mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
0027931: Coding rules, Precision.hxx - eliminate dead code within PRECISION_OBSOLETE macros
This commit is contained in:
parent
5f4bd4d4d2
commit
922da0a825
@ -1,2 +1 @@
|
||||
Precision.hxx
|
||||
Precision.lxx
|
||||
|
@ -20,11 +20,9 @@
|
||||
#include <Standard.hxx>
|
||||
#include <Standard_DefineAlloc.hxx>
|
||||
#include <Standard_Handle.hxx>
|
||||
|
||||
#include <Standard_Real.hxx>
|
||||
#include <Standard_Boolean.hxx>
|
||||
|
||||
|
||||
//! The Precision package offers a set of functions defining precision criteria
|
||||
//! for use in conventional situations when comparing two numbers.
|
||||
//! Generalities
|
||||
@ -103,7 +101,6 @@ public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
|
||||
//! Returns the recommended precision value
|
||||
//! when checking the equality of two angles (given in radians).
|
||||
//! Standard_Real Angle1 = ... , Angle2 = ... ;
|
||||
@ -123,8 +120,7 @@ public:
|
||||
//! you can use :
|
||||
//! If ( Abs( D1.D2 ) < Precision::Angular() ) ...
|
||||
//! (although the function IsNormal does exist).
|
||||
static Standard_Real Angular();
|
||||
|
||||
static Standard_Real Angular() { return 1.e-12; }
|
||||
|
||||
//! Returns the recommended precision value when
|
||||
//! checking coincidence of two points in real space.
|
||||
@ -166,13 +162,12 @@ public:
|
||||
//! distance (1 / 10 millimeter). This distance
|
||||
//! becomes easily measurable, but only within a restricted
|
||||
//! space which contains some small objects of the complete scene.
|
||||
static Standard_Real Confusion();
|
||||
|
||||
static Standard_Real Confusion() { return 1.e-7; }
|
||||
|
||||
//! Returns square of Confusion.
|
||||
//! Created for speed and convenience.
|
||||
static Standard_Real SquareConfusion();
|
||||
|
||||
static Standard_Real SquareConfusion() { return Confusion() * Confusion(); }
|
||||
|
||||
//! Returns the precision value in real space, frequently
|
||||
//! used by intersection algorithms to decide that a solution is reached.
|
||||
//! This function provides an acceptable level of precision
|
||||
@ -195,8 +190,8 @@ public:
|
||||
//! The tolerance of intersection is equal to :
|
||||
//! Precision::Confusion() / 100.
|
||||
//! (that is, 1.e-9).
|
||||
static Standard_Real Intersection();
|
||||
|
||||
static Standard_Real Intersection() { return Confusion() * 0.01; }
|
||||
|
||||
//! Returns the precision value in real space, frequently used
|
||||
//! by approximation algorithms.
|
||||
//! This function provides an acceptable level of precision for
|
||||
@ -210,15 +205,14 @@ public:
|
||||
//! (that is, 1.e-6).
|
||||
//! You may use a smaller tolerance in an approximation
|
||||
//! algorithm, but this option might be costly.
|
||||
static Standard_Real Approximation();
|
||||
|
||||
static Standard_Real Approximation() { return Confusion() * 10.0; }
|
||||
|
||||
//! Convert a real space precision to a parametric
|
||||
//! space precision. <T> is the mean value of the
|
||||
//! length of the tangent of the curve or the surface.
|
||||
//!
|
||||
//! Value is P / T
|
||||
static Standard_Real Parametric (const Standard_Real P, const Standard_Real T);
|
||||
|
||||
static Standard_Real Parametric (const Standard_Real P, const Standard_Real T) { return P / T; }
|
||||
|
||||
//! Returns a precision value in parametric space, which may be used :
|
||||
//! - to test the coincidence of two points in the real space,
|
||||
@ -264,8 +258,7 @@ public:
|
||||
//! 2.Pi without impacting on the resulting point.
|
||||
//! Therefore, take great care when adjusting a parametric
|
||||
//! tolerance to your own algorithm.
|
||||
static Standard_Real PConfusion (const Standard_Real T);
|
||||
|
||||
static Standard_Real PConfusion (const Standard_Real T) { return Parametric (Confusion(), T); }
|
||||
|
||||
//! Returns a precision value in parametric space, which
|
||||
//! may be used by intersection algorithms, to decide that
|
||||
@ -280,8 +273,8 @@ public:
|
||||
//! segment whose length is equal to 100. (default value), or T.
|
||||
//! The parametric tolerance of intersection is equal to :
|
||||
//! - Precision::Intersection() / 100., or Precision::Intersection() / T.
|
||||
static Standard_Real PIntersection (const Standard_Real T);
|
||||
|
||||
static Standard_Real PIntersection (const Standard_Real T) { return Parametric(Intersection(),T); }
|
||||
|
||||
//! Returns a precision value in parametric space, which may
|
||||
//! be used by approximation algorithms. The purpose of this
|
||||
//! function is to provide an acceptable level of precision in
|
||||
@ -295,70 +288,48 @@ public:
|
||||
//! segment whose length is equal to 100. (default value), or T.
