0 ? debs(mainSeq->Value(k)) : fins(-mainSeq->Value(k)));
Standard_Real dirDist = loopFirst.SquareDistance(first)+loopLast.SquareDistance(last);
Standard_Real revDist = loopFirst.SquareDistance(last)+loopLast.SquareDistance(first);
Standard_Real minDist;
if((dirDist<tol2)||(dirDist < 2.*revDist)) {
minDist = dirDist;
revDist = dirDist;
}
else
minDist = revDist;
if(minDist < distmin && Abs(distmin - minDist) > tol2) {
distmin = minDist;
direct = (dirDist <= revDist);
lloop = j;
}
}
if(distmin < minLocDist && Abs(minLocDist - distmin) > tol2) {
minLocDist = distmin;
LocDirect = direct;
LocNumInLoop = lloop;
LocShift = ibegin;
}
}
if(minLocDist < minLoopDist && Abs(minLoopDist - minLocDist) > tol2) {
minLoopDist = minLocDist;
loopNum = i;
loopDirect = LocDirect;
numInLoop = LocNumInLoop;
loopShift = LocShift;
}
}
Handle(TColStd_HSequenceOfInteger) loop = Handle(TColStd_HSequenceOfInteger)::DownCast(loops.Value(loopNum));
Standard_Integer factor = (loopDirect ? 1: -1);
// skl : in the next block for{} I change "i" to "ii"
for(Standard_Integer ii = 1; ii <= loop->Length(); ii++) {
Standard_Integer num = (ii+loopShift-1>loop->Length() ? ii+loopShift-1-loop->Length() : ii+loopShift-1);
mainSeq->InsertAfter(numInLoop+ii-1,loop->Value(num)*factor);
}
loops.Remove(loopNum);
}
}
Standard_Integer stTmp=0;
for(i = 1; i <= mainSeq->Length(); i++) {
if(i!=mainSeq->Value(i))
if(stTmp>=0) stTmp = (mainSeq->Value(i) > 0 ? 1 : -1);
myOrd->SetValue(i,mainSeq->Value(i));
}
if (stTmp == 0) {
myStat = stTmp;
Standard_Integer aNbEdges = NbEdges();
// no edges loaded, nothing to do -- return with status OK
if (aNbEdges == 0)
{
return;
}
else {//check if edges were only shifted in reverse or forward, not reordered
Standard_Boolean isShiftReverse = Standard_True, isShiftForward = Standard_True;
Standard_Integer tmpFirst = 0, tmpSecond = 0, length = mainSeq->Length();
for(i = 1; i <= length - 1; i++) {
tmpFirst = mainSeq->Value(i);
tmpSecond = mainSeq->Value(i+1);
if (!(tmpSecond - tmpFirst == 1 || (tmpFirst == length && tmpSecond == 1)))
myOrd = new TColStd_HArray1OfInteger (1, aNbEdges);
myOrd->Init (0);
// sequence of the edge nums in the right order
Handle(TColStd_HSequenceOfInteger) anEdgeSeq = new TColStd_HSequenceOfInteger;
NCollection_Sequence<Handle(TColStd_HSequenceOfInteger) > aLoops;
// the beginnings and ends of the edges
TColgp_Array1OfXYZ aBegins3D (1, aNbEdges);
TColgp_Array1OfXYZ anEnds3D (1, aNbEdges);
TColgp_Array1OfXY aBegins2D (1, aNbEdges);
TColgp_Array1OfXY anEnds2D (1, aNbEdges);
for (Standard_Integer i = 1; i <= aNbEdges; i++)
{
aBegins3D (i) = myXYZ->Value (2 * i - 1);
anEnds3D (i) = myXYZ->Value (2 * i);
if (myMode == ModeBoth)
{
aBegins2D (i) = myXY->Value (2 * i - 1);
anEnds2D (i) = myXY->Value (2 * i);
}
}
// the flags that the edges was considered
TColStd_Array1OfBoolean isEdgeUsed (1, aNbEdges);
isEdgeUsed.Init (Standard_False);
Standard_Real aTol2 = Precision::SquareConfusion();
Standard_Real aTolP2 = Precision::SquarePConfusion();
// take the first edge to the constructed chain
isEdgeUsed (1) = Standard_True;
gp_Pnt aFirstPnt3D = aBegins3D (1);
gp_Pnt aLastPnt3D = anEnds3D (1);
gp_Pnt2d aFirstPnt2D;
gp_Pnt2d aLastPnt2D;
if (myMode == ModeBoth)
{
aFirstPnt2D = aBegins2D (1);
aLastPnt2D = anEnds2D (1);
}
anEdgeSeq->Append (1);
// cycle until all edges are considered
for (;;)
{
// joint type
// 0 - the start of the best edge to the end of constructed sequence (nothing to do)
// 1 - the end of the best edge to the start of constructed sequence (need move the edge)
// 2 - the end of the best edge to the end of constructed sequence (need to reverse)
// 3 - the start of the best edge to the start of constructed sequence (need to reverse and move the edge)
Standard_Integer aBestJointType = 3;
// the best minimum distance between constructed sequence and the best edge
Standard_Real aBestMin3D = RealLast();
// number of the best edge
Standard_Integer aBestEdgeNum = 0;
// the best edge was found
Standard_Boolean isFound = Standard_False;
Standard_Boolean isConnected = Standard_False;
// loop to find the best edge among all the remaining
for (Standard_Integer i = 1; i <= aNbEdges; i++)
{
if (isEdgeUsed (i))
{
continue;
}
// find minimum distance and joint type for 3D and 2D (if necessary) modes
Standard_Integer aCurJointType;
Standard_Real aCurMin;
// distance for four possible cases
Standard_Real aSeqTailEdgeHead = aLastPnt3D.SquareDistance (aBegins3D (i));
Standard_Real aSeqTailEdgeTail = aLastPnt3D.SquareDistance (anEnds3D (i));
Standard_Real aSeqHeadEdgeTail = aFirstPnt3D.SquareDistance (anEnds3D (i));
Standard_Real aSeqHeadEdgeHead = aFirstPnt3D.SquareDistance (aBegins3D (i));
// the best distances for joints with head and tail of sequence
Standard_Real aMinDistToTail, aMinDistToHead;
Standard_Integer aTailJoinType, aHeadJointType;
if (aSeqTailEdgeHead <= aSeqTailEdgeTail)
