1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

0024682: Move out B-spline cache from curves and surfaces to dedicated classes BSplCLib_Cache and BSplSLib_Cache

1. B-spline cache was moved into separated classes: BSplCLib_Cache for 2D and 3D curves and BSplSLib_Cache for surfaces.

2. The cache is used now in corresponding adaptor classes (Geom2dAdaptor_Curve, GeomAdaptor_Curve and GeomAdaptor_Surface) when the curve or surface is a B-spline.

3. Algorithms were changed to use adaptors for B-spline calculations instead of curves or surfaces.

4. Precised calculation of derivatives of surface of revolution is implemented for the points of surface placed on the axis of revolution (Geom_SurfaceOfRevolution.cxx)

5. Small modifications are made to adjust algorithms to new behavior of B-spline calculation.

6. Test cases were modified according to the modern behavior.

7. Changes in BOPAlgo_WireSplitter, BOPTools_AlgoTools, BRepLib_CheckCurveOnSurface and ShapeAnalysis_Wire to use adaptors instead of geometric entities

8. Allow Geom2dAdaptor and GeomAdaptor in case of offset curve to use corresponding adaptor for basis curve

Modification of test-cases according to the new behavior.
This commit is contained in:
azv
2015-05-28 13:36:57 +03:00
committed by bugmaster
parent 9176540c64
commit 94f71cad33
137 changed files with 4104 additions and 2503 deletions

View File

@@ -26,6 +26,7 @@
#include <Geom2dAdaptor_HCurve.hxx>
#include <Adaptor2d_HCurve2d.hxx>
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <GeomAbs_Shape.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <TColStd_Array1OfReal.hxx>
@@ -42,6 +43,9 @@
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_Parabola.hxx>
#include <Geom2d_Hyperbola.hxx>
#include <Geom2d_UndefinedValue.hxx>
#include <Geom2d_UndefinedDerivative.hxx>
#include <CSLib_Offset.hxx>
//#include <Geom2dConvert_BSplineCurveKnotSplitting.hxx>
#include <Standard_OutOfRange.hxx>
@@ -52,6 +56,17 @@
#define myBspl (*((Handle(Geom2d_BSplineCurve)*)&myCurve))
#define PosTol Precision::PConfusion()/2
static const int maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static gp_Vec2d dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true is the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2 = dummyDerivative,
gp_Vec2d& theD3 = dummyDerivative, gp_Vec2d& theD4 = dummyDerivative);
//=======================================================================
//function : LocalContinuity
//purpose : Computes the Continuity of a BSplineCurve
@@ -197,6 +212,16 @@ void Geom2dAdaptor_Curve::load(const Handle(Geom2d_Curve)& C,
}
else if ( TheType == STANDARD_TYPE(Geom2d_BSplineCurve)) {
myTypeCurve = GeomAbs_BSplineCurve;
// Create cache for B-spline
myCurveCache = new BSplCLib_Cache(myBspl->Degree(), myBspl->IsPeriodic(),
myBspl->KnotSequence(), myBspl->Poles(), myBspl->Weights());
}
else if ( TheType == STANDARD_TYPE(Geom2d_OffsetCurve))
{
myTypeCurve = GeomAbs_OtherCurve;
// Create nested adaptor for base curve
Handle(Geom2d_Curve) aBase = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve();
myOffsetBaseCurveAdaptor = new Geom2dAdaptor_HCurve(aBase);
}
else {
myTypeCurve = GeomAbs_OtherCurve;
@@ -218,7 +243,7 @@ GeomAbs_Shape Geom2dAdaptor_Curve::Continuity() const
if (myTypeCurve == GeomAbs_BSplineCurve) {
return LocalContinuity(myFirst, myLast);
}
else if (myCurve->IsKind(STANDARD_TYPE(Geom2d_OffsetCurve))){
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve)){
GeomAbs_Shape S =
(*((Handle(Geom2d_OffsetCurve)*)&myCurve))->GetBasisCurveContinuity();
switch(S){
@@ -330,7 +355,7 @@ Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
}
}
}
else if (myCurve->IsKind(STANDARD_TYPE(Geom2d_OffsetCurve))){
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve)){
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
@@ -342,9 +367,7 @@ Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
Geom2dAdaptor_Curve C
((*((Handle(Geom2d_OffsetCurve)*)&myCurve))->BasisCurve());
myNbIntervals = C.NbIntervals(BaseS);
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
}
return myNbIntervals;
@@ -447,7 +470,7 @@ void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
}
}
}
else if (myCurve->IsKind(STANDARD_TYPE(Geom2d_OffsetCurve))){
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve)){
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
@@ -459,10 +482,8 @@ void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
Geom2dAdaptor_Curve C
((*((Handle(Geom2d_OffsetCurve)*)&myCurve))->BasisCurve());
myNbIntervals = C.NbIntervals(BaseS);
C.Intervals(T, BaseS);
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
myOffsetBaseCurveAdaptor->Intervals(T, BaseS);
}
T( T.Lower() ) = myFirst;
@@ -525,6 +546,17 @@ Standard_Real Geom2dAdaptor_Curve::Period() const
return myCurve->LastParameter() - myCurve->FirstParameter();
}
//=======================================================================
//function : RebuildCache
//purpose :
//=======================================================================
void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
{
myCurveCache->BuildCache(theParameter, myBspl->Degree(),
myBspl->IsPeriodic(), myBspl->KnotSequence(),
myBspl->Poles(), myBspl->Weights());
}
//=======================================================================
//function : Value
//purpose :
@@ -532,24 +564,65 @@ Standard_Real Geom2dAdaptor_Curve::Period() const
gp_Pnt2d Geom2dAdaptor_Curve::Value(const Standard_Real U) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve)&&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
return ValueBSpline(U);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
return ValueOffset(U);
return myCurve->Value(U);
}
//=======================================================================
//function : ValueBSpline
//purpose : Computes the point of parameter U on the B-spline curve
//=======================================================================
gp_Pnt2d Geom2dAdaptor_Curve::ValueBSpline(const Standard_Real theU) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
if (theU == myFirst)
{
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
if (theU == myLast)
{
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return myBspl->LocalValue(U, Ideb, Ifin);
return myBspl->LocalValue(theU, Ideb, Ifin);
}
else {
return myCurve->Value( U);
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
gp_Pnt2d aRes;
myCurveCache->D0(theU, aRes);
return aRes;
}
return myCurve->Value(theU);
}
//=======================================================================
//function : ValueOffset
//purpose : Computes the point of parameter U on the offset curve
//=======================================================================
gp_Pnt2d Geom2dAdaptor_Curve::ValueOffset(const Standard_Real theU) const
{
gp_Pnt2d aP;
gp_Vec2d aD1;
myOffsetBaseCurveAdaptor->D1(theU, aP, aD1);
Standard_Boolean isDirectionChange = Standard_False;
const Standard_Real aTol = gp::Resolution();
if(aD1.SquareMagnitude() <= aTol)
isDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 1, theU, aD1);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D0(aP, aD1, anOffset, isDirectionChange, aP);
return aP;
}
//=======================================================================
@@ -559,24 +632,59 @@ gp_Pnt2d Geom2dAdaptor_Curve::Value(const Standard_Real U) const
void Geom2dAdaptor_Curve::D0(const Standard_Real U, gp_Pnt2d& P) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve)&&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
{
D0BSpline(U, P);
return;
}
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
{
D0Offset(U, P);
return;
}
myCurve->D0(U, P);
}
//=======================================================================
//function : D0BSpline
//purpose : Computes the point of parameter theU on the B-spline curve
//=======================================================================
void Geom2dAdaptor_Curve::D0BSpline(const Standard_Real theU, gp_Pnt2d& theP) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD0( U, Ideb, Ifin, P);
myBspl->LocalD0(theU, Ideb, Ifin, theP);
return;
}
else {
myCurve->D0(U, P);
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D0(theU, theP);
return;
}
myCurve->D0(theU, theP);
}
//=======================================================================
//function : D0Offset
//purpose : Computes the point of parameter theU on the offset curve
//=======================================================================
void Geom2dAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt2d& theP) const
{
theP = ValueOffset(theU);
}
//=======================================================================
@@ -584,27 +692,75 @@ void Geom2dAdaptor_Curve::D0(const Standard_Real U, gp_Pnt2d& P) const
//purpose :
//=======================================================================
void Geom2dAdaptor_Curve::D1(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V) const