{
aTailJoinType = 0;
aMinDistToTail = aSeqTailEdgeHead;
}
else
{
aTailJoinType = 2;
aMinDistToTail = aSeqTailEdgeTail;
}
if (aSeqHeadEdgeTail <= aSeqHeadEdgeHead)
{
aHeadJointType = 1;
aMinDistToHead = aSeqHeadEdgeTail;
}
else
{
aHeadJointType = 3;
aMinDistToHead = aSeqHeadEdgeHead;
}
// comparing the head and the tail cases
// if distances are close enough then we use rule for joint type: 0 < 1 < 2 < 3
if (fabs (aMinDistToTail - aMinDistToHead) < aTol2)
{
if (aTailJoinType < aHeadJointType)
{
aCurJointType = aTailJoinType;
aCurMin = aMinDistToTail;
}
else
{
aCurJointType = aHeadJointType;
aCurMin = aMinDistToHead;
}
}
else
{
if (aMinDistToTail <= aMinDistToHead)
{
aCurJointType = aTailJoinType;
aCurMin = aMinDistToTail;
}
else
{
aCurJointType = aHeadJointType;
aCurMin = aMinDistToHead;
}
}
// update for the best values
if (myMode == ModeBoth)
{
// distances in 2D
Standard_Integer aJointMask3D = 0, aJointMask2D = 0;
if (aSeqTailEdgeHead < aTol2)
{
aJointMask3D |= (1 << 0);
}
if (aSeqTailEdgeTail < aTol2)
{
aJointMask3D |= (1 << 2);
}
if (aSeqHeadEdgeTail < aTol2)
{
aJointMask3D |= (1 << 1);
}
if (aSeqHeadEdgeHead < aTol2)
{
aJointMask3D |= (1 << 3);
}
Standard_Real aSeqTailEdgeHead2D = aLastPnt2D.SquareDistance (aBegins2D (i));
Standard_Real aSeqTailEdgeTail2D = aLastPnt2D.SquareDistance (anEnds2D (i));
Standard_Real aSeqHeadEdgeTail2D = aFirstPnt2D.SquareDistance (anEnds2D (i));
Standard_Real aSeqHeadEdgeHead2D = aFirstPnt2D.SquareDistance (aBegins2D (i));
if (aSeqTailEdgeHead2D < aTolP2)
{
aJointMask2D |= (1 << 0);
}
if (aSeqTailEdgeTail2D < aTolP2)
{
aJointMask2D |= (1 << 2);
}
if (aSeqHeadEdgeTail2D < aTolP2)
{
aJointMask2D |= (1 << 1);
}
if (aSeqHeadEdgeHead2D < aTolP2)
{
aJointMask2D |= (1 << 3);
}
// new approche for detecting best edge connection, for all other cases used old 3D algorithm
Standard_Integer aFullMask = aJointMask3D & aJointMask2D;
if (aFullMask != 0)
{
// find the best current joint type
aCurJointType = 3;
for (Standard_Integer j = 0; j < 4; j++)
{
if (aFullMask & (1 << j))
{
aCurJointType = j;
break;
}
}
if (!isConnected || aCurJointType < aBestJointType)
{
isFound = Standard_True;
isConnected = Standard_True;
switch (aCurJointType)
{
case 0:
aBestMin3D = aSeqTailEdgeHead;
break;
case 1:
aBestMin3D = aSeqHeadEdgeTail;
break;
case 2:
aBestMin3D = aSeqTailEdgeTail;
break;
case 3:
aBestMin3D = aSeqHeadEdgeHead;
break;
}
aBestJointType = aCurJointType;
aBestEdgeNum = i;
}
}
// if there is still no connection, continue to use ald 3D algorithm
if (isConnected)
{
continue;
}
}
// if the best distance is still not reached (aBestMin3D > aTol2) or we found a better joint type
if (aBestMin3D > aTol2 || aCurJointType < aBestJointType)
{
// make a decision that this edge is good enough:
// - it gets the best distance but there is fabs(aCurMin3d - aBestMin3d) < aTol2 && (aCurJointType < aBestJointType) ?
// - it gets the best joint in some cases
if (aCurMin < aBestMin3D || ((aCurMin == aBestMin3D || aCurMin < aTol2) && (aCurJointType < aBestJointType)))
{
isFound = Standard_True;
aBestMin3D = aCurMin;
aBestJointType = aCurJointType;
aBestEdgeNum = i;
}
}
}
// check that we found edge for connecting
if (isFound)
{
// distance between first and last point in sequence
Standard_Real aCloseDist = aFirstPnt3D.SquareDistance (aLastPnt3D);
// if it's better to insert the edge than to close the loop, just insert the edge according to joint type
if (aBestMin3D <= RealSmall() || aBestMin3D < aCloseDist)
{
switch (aBestJointType)
{
case 0:
anEdgeSeq->Append (aBestEdgeNum);
aLastPnt3D = anEnds3D (aBestEdgeNum);
break;
case 1:
anEdgeSeq->Prepend (aBestEdgeNum);
aFirstPnt3D = aBegins3D (aBestEdgeNum);
break;
case 2:
anEdgeSeq->Append (-aBestEdgeNum);
aLastPnt3D = aBegins3D (aBestEdgeNum);
break;
case 3:
anEdgeSeq->Prepend (-aBestEdgeNum);
aFirstPnt3D = anEnds3D (aBestEdgeNum);
break;
}
if (myMode == ModeBoth)
{
switch (aBestJointType)
{
case 0:
aLastPnt2D = anEnds2D (aBestEdgeNum);
break;
case 1:
aFirstPnt2D = aBegins2D (aBestEdgeNum);
break;
case 2:
aLastPnt2D = aBegins2D (aBestEdgeNum);
break;
case 3:
aFirstPnt2D = anEnds2D (aBestEdgeNum);
break;
}
}
}
// closing loop and creating new one
else
{
aLoops.Append (anEdgeSeq);
anEdgeSeq = new TColStd_HSequenceOfInteger;
aFirstPnt3D = aBegins3D (aBestEdgeNum);
aLastPnt3D = anEnds3D (aBestEdgeNum);
if (myMode == ModeBoth)
{
aFirstPnt2D = aBegins2D (aBestEdgeNum);
aLastPnt2D = anEnds2D (aBestEdgeNum);
}
anEdgeSeq->Append (aBestEdgeNum);
}
// mark the edge as used
isEdgeUsed (aBestEdgeNum) = Standard_True;
}
else
{
// the only condition under which we can't find an edge is when all edges are done
break;
}
}
// append the last loop
aLoops.Append (anEdgeSeq);
// handling with constructed loops
Handle(TColStd_HSequenceOfInteger) aMainLoop;
if (myKeepLoops)
{
// keeping the loops, adding one after another.
aMainLoop = new TColStd_HSequenceOfInteger;
for (Standard_Integer i = 1; i <= aLoops.Length(); i++)
{
const Handle(TColStd_HSequenceOfInteger)& aCurLoop = aLoops (i);
aMainLoop->Append (aCurLoop);
}
}
else
{
// connecting loops
aMainLoop = aLoops.First();
aLoops.Remove (1);
while (aLoops.Length())
{
// iterate over all loops to find the closest one
Standard_Real aMinDist1 = RealLast();
Standard_Integer aLoopNum1 = 0;
Standard_Integer aCurLoopIt1 = 0;
Standard_Boolean aDirect1 = Standard_False;
Standard_Integer aMainLoopIt1 = 0;
for (Standard_Integer aLoopIt = 1; aLoopIt <= aLoops.Length(); aLoopIt++)
{
const Handle(TColStd_HSequenceOfInteger)& aCurLoop = aLoops.Value (aLoopIt);
// iterate over all gaps between edges in current loop
Standard_Integer aCurLoopIt2 = 0;
Standard_Integer aMainLoopIt2 = 0;
Standard_Boolean aDirect2 = Standard_False;
Standard_Real aMinDist2 = RealLast();
Standard_Integer aCurLoopLength = aCurLoop->Length();
for (Standard_Integer aCurEdgeIt = 1; aCurEdgeIt <= aCurLoopLength; aCurEdgeIt++)
{
// get the distance between the current edge and the previous edge taking into account the edge's orientation
Standard_Integer aPrevEdgeIt = aCurEdgeIt == 1 ? aCurLoopLength : aCurEdgeIt - 1;
Standard_Integer aCurEdgeIdx = aCurLoop->Value (aCurEdgeIt);
Standard_Integer aPrevEdgeIdx = aCurLoop->Value (aPrevEdgeIt);
gp_Pnt aCurLoopFirst = aCurEdgeIdx > 0 ? aBegins3D (aCurEdgeIdx) : anEnds3D (-aCurEdgeIdx);
gp_Pnt aCurLoopLast = aPrevEdgeIdx > 0 ? anEnds3D (aPrevEdgeIdx) : aBegins3D (-aPrevEdgeIdx);
// iterate over all gaps between edges in main loop
Standard_Real aMinDist3 = RealLast();
Standard_Integer aMainLoopIt3 = 0;
Standard_Boolean aDirect3 = Standard_False;
Standard_Integer aMainLoopLength = aMainLoop->Length();
for (Standard_Integer aCurEdgeIt2 = 1; (aCurEdgeIt2 <= aMainLoopLength) && aMinDist3 != 0.0; aCurEdgeIt2++)
{
// get the distance between the current edge and the next edge taking into account the edge's orientation
Standard_Integer aNextEdgeIt2 = aCurEdgeIt2 == aMainLoopLength ? 1 : aCurEdgeIt2 + 1;
Standard_Integer aCurEdgeIdx2 = aMainLoop->Value (aCurEdgeIt2);
Standard_Integer aNextEdgeIdx2 = aMainLoop->Value (aNextEdgeIt2);
gp_Pnt aMainLoopFirst = (aCurEdgeIdx2 > 0 ? anEnds3D (aCurEdgeIdx2) : aBegins3D (-aCurEdgeIdx2));
gp_Pnt aMainLoopLast = (aNextEdgeIdx2 > 0 ? aBegins3D (aNextEdgeIdx2) : anEnds3D (-aNextEdgeIdx2));
// getting the sum of square distances if we try to sew the current loop with the main loop in current positions
Standard_Real aDirectDist =
aCurLoopFirst.SquareDistance (aMainLoopFirst) + aCurLoopLast.SquareDistance (aMainLoopLast);
Standard_Real aReverseDist =
aCurLoopFirst.SquareDistance (aMainLoopLast) + aCurLoopLast.SquareDistance (aMainLoopFirst);
// take the best result
Standard_Real aJoinDist;
if ((aDirectDist < aTol2) || (aDirectDist < 2.0 * aReverseDist))
{
aJoinDist = aDirectDist;
aReverseDist = aDirectDist;
}
else
{
aJoinDist = aReverseDist;
}
// check if we found a better distance
if (aJoinDist < aMinDist3 && Abs (aMinDist3 - aJoinDist) > aTol2)
{
aMinDist3 = aJoinDist;
aDirect3 = (aDirectDist <= aReverseDist);
aMainLoopIt3 = aCurEdgeIt2;
}
}
// check if we found a better distance
if (aMinDist3 < aMinDist2 && Abs (aMinDist2 - aMinDist3) > aTol2)
{
aMinDist2 = aMinDist3;
aDirect2 = aDirect3;
aMainLoopIt2 = aMainLoopIt3;
aCurLoopIt2 = aCurEdgeIt;
}
}
// check if we found a better distance
if (aMinDist2 < aMinDist1 && Abs (aMinDist1 - aMinDist2) > aTol2)
{
aMinDist1 = aMinDist2;
aLoopNum1 = aLoopIt;
aDirect1 = aDirect2;
aMainLoopIt1 = aMainLoopIt2;
aCurLoopIt1 = aCurLoopIt2;
}
}
// insert the found loop into main loop
Handle(TColStd_HSequenceOfInteger) aLoop = aLoops.Value (aLoopNum1);
Standard_Integer aFactor = (aDirect1 ? 1 : -1);
for (Standard_Integer i = 0; i < aLoop->Length(); i++)
{
Standard_Integer anIdx = (aCurLoopIt1 + i > aLoop->Length() ? aCurLoopIt1 + i - aLoop->Length() :
aCurLoopIt1 + i);
aMainLoop->InsertAfter (aMainLoopIt1 + i, aLoop->Value (anIdx) * aFactor);
}
aLoops.Remove (aLoopNum1);
}
}
// checking the new order of the edges
// 0 - order is the same
// 1 - some edges were reordered
// -1 - some edges were reversed
Standard_Integer aTempStatus = 0;
for (Standard_Integer i = 1; i <= aMainLoop->Length(); i++)
{
if (i != aMainLoop->Value (i) && aTempStatus >= 0)
{
aTempStatus = (aMainLoop->Value (i) > 0 ? 1 : -1);
}
myOrd->SetValue (i, aMainLoop->Value (i));
}
if (aTempStatus == 0)
{
myStat = aTempStatus;
return;
}
else
{
// check if edges were only shifted in reverse or forward, not reordered
Standard_Boolean isShiftReverse = Standard_True;
Standard_Boolean isShiftForward = Standard_True;
Standard_Integer aFirstIdx, aSecondIdx;
Standard_Integer aLength = aMainLoop->Length();
for (Standard_Integer i = 1; i <= aLength - 1; i++)
{
aFirstIdx = aMainLoop->Value (i);
aSecondIdx = aMainLoop->Value (i + 1);
if (!(aSecondIdx - aFirstIdx == 1 || (aFirstIdx == aLength && aSecondIdx == 1)))
{
isShiftForward = Standard_False;
if (!(tmpFirst - tmpSecond == 1 || (tmpSecond == length && tmpFirst == 1)))
}
if (!(aFirstIdx - aSecondIdx == 1 || (aSecondIdx == aLength && aFirstIdx == 1)))
{
isShiftReverse = Standard_False;
}
tmpFirst = mainSeq->Value(length);
tmpSecond = mainSeq->Value(1);
if (!(tmpSecond - tmpFirst == 1 || (tmpFirst == length && tmpSecond == 1)))
}
aFirstIdx = aMainLoop->Value (aLength);
aSecondIdx = aMainLoop->Value (1);
if (!(aSecondIdx - aFirstIdx == 1 || (aFirstIdx == aLength && aSecondIdx == 1)))
{
isShiftForward = Standard_False;
if (!(tmpFirst - tmpSecond == 1 || (tmpSecond == length && tmpFirst == 1)))
}
if (!(aFirstIdx - aSecondIdx == 1 || (aSecondIdx == aLength && aFirstIdx == 1)))