void Geom2dAdaptor_Curve::D1(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve)&&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
{
D1BSpline(U, P, V);
return;
}
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
{
D1Offset(U, P, V);
return;
}
myCurve->D1(U, P, V);
}
//=======================================================================
//function : D1BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its derivative
//=======================================================================
void Geom2dAdaptor_Curve::D1BSpline(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD1( U, Ideb, Ifin, P, V);
}
else {
myCurve->D1( U, P, V);
myBspl->LocalD1(theU, Ideb, Ifin, theP, theV);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D1(theU, theP, theV);
return;
}
myCurve->D1(theU, theP, theV);
}
//=======================================================================
//function : D1Offset
//purpose : Computes the point of parameter theU on the offset curve and its derivative
//=======================================================================
void Geom2dAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_Vec2d V2;
myOffsetBaseCurveAdaptor->D2 (theU, theP, theV, V2);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 2, theU, theV, V2);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D1(theP, theV, V2, anOffset, IsDirectionChange, theP, theV);
}
//=======================================================================
@@ -613,26 +769,78 @@ void Geom2dAdaptor_Curve::D1(const Standard_Real U,
//=======================================================================
void Geom2dAdaptor_Curve::D2(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const
gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve)&&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
{
D2BSpline(U, P, V1, V2);
return;
}
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
{
D2Offset(U, P, V1, V2);
return;
}
myCurve->D2(U, P, V1, V2);
}
//=======================================================================
//function : D2BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its first and second derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D2BSpline(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD2( U, Ideb, Ifin, P, V1, V2);
myBspl->LocalD2(theU, Ideb, Ifin, theP, theV1, theV2);
return;
}
else {
myCurve->D2( U, P, V1, V2);
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D2(theU, theP, theV1, theV2);
return;
}
myCurve->D2(theU, theP, theV1, theV2);
}
//=======================================================================
//function : D2Offset
//purpose : Computes the point of parameter theU on the offset curve and its first and second derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D2Offset(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_Vec2d V3;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, V3);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 3, theU, theV1, theV2, V3);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D2(theP, theV1, theV2, V3, anOffset, IsDirectionChange, theP, theV1, theV2);
}
//=======================================================================
@@ -641,27 +849,86 @@ void Geom2dAdaptor_Curve::D2(const Standard_Real U,
//=======================================================================
void Geom2dAdaptor_Curve::D3(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V1,
gp_Vec2d& V2, gp_Vec2d& V3) const
gp_Pnt2d& P, gp_Vec2d& V1,
gp_Vec2d& V2, gp_Vec2d& V3) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve) &&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
{
D3BSpline(U, P, V1, V2, V3);
return;
}
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
{
D3Offset(U, P, V1, V2, V3);
return;
}
myCurve->D3(U, P, V1, V2, V3);
}
//=======================================================================
//function : D3BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its 1st - 3rd derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D3BSpline(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
{
if (theU == myFirst || theU == myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
if (theU == myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (U==myLast) {
if (theU == myLast) {
myBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin>myBspl->NbKnots()) Ifin = myBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
myBspl->LocalD3( U, Ideb, Ifin, P, V1, V2, V3);
myBspl->LocalD3(theU, Ideb, Ifin, theP, theV1, theV2, theV3);
return;
}
else {
myCurve->D3( U, P, V1, V2, V3);
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D3(theU, theP, theV1, theV2, theV3);
return;
}
myCurve->D3(theU, theP, theV1, theV2, theV3);
}
//=======================================================================
//function : D3Offset
//purpose : Computes the point of parameter theU on the offset curve and its 1st - 3rd derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D3Offset(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
Standard_Boolean IsDirectionChange = Standard_False;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, theV3);
gp_Vec2d V4 = myOffsetBaseCurveAdaptor->DN (theU, 4);
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 4, theU, theV1, theV2, theV3, V4);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, anOffset, IsDirectionChange,
theP, theV1, theV2, theV3);
}
//=======================================================================
@@ -670,10 +937,21 @@ void Geom2dAdaptor_Curve::D3(const Standard_Real U,
//=======================================================================
gp_Vec2d Geom2dAdaptor_Curve::DN(const Standard_Real U,
const Standard_Integer N) const
const Standard_Integer N) const
{
if ( (myTypeCurve == GeomAbs_BSplineCurve) &&
(U==myFirst || U==myLast) ) {
if (myTypeCurve == GeomAbs_BSplineCurve)
return DNBSpline(U, N);
else if (myCurve->DynamicType() == STANDARD_TYPE(Geom2d_OffsetCurve))
return DNOffset(U, N);
return myCurve->DN(U, N);
}
gp_Vec2d Geom2dAdaptor_Curve::DNBSpline(const Standard_Real U,
const Standard_Integer N) const
{
if (U==myFirst || U==myLast)
{
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
myBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
@@ -686,10 +964,32 @@ gp_Vec2d Geom2dAdaptor_Curve::DN(const Standard_Real U,
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return myBspl->LocalDN( U, Ideb, Ifin, N);
}
else {
return myCurve->DN( U, N);
}
return myCurve->DN( U, N);
}
gp_Vec2d Geom2dAdaptor_Curve::DNOffset(const Standard_Real U,
const Standard_Integer N) const
{
gp_Pnt2d aPnt;
gp_Vec2d aVec, aVN;
switch (N)
{
case 1:
D1Offset(U, aPnt, aVN);
break;
case 2:
D2Offset(U, aPnt, aVec, aVN);
break;
case 3:
D3Offset(U, aPnt, aVec, aVec, aVN);
break;
default:
aVN = myCurve->DN(U, N);
}
return aVN;
}
//=======================================================================
@@ -906,3 +1206,57 @@ Standard_Integer Geom2dAdaptor_Curve::NbSamples() const
{
return nbPoints(myCurve);
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2,
gp_Vec2d& theD3, gp_Vec2d& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theAdaptor->FirstParameter();
const Standard_Real anUsupremum = theAdaptor->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec2d V;
do
{
V = theAdaptor->DN(theU, ++anIndex);
}
while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
gp_Pnt2d P1, P2;
theAdaptor->D0(Min(theU, u),P1);
theAdaptor->D0(Max(theU, u),P2);
gp_Vec2d V1(P1, P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec2d* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theAdaptor->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}