{
isShiftReverse = Standard_False;
}
if (isShiftForward || isShiftReverse)
stTmp = 3;
myStat = stTmp;
{
aTempStatus = 3;
}
myStat = aTempStatus;
return;
}
}
@ -423,11 +726,11 @@ void ShapeAnalysis_WireOrder::Perform(const Standard_Boolean /*closed*/)
//purpose :
//=======================================================================
Standard_Integer ShapeAnalysis_WireOrder::Ordered(const Standard_Integer n) const
Standard_Integer ShapeAnalysis_WireOrder::Ordered (const Standard_Integer theIdx) const
{
if (myOrd.IsNull() || myOrd->Upper() < n) return n;
Standard_Integer ord = myOrd->Value(n);
return (ord == 0 ? n : ord);
if (myOrd.IsNull() || myOrd->Upper() < theIdx) return theIdx;
Standard_Integer anOldIdx = myOrd->Value (theIdx);
return (anOldIdx == 0 ? theIdx : anOldIdx);
}
//=======================================================================
@ -435,15 +738,10 @@ void ShapeAnalysis_WireOrder::Perform(const Standard_Boolean /*closed*/)
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::XYZ(const Standard_Integer num,gp_XYZ& start3d,gp_XYZ& end3d) const
void ShapeAnalysis_WireOrder::XYZ (const Standard_Integer theIdx, gp_XYZ& theStart3D, gp_XYZ& theEnd3D) const
{
if (num > 0) {
start3d = myXYZ->Value (2*num-1);
end3d = myXYZ->Value (2*num);
} else {
start3d = myXYZ->Value (-2*num);
end3d = myXYZ->Value (-2*num-1);
}
theStart3D = myXYZ->Value ((theIdx > 0 ? 2 * theIdx - 1 : -2 * theIdx));
theEnd3D = myXYZ->Value ((theIdx > 0 ? 2 * theIdx : -2 * theIdx - 1));
}
//=======================================================================
@ -451,12 +749,20 @@ void ShapeAnalysis_WireOrder::Perform(const Standard_Boolean /*closed*/)
//purpose :
//=======================================================================
void ShapeAnalysis_WireOrder::XY(const Standard_Integer num,gp_XY& start2d,gp_XY& end2d) const
void ShapeAnalysis_WireOrder::XY (const Standard_Integer theIdx, gp_XY& theStart2D, gp_XY& theEnd2D) const
{
const gp_XYZ& st2d = myXYZ->Value ( (num > 0 ? 2*num-1 : -2*num) );
start2d.SetCoord (st2d.X(),st2d.Y());
const gp_XYZ& en2d = myXYZ->Value ( (num > 0 ? 2*num : -2*num -1) );
end2d.SetCoord (en2d.X(),en2d.Y());
if (myMode == ModeBoth)
{
theStart2D = myXY->Value ((theIdx > 0 ? 2 * theIdx - 1 : -2 * theIdx));
theEnd2D = myXY->Value ((theIdx > 0 ? 2 * theIdx : -2 * theIdx - 1));
}
else
{
const gp_XYZ& aStart3d = myXYZ->Value ((theIdx > 0 ? 2 * theIdx - 1 : -2 * theIdx));
theStart2D.SetCoord (aStart3d.X(), aStart3d.Y());
const gp_XYZ& anEnd3d = myXYZ->Value ((theIdx > 0 ? 2 * theIdx : -2 * theIdx - 1));
theEnd2D.SetCoord (anEnd3d.X(), anEnd3d.Y());
}
}
//=======================================================================
@ -482,14 +788,16 @@ void ShapeAnalysis_WireOrder::Perform(const Standard_Boolean /*closed*/)
void ShapeAnalysis_WireOrder::SetChains (const Standard_Real gap)
{
Standard_Integer n0 = 0, n1, n2, nb = NbEdges(); //szv#4:S4163:12Mar99 o0,o1,o2 not needed
Standard_Integer n0, n1, n2, nb = NbEdges(); //szv#4:S4163:12Mar99 o0,o1,o2 not needed
if (nb == 0) return;
TColStd_SequenceOfInteger chain;
n0 = 0;
chain.Append (1); // On demarre la partie
gp_XYZ f3d, l3d, f13d, l13d; //szv#4:S4163:12Mar99 f03d,l03d unused
for (n1 = 1; n1 <= nb; n1 ++) {
if (n0 == 0) { // nouvelle boucle
for (n1 = 1; n1 <= nb; n1++)
{
if (n0 == 0)
{ // nouvelle boucle
n0 = n1;
//szv#4:S4163:12Mar99 optimized
XYZ (Ordered (n0), f13d, l13d);
@ -497,8 +805,13 @@ void ShapeAnalysis_WireOrder::SetChains(const Standard_Real gap)
//szv#4:S4163:12Mar99 optimized
n2 = (n1 == nb) ? n0 : (n1 + 1);
XYZ (Ordered (n2), f3d, l3d);
if (!f3d.IsEqual (l13d,gap)) { chain.Append (n2); n0 = 0; }
f13d = f3d; l13d = l3d;
if (!f3d.IsEqual (l13d, gap))
{
chain.Append (n2);
n0 = 0;
}
f13d = f3d;
l13d = l3d;
}
nb = chain.Length();
if (nb == 0) return;

View File

@ -23,6 +23,7 @@
#include <Standard_Boolean.hxx>
#include <TColStd_HArray1OfInteger.hxx>
#include <TColgp_HSequenceOfXY.hxx>
#include <TColgp_HSequenceOfXYZ.hxx>
#include <Standard_Real.hxx>
#include <Standard_Integer.hxx>
@ -41,10 +42,8 @@ class gp_XY;
//! This allows to use this tool, either on existing wire, or on
//! data just taken from a file (coordinates are easy to get)
//!
//! It can work, either in 2D, or in 3D, but not miscible
//! Warning about tolerance : according to the mode (2D/3D), it
//! must be given as 2D or 3D (i.e. metric) tolerance, uniform
//! on the whole list
//! It can work, either in 2D, or in 3D, or miscible mode
//! The tolerance for each mode is fixed
//!
//! Two phases : firstly add the couples (start, end)
//! secondly perform then get the result
@ -54,17 +53,24 @@ public:
DEFINE_STANDARD_ALLOC
//! Empty constructor
Standard_EXPORT ShapeAnalysis_WireOrder();
//! Creates a WireOrder in 3D (if mode3d is True) or 2D (if False)
//! with a tolerance
Standard_EXPORT ShapeAnalysis_WireOrder(const Standard_Boolean mode3d, const Standard_Real tol);
//! Creates a WireOrder.
//! Flag <theMode3D> defines 3D or 2d mode.
//! Flag <theModeBoth> defines miscible mode and the flag <theMode3D> is ignored.
//! Warning: Parameter <theTolerance> is not used in algorithm.
Standard_EXPORT ShapeAnalysis_WireOrder (const Standard_Boolean theMode3D,
const Standard_Real theTolerance,
const Standard_Boolean theModeBoth = Standard_False);
//! Sets new values. Clears the connexion list
//! If <mode3d> changes, also clears the edge list (else, doesn't)
Standard_EXPORT void SetMode (const Standard_Boolean mode3d, const Standard_Real tol);
//! Sets new values.
//! Clears the edge list if the mode (<theMode3D> or <theModeBoth> ) changes.
//! Clears the connexion list.
//! Warning: Parameter <theTolerance> is not used in algorithm.
Standard_EXPORT void SetMode (const Standard_Boolean theMode3D,
const Standard_Real theTolerance,
const Standard_Boolean theModeBoth = Standard_False);
//! Returns the working tolerance
Standard_EXPORT Standard_Real Tolerance() const;
@ -73,10 +79,16 @@ public:
Standard_EXPORT void Clear();
//! Adds a couple of points 3D (start, end)
Standard_EXPORT void Add (const gp_XYZ& start3d, const gp_XYZ& end3d);
Standard_EXPORT void Add (const gp_XYZ& theStart3d, const gp_XYZ& theEnd3d);
//! Adds a couple of points 2D (start, end)
Standard_EXPORT void Add (const gp_XY& start2d, const gp_XY& end2d);
Standard_EXPORT void Add (const gp_XY& theStart2d, const gp_XY& theEnd2d);
//! Adds a couple of points 3D and 2D (start, end)
Standard_EXPORT void Add (const gp_XYZ& theStart3d,
const gp_XYZ& theEnd3d,
const gp_XY& theStart2d,
const gp_XY& theEnd2d);
//! Returns the count of added couples of points (one per edges)
Standard_EXPORT Standard_Integer NbEdges() const;
@ -87,12 +99,11 @@ public:
Standard_EXPORT Standard_Boolean& KeepLoopsMode();
//! Computes the better order
//! If <closed> is True (D) considers also closure
//! Optimised if the couples were already in order
//! The criterium is : two couples in order if distance between
//! end-prec and start-cur is less then starting tolerance <tol>
//! Else, the smallest distance is reached
//! Gap corresponds to a smallest distance greater than <tol>
//! Warning: Parameter <closed> not used
Standard_EXPORT void Perform (const Standard_Boolean closed = Standard_True);
//! Tells if Perform has been done
@ -102,23 +113,20 @@ public:
//! Returns the status of the order (0 if not done) :
//! 0 : all edges are direct and in sequence
//! 1 : all edges are direct but some are not in sequence
//! 2 : in addition, unresolved gaps remain
//! -1 : some edges are reversed, but no gap remain
//! -2 : some edges are reversed and some gaps remain
//! -10 : COULD NOT BE RESOLVED, Failure on Reorder
//! gap : regarding starting <tol>
//! 3 : edges in sequence are just shifted in forward or reverse manner
Standard_EXPORT Standard_Integer Status() const;
//! Returns the number of original edge which correspond to the
//! newly ordered number <n>
//! Warning : the returned value is NEGATIVE if edge should be reversed
Standard_EXPORT Standard_Integer Ordered (const Standard_Integer n) const;
Standard_EXPORT Standard_Integer Ordered (const Standard_Integer theIdx) const;
//! Returns the values of the couple <num>, as 3D values
Standard_EXPORT void XYZ (const Standard_Integer num, gp_XYZ& start3d, gp_XYZ& end3d) const;
Standard_EXPORT void XYZ (const Standard_Integer theIdx, gp_XYZ& theStart3D, gp_XYZ& theEnd3D) const;
//! Returns the values of the couple <num>, as 2D values
Standard_EXPORT void XY (const Standard_Integer num, gp_XY& start2d, gp_XY& end2d) const;
Standard_EXPORT void XY (const Standard_Integer theIdx, gp_XY& theStart2D, gp_XY& theEnd2D) const;
//! Returns the gap between a couple and its preceding
//! <num> is considered ordered
@ -138,6 +146,7 @@ public:
//! Determines the couples of edges for which end and start fit
//! inside a given gap. Queried by NbCouples and Couple
//! Warning: function isn't implemented
Standard_EXPORT void SetCouples (const Standard_Real gap);
//! Returns the count of computed couples
@ -147,36 +156,27 @@ public:
//! In the list of ordered edges
Standard_EXPORT void Couple (const Standard_Integer num, Standard_Integer& n1, Standard_Integer& n2) const;
protected:
private:
// the mode in which the algorithm works
enum ModeType
{
Mode2D,
Mode3D,
ModeBoth
};
Standard_Boolean myKeepLoops;
Handle(TColStd_HArray1OfInteger) myOrd;
Handle(TColStd_HArray1OfInteger) myChains;
Handle(TColStd_HArray1OfInteger) myCouples;
Handle(TColgp_HSequenceOfXYZ) myXYZ;
Handle(TColgp_HSequenceOfXY) myXY;
Standard_Real myTol;
Standard_Real myGap;
Standard_Integer myStat;
Standard_Boolean myMode;
Standard_Boolean myKeepLoops;
ModeType myMode;
};
#endif // _ShapeAnalysis_WireOrder_HeaderFile

View File

@ -433,51 +433,53 @@ Standard_Boolean ShapeFix_Wire::Perform()
//purpose :
//=======================================================================
Standard_Boolean ShapeFix_Wire::FixReorder()
Standard_Boolean ShapeFix_Wire::FixReorder(Standard_Boolean theModeBoth)
{
myStatusReorder = ShapeExtend::EncodeStatus(ShapeExtend_OK);
if ( ! IsLoaded() ) return Standard_False;
// fix in 3d
ShapeAnalysis_WireOrder sawo;
myAnalyzer->CheckOrder ( sawo, myClosedMode, Standard_True );
//:abv revolCuts.sat -23: in case of bi-periodic surface check case
// of reversed wire specifically. This is necessary because degenerated
// cases are possible when direct evaluation will give bad result.
Standard_Boolean isReorder = Standard_False;
if ( sawo.Status() != 0 &&
! myAnalyzer->Surface().IsNull() &&
myAnalyzer->Surface()->Surface()->IsUPeriodic() &&
myAnalyzer->Surface()->Surface()->IsVPeriodic() ) {
Handle(ShapeExtend_WireData) sbwd2 = new ShapeExtend_WireData;
for ( Standard_Integer i=WireData()->NbEdges(); i >=1; i-- )
sbwd2->Add ( WireData()->Edge(i) );
ShapeAnalysis_WireOrder sawo2;
ShapeAnalysis_Wire analyzer2 ( sbwd2, myAnalyzer->Face(), Precision() );
analyzer2.CheckOrder ( sawo2, myClosedMode, Standard_True );
if ( ( sawo2.Status() >=0 && sawo2.Status() < sawo.Status() ) ||
( sawo.Status() <0 && sawo2.Status() > sawo.Status() ) ) {
WireData()->Init ( sbwd2 );
sawo = sawo2;
isReorder = Standard_True;
if (!IsLoaded())
{
return Standard_False;
}
// fix in Both mode for bi-periodic surface
ShapeAnalysis_WireOrder sawo;
if (!myAnalyzer->Surface().IsNull() &&
myAnalyzer->Surface()->Surface()->IsUPeriodic() &&
myAnalyzer->Surface()->Surface()->IsVPeriodic() &&
theModeBoth)
{
myAnalyzer->CheckOrder(sawo, myClosedMode, Standard_True, Standard_True);
}
else
{
myAnalyzer->CheckOrder(sawo, myClosedMode, Standard_True, Standard_False);
}
FixReorder(sawo);
if (LastFixStatus(ShapeExtend_FAIL))
myStatusReorder |= ShapeExtend::EncodeStatus ( LastFixStatus ( ShapeExtend_FAIL1 ) ?
ShapeExtend_FAIL1 : ShapeExtend_FAIL2 );
if ( ! LastFixStatus ( ShapeExtend_DONE )&& !isReorder ) return Standard_False;
{
myStatusReorder |= ShapeExtend::EncodeStatus(LastFixStatus(ShapeExtend_FAIL1) ? ShapeExtend_FAIL1 : ShapeExtend_FAIL2);
}
if (!LastFixStatus(ShapeExtend_DONE))
{
return Standard_False;
}
myStatusReorder |= ShapeExtend::EncodeStatus(ShapeExtend_DONE1);
if (sawo.Status() == 2 || sawo.Status() == -2)
{
myStatusReorder |= ShapeExtend::EncodeStatus(ShapeExtend_DONE2);
}
if (sawo.Status() < 0)
{
myStatusReorder |= ShapeExtend::EncodeStatus(ShapeExtend_DONE3);
}
if (sawo.Status() == 3)
myStatusReorder |= ShapeExtend::EncodeStatus ( ShapeExtend_DONE5 );//only shifted
{
// only shifted
myStatusReorder |= ShapeExtend::EncodeStatus(ShapeExtend_DONE5);
}
return Standard_True;
}

View File

@ -267,9 +267,9 @@ public:
//! FixLacking (if wire is ordered)
Standard_EXPORT Standard_Boolean Perform();
//! Performs an analysis and reorders edges in the wire using
//! class WireOrder
Standard_EXPORT Standard_Boolean FixReorder();
//! Performs an analysis and reorders edges in the wire using class WireOrder.
//! Flag <theModeBoth> determines the use of miscible mode if necessary.
Standard_EXPORT Standard_Boolean FixReorder(Standard_Boolean theModeBoth = Standard_False);
//! Applies FixSmall(num) to all edges in the wire
Standard_EXPORT Standard_Integer FixSmall (const Standard_Boolean lockvtx, const Standard_Real precsmall = 0.0);

View File

@ -76,66 +76,64 @@ void TopoDSToStep_MakeStepWire::Init(const TopoDS_Wire& aWire,
TopoDSToStep_Tool& aTool,
const Handle(Transfer_FinderProcess)& FP)
{
// ----------------------------------------------------------------
// The Wire is given in its relative orientation (i.e. in the face)
// ----------------------------------------------------------------
aTool.SetCurrentWire (aWire);
if (aTool.IsBound(aWire)) {
if (aTool.IsBound (aWire))
{
myError = TopoDSToStep_WireDone;
done = Standard_True;
myResult = aTool.Find (aWire);
return;
}
Standard_Integer i;
if (aWire.Orientation() == TopAbs_INTERNAL ||
aWire.Orientation() == TopAbs_EXTERNAL ) {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
if (aWire.Orientation() == TopAbs_INTERNAL || aWire.Orientation() == TopAbs_EXTERNAL)
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " Wire(internal/external) from Non Manifold Topology");
myError = TopoDSToStep_NonManifoldWire;
done = Standard_False;
return;
}
BRepTools_WireExplorer ItW;
TopoDS_Edge CurrentEdge;
TColStd_SequenceOfTransient mySeq;
// --------
// Polyloop
// --------
if (aTool.Faceted()) {
if (aTool.Faceted())
{
Handle(StepShape_VertexPoint) VertexPoint;
Handle(StepGeom_Point) Point;
Handle(StepShape_TopologicalRepresentationItem) Gpms;
TopoDS_Vertex TopoDSVertex1, TopoDSVertex2;
TopoDSToStep_MakeStepVertex MkVertex;
// TopoDS_Wire ForwardWire = TopoDS::Wire(aWire.Oriented(TopAbs_FORWARD));
for (ItW.Init(aWire, aTool.CurrentFace());
ItW.More();ItW.Next()) {
CurrentEdge = ItW.Current();
for (BRepTools_WireExplorer ItW (aWire, aTool.CurrentFace()); ItW.More(); ItW.Next())
{
const TopoDS_Edge& CurrentEdge = ItW.Current();
if (CurrentEdge.Orientation() == TopAbs_FORWARD)
{
TopExp::Vertices (CurrentEdge, TopoDSVertex1, TopoDSVertex2);
}
else
{
TopExp::Vertices (CurrentEdge, TopoDSVertex2, TopoDSVertex1);
}
MkVertex.Init (TopoDSVertex1, aTool, FP);
if (MkVertex.IsDone()) {
if (MkVertex.IsDone())
{
VertexPoint = Handle(StepShape_VertexPoint)::DownCast (MkVertex.Value());
Point = VertexPoint->VertexGeometry();
mySeq.Append (Point);
}
else {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
else
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " a Vertex Point not mapped");
myError = TopoDSToStep_WireOther;
done = Standard_False;
@ -143,16 +141,15 @@ void TopoDSToStep_MakeStepWire::Init(const TopoDS_Wire& aWire,
}
}
Standard_Integer nbPoints = mySeq.Length();
if (nbPoints>=3) {
Handle(StepGeom_HArray1OfCartesianPoint) aPolygon =
new StepGeom_HArray1OfCartesianPoint(1,nbPoints);
for ( i=1; i<=nbPoints; i++) {
aPolygon->SetValue(i, Handle(StepGeom_CartesianPoint)::
DownCast(mySeq.Value(i)));
if (nbPoints >= 3)
{
Handle(StepGeom_HArray1OfCartesianPoint) aPolygon = new StepGeom_HArray1OfCartesianPoint (1, nbPoints);
for (Standard_Integer i = 1; i <= nbPoints; i++)
{
aPolygon->SetValue (i, Handle(StepGeom_CartesianPoint)::DownCast (mySeq.Value (i)));
}
Handle(StepShape_PolyLoop) PL = new StepShape_PolyLoop();
Handle(TCollection_HAsciiString) aName =
new TCollection_HAsciiString("");
Handle(TCollection_HAsciiString) aName = new TCollection_HAsciiString ("");
PL->Init (aName, aPolygon);
aTool.Bind (aWire, PL);
@ -161,72 +158,75 @@ void TopoDSToStep_MakeStepWire::Init(const TopoDS_Wire& aWire,
myResult = PL;
return;
}
else {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
else
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " PolyLoop: Wire has less than 3 points");
myError = TopoDSToStep_WireOther;
done = Standard_False;
return;
}
}
// --------
// EdgeLoop
// --------
else {
else
{
Handle(StepShape_TopologicalRepresentationItem) Gpms;
Handle(StepShape_Edge) Epms;
Handle(StepShape_OrientedEdge) OrientedEdge;
TopoDSToStep_MakeStepEdge MkEdge;
//szv#4:S4163:12Mar99 SGI warns
TopoDS_Shape sh = aWire.Oriented(TopAbs_FORWARD);
const TopoDS_Wire ForwardWire = TopoDS::Wire(sh);
// test 25-01-96 FMA supprime CKY 2-JUN-1997, cf MakeStepFace->Face FWD]
// remis CKY 9-DEC-1997 : chaque niveau se traite en FWD
//#11 rln 16/03/98
//TestRally8 file carter2.rle face#333 (wire is not sorted, not sorted edges are seam and iso-curve):
//aWire is REVERSED but ForwardWire is FORWARD, when exploding not connected seams their pcurves are
//returned in incorrect order (because of mismatched orientation)
//As a result not sorted edges are lost (not returned by BRepTools_WireExplorer)
//By the way, in the case of aTool.Faceted() aWire is used
//#11 ItW.Init(ForwardWire, aTool.CurrentFace());
//#11 for (;ItW.More();ItW.Next()) {
Handle(ShapeFix_Wire) STW =
new ShapeFix_Wire(ForwardWire, aTool.CurrentFace(), Precision::Confusion());
STW->FixReorder();
Handle(ShapeExtend_WireData) sbwd = STW->WireData();
Standard_Integer nb = sbwd->NbEdges();
const TopoDS_Wire ForwardWire = TopoDS::Wire (aWire.Oriented (TopAbs_FORWARD));
Handle(ShapeFix_Wire) STW = new ShapeFix_Wire (ForwardWire, aTool.CurrentFace(), Precision::Confusion());
// for toroidal like surfaces we need to use both (3d and 2d) mode to correctly reorder the edges
STW->FixReorder (Standard_True);
Handle(ShapeExtend_WireData) anExtWire = STW->WireData();
//:abv 04.05.00: CAX-IF TRJ4: writing complete sphere with single vertex_loop
// check that whole wire is one seam (perhaps made of several seam edges)
//pdn remove degenerated pcurves
Handle(ShapeExtend_WireData) cwd = new ShapeExtend_WireData;
Standard_Integer ie;
for (ie = 1; ie <=nb; ie++) {
TopoDS_Edge edge = sbwd->Edge(ie);
if (!BRep_Tool::Degenerated(edge))
cwd->Add(edge);
}
nb = cwd->NbEdges();
if(nb%2 == 0 ) {
for ( ie = 1; ie < nb; ie++) {
if ( cwd->Edge(ie).IsSame(cwd->Edge(ie+1)) ) break;
// collect not degenerated edges
Handle(ShapeExtend_WireData) anExtWire2 = new ShapeExtend_WireData;
for (Standard_Integer ie = 1; ie <= anExtWire->NbEdges(); ie++)
{
TopoDS_Edge anEdge = anExtWire->Edge (ie);
if (!BRep_Tool::Degenerated (anEdge))
{
anExtWire2->Add (anEdge);
}
if ( ie < nb ) {
cwd->SetLast(ie);
for ( ie=nb/2+1; ie <= nb; ie++ ) {
if ( ! cwd->Edge(ie).IsSame(cwd->Edge(nb-ie+1)) ) break;
}
if ( ie > nb ) { // make vertex_loop
// check for seam edges
Standard_Integer nb = anExtWire2->NbEdges();
if (nb % 2 == 0)
{
Standard_Integer ie;
// check if two adjacent edges are the same
for (ie = 1; ie < nb; ie++)
{
if (anExtWire2->Edge (ie).IsSame (anExtWire2->Edge (ie + 1)))
{
break;
}
}
// if found seam edges
if (ie < nb)
{
// make the first edge from pair last
anExtWire2->SetLast (ie);
for (ie = nb / 2 + 1; ie <= nb; ie++)
{
if (!anExtWire2->Edge (ie).IsSame (anExtWire2->Edge (nb - ie + 1)))
{
break;
}
}
if (ie > nb)
{
// make vertex_loop
ShapeAnalysis_Edge sae;
TopoDS_Vertex V = sae.FirstVertex(cwd->Edge(1));
TopoDS_Vertex V = sae.FirstVertex (anExtWire2->Edge (1));
TopoDSToStep_MakeStepVertex mkV (V, aTool, FP);
Handle(StepShape_VertexLoop) vloop = new StepShape_VertexLoop;
Handle(TCollection_HAsciiString) name = new TCollection_HAsciiString ("");
@ -239,55 +239,35 @@ void TopoDSToStep_MakeStepWire::Init(const TopoDS_Wire& aWire,
}
}
}
nb = sbwd->NbEdges();
for (Standard_Integer nEdge = 1; nEdge <= sbwd->NbEdges(); nEdge++) {
CurrentEdge = sbwd->Edge(nEdge);
//#11 CurrentEdge = ItW.Current();
//if (ItW.Current().Orientation() != ItW.Orientation())
//std::cout << "DEBUG : Attention WireExplorer Orientation" << std::endl;
for (Standard_Integer nEdge = 1; nEdge <= anExtWire->NbEdges(); nEdge++)
{
const TopoDS_Edge anEdge = anExtWire->Edge (nEdge);
// ---------------------------------
// --- Is the edge Degenerated ? ---
// ---------------------------------
Standard_Real cf, cl;
Handle(Geom2d_Curve) theC2d =
BRep_Tool::CurveOnSurface(CurrentEdge, aTool.CurrentFace(), cf, cl);
//BRepAdaptor_Curve CA;
//CA = BRepAdaptor_Curve(CurrentEdge,
//aTool.CurrentFace());
//GeomAbs_CurveType typC = CA.CurveOnSurface().GetCurve().GetType();
//if (typC == GeomAbs_Line && BRep_Tool::Degenerated(CurrentEdge)) {
//Handle(TransferBRep_ShapeMapper) errShape =
//new TransferBRep_ShapeMapper(aWire);
//FP->AddWarning(errShape, " EdgeLoop: Degenerated Pcurve not mapped");
//}
if ( //:abv 26Jan00, CAX-IF TRJ3: ! theC2d.IsNull() && theC2d->IsKind(STANDARD_TYPE(Geom2d_Line)) &&
BRep_Tool::Degenerated(CurrentEdge)) {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
Handle(Geom2d_Curve) theC2d = BRep_Tool::CurveOnSurface (anEdge, aTool.CurrentFace(), cf, cl);
if (BRep_Tool::Degenerated (anEdge))
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " EdgeLoop: Degenerated Pcurve not mapped");
continue;
}
else {
//szv#4:S4163:12Mar99 SGI warns
//TopoDS_Shape ssh = CurrentEdge.Oriented(TopAbs_FORWARD);
//const TopoDS_Edge ForwardEdge = TopoDS::Edge(ssh);
MkEdge.Init(CurrentEdge, aTool, FP);
if (MkEdge.IsDone()) {
else
{
MkEdge.Init (anEdge, aTool, FP);
if (MkEdge.IsDone())
{
OrientedEdge = new StepShape_OrientedEdge();
Epms = Handle(StepShape_Edge)::DownCast (MkEdge.Value());
Handle(TCollection_HAsciiString) aName = new TCollection_HAsciiString ("");
OrientedEdge->Init(aName, Epms, (CurrentEdge.Orientation() == TopAbs_FORWARD));
OrientedEdge->Init (aName, Epms, (anEdge.Orientation() == TopAbs_FORWARD));
mySeq.Append (OrientedEdge);
}
else {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
else
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " EdgeLoop: an Edge not mapped");
myError = TopoDSToStep_WireOther;
done = Standard_False;
@ -296,25 +276,25 @@ void TopoDSToStep_MakeStepWire::Init(const TopoDS_Wire& aWire,
}
}
Standard_Integer nbEdges = mySeq.Length();
if ( nbEdges >0 ) {
Handle(StepShape_HArray1OfOrientedEdge) aList =
new StepShape_HArray1OfOrientedEdge(1,nbEdges);
for ( i=1; i<=nbEdges; i++ ) {
if (nbEdges > 0)
{
Handle(StepShape_HArray1OfOrientedEdge) aList = new StepShape_HArray1OfOrientedEdge (1, nbEdges);
for (Standard_Integer i = 1; i <= nbEdges; i++)
{
aList->SetValue (i, Handle(StepShape_OrientedEdge)::
DownCast (mySeq.Value (i)));
}
Handle(StepShape_EdgeLoop) Epmsl = new StepShape_EdgeLoop;
Handle(TCollection_HAsciiString) aName =
new TCollection_HAsciiString("");
Handle(TCollection_HAsciiString) aName = new TCollection_HAsciiString ("");
Epmsl->Init (aName, aList);
aTool.Bind (aWire, Epmsl);
done = Standard_True;
myResult = Epmsl;
return;
}
else {
Handle(TransferBRep_ShapeMapper) errShape =
new TransferBRep_ShapeMapper(aWire);
else
{
Handle(TransferBRep_ShapeMapper) errShape = new TransferBRep_ShapeMapper (aWire);
FP->AddWarning (errShape, " No Edges of this Wire were mapped");
myError = TopoDSToStep_WireOther;
done = Standard_False;

View File

@ -13,7 +13,7 @@ checkprops result -s 1.8e+101
set nbshapes_expected "
Number of shapes in shape
VERTEX : 56881
VERTEX : 56883
EDGE : 85310
WIRE : 37795
FACE : 32992
@ -21,7 +21,7 @@ Number of shapes in shape
SOLID : 1308
COMPSOLID : 0
COMPOUND : 1
SHAPE : 215605
SHAPE : 215607
"
checknbshapes result -ref ${nbshapes_expected} -t -m "importing file"
checkview -display result -3d -path ${imagedir}/${test_image}.png

111
tests/bugs/step/bug32922 Normal file
View File

@ -0,0 +1,111 @@
puts "============"
puts "OCC32922 Data Exchange, STEP - The torus is stored incorrectly in STEP format"
puts "============"
puts ""
#####################################################
# STEP testing the case when a torus is saved in STEP
# format with an incorrect edge order
#####################################################
pload MODELING XDE
if { [info exists imagedir] == 0 } {
set imagedir ../bug32922
if {![file exists ${imagedir}]} {
file mkdir ${imagedir}
}
}
# Generating resource file where all shape healing is off
set fdata {
ToSTEP.exec.op : SplitCommonVertex,DirectFaces
FromSTEP.exec.op : FixShape
FromSTEP.FixShape.Tolerance3d : &Runtime.Tolerance
FromSTEP.FixShape.MaxTolerance3d : &Runtime.MaxTolerance
FromSTEP.FixShape.MinTolerance3d : 1.e-7
FromSTEP.FixShape.FixFreeShellMode : 0
FromSTEP.FixShape.FixFreeFaceMode : 0
FromSTEP.FixShape.FixFreeWireMode : 0
FromSTEP.FixShape.FixSameParameterMode : 0
FromSTEP.FixShape.FixSolidMode : 0
FromSTEP.FixShape.FixShellOrientationMode : 0
FromSTEP.FixShape.CreateOpenSolidMode : 0
FromSTEP.FixShape.FixShellMode : 0
FromSTEP.FixShape.FixFaceOrientationMode : 0
FromSTEP.FixShape.FixFaceMode : 0
FromSTEP.FixShape.FixWireMode : 0
FromSTEP.FixShape.FixOrientationMode : 0
FromSTEP.FixShape.FixAddNaturalBoundMode : 0
FromSTEP.FixShape.FixMissingSeamMode : 0
FromSTEP.FixShape.FixSmallAreaWireMode : 0
FromSTEP.FixShape.RemoveSmallAreaFaceMode : 0
FromSTEP.FixShape.FixIntersectingWiresMode : 0
FromSTEP.FixShape.FixLoopWiresMode : 0
FromSTEP.FixShape.FixSplitFaceMode : 0
FromSTEP.FixShape.AutoCorrectPrecisionMode : 0
FromSTEP.FixShape.ModifyTopologyMode : 0
FromSTEP.FixShape.ModifyGeometryMode : 0
FromSTEP.FixShape.ClosedWireMode : 0
FromSTEP.FixShape.PreferencePCurveMode : 0
FromSTEP.FixShape.FixReorderMode : 0
FromSTEP.FixShape.FixSmallMode : 0
FromSTEP.FixShape.FixConnectedMode : 0
FromSTEP.FixShape.FixEdgeCurvesMode : 0
FromSTEP.FixShape.FixDegeneratedMode : 0
FromSTEP.FixShape.FixLackingMode : 0
FromSTEP.FixShape.FixSelfIntersectionMode : 0
FromSTEP.FixShape.RemoveLoopMode : 0
FromSTEP.FixShape.FixReversed2dMode : 0
FromSTEP.FixShape.FixRemovePCurveMode : 0
FromSTEP.FixShape.FixRemoveCurve3dMode : 0
FromSTEP.FixShape.FixAddPCurveMode : 0
FromSTEP.FixShape.FixAddCurve3dMode : 0
FromSTEP.FixShape.FixSeamMode : 0
FromSTEP.FixShape.FixShiftedMode : 0
FromSTEP.FixShape.FixEdgeSameParameterMode : 0
FromSTEP.FixShape.FixNotchedEdgesMode : 0
FromSTEP.FixShape.FixTailMode : 0
FromSTEP.FixShape.MaxTailAngle : 0
FromSTEP.FixShape.MaxTailWidth : 0
FromSTEP.FixShape.FixSelfIntersectingEdgeMode : 0
FromSTEP.FixShape.FixIntersectingEdgesMode : 0
FromSTEP.FixShape.FixNonAdjacentIntersectingEdgesMode : 0
FromSTEP.FixShape.FixVertexPositionMode : 0
FromSTEP.FixShape.FixVertexToleranceMode : 0
}
set new_resource_path ${imagedir}
set resource_file STEP
set fo [open "${new_resource_path}/${resource_file}" "wb"]
puts -nonewline $fo $fdata
close $fo
# Changing the path to the resource file
set old_resource_path $::env(CSF_STEPDefaults)
set env(CSF_STEPDefaults) ${new_resource_path}
# Generating, writing and reading the torus
ptorus tor 20 5
set step_file ${imagedir}/torus.stp
testwritestep ${step_file} tor
stepread ${step_file} a *
# Cheking the face of the torus
explode a_1 f
renamevar a_1_1 result
checkshape result
# Making screenshort
pcurve result
view 1 -2D- 728 20 400 400
2dfit
checkview -screenshot -2d -path ${imagedir}/${test_image}.png
# Restoring the path to the old resource file
set env(CSF_STEPDefaults) ${old_resource_path}