|
||||
//! The parametric tolerance of intersection is equal to :
|
||||
//! - Precision::Approximation() / 100., or Precision::Approximation() / T.
|
||||
static Standard_Real PApproximation (const Standard_Real T);
|
||||
|
||||
static Standard_Real PApproximation (const Standard_Real T) { return Parametric(Approximation(),T); }
|
||||
|
||||
//! Convert a real space precision to a parametric
|
||||
//! space precision on a default curve.
|
||||
//!
|
||||
//! Value is Parametric(P,1.e+2)
|
||||
static Standard_Real Parametric (const Standard_Real P);
|
||||
|
||||
static Standard_Real Parametric (const Standard_Real P) { return Parametric (P, 100.0); }
|
||||
|
||||
//! Used to test distances in parametric space on a
|
||||
//! default curve.
|
||||
//!
|
||||
//! This is Precision::Parametric(Precision::Confusion())
|
||||
static Standard_Real PConfusion();
|
||||
|
||||
static Standard_Real PConfusion() { return Parametric (Confusion()); }
|
||||
|
||||
//! Used for Intersections in parametric space on a
|
||||
//! default curve.
|
||||
//!
|
||||
//! This is Precision::Parametric(Precision::Intersection())
|
||||
static Standard_Real PIntersection();
|
||||
|
||||
static Standard_Real PIntersection() { return Parametric (Intersection()); }
|
||||
|
||||
//! Used for Approximations in parametric space on a
|
||||
//! default curve.
|
||||
//!
|
||||
//! This is Precision::Parametric(Precision::Approximation())
|
||||
static Standard_Real PApproximation();
|
||||
|
||||
static Standard_Real PApproximation() { return Parametric (Approximation()); }
|
||||
|
||||
//! Returns True if R may be considered as an infinite
|
||||
//! number. Currently Abs(R) > 1e100
|
||||
static Standard_Boolean IsInfinite (const Standard_Real R);
|
||||
|
||||
static Standard_Boolean IsInfinite (const Standard_Real R) { return Abs (R) >= (0.5 * Precision::Infinite()); }
|
||||
|
||||
//! Returns True if R may be considered as a positive
|
||||
//! infinite number. Currently R > 1e100
|
||||
static Standard_Boolean IsPositiveInfinite (const Standard_Real R);
|
||||
|
||||
static Standard_Boolean IsPositiveInfinite (const Standard_Real R) { return R >= (0.5 * Precision::Infinite()); }
|
||||
|
||||
//! Returns True if R may be considered as a negative
|
||||
//! infinite number. Currently R < -1e100
|
||||
static Standard_Boolean IsNegativeInfinite (const Standard_Real R);
|
||||
|
||||
static Standard_Boolean IsNegativeInfinite (const Standard_Real R) { return R <= -(0.5 * Precision::Infinite()); }
|
||||
|
||||
//! Returns a big number that can be considered as
|
||||
//! infinite. Use -Infinite() for a negative big number.
|
||||
static Standard_Real Infinite();
|
||||
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
|
||||
|
||||
static Standard_Real Infinite() { return 2.e+100; }
|
||||
|
||||
};
|
||||
|
||||
|
||||
#include <Precision.lxx>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // _Precision_HeaderFile
|
||||
|
@ -1,229 +0,0 @@
|
||||
// Created on: 1993-03-08
|
||||
// Created by: Remi LEQUETTE
|
||||
// Copyright (c) 1993-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
//=======================================================================
|
||||
//function : Angular
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Angular()
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_Angular = 1.e-12;
|
||||
return Precision_Angular;
|
||||
#else
|
||||
return 1.e-12;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Confusion
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Confusion()
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_Confusion = 1.e-7;
|
||||
return Precision_Confusion;
|
||||
#else
|
||||
return 1.e-7;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : SquareConfusion
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
inline Standard_Real Precision::SquareConfusion()
|
||||
{
|
||||
return Confusion() * Confusion();
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Intersection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Intersection()
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_Intersection = Precision::Confusion() / 100.;
|
||||
return Precision_Intersection;
|
||||
#else
|
||||
return Confusion() * 0.01;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Approximation
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Approximation()
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_Approximation = Precision::Confusion() * 10.;
|
||||
return Precision_Approximation;
|
||||
#else
|
||||
return Confusion() * 10.;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Parametric
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Parametric(const Standard_Real P,
|
||||
const Standard_Real T)
|
||||
{
|
||||
return P / T;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PConfusion
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PConfusion(const Standard_Real T)
|
||||
{
|
||||
return Parametric(Confusion(),T);
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PIntersection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PIntersection(const Standard_Real T)
|
||||
{
|
||||
return Parametric(Intersection(),T);
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PApproximation
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PApproximation(const Standard_Real T)
|
||||
{
|
||||
return Parametric(Approximation(),T);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Parametric
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Parametric(const Standard_Real P)
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_DefTangent = 1.e+2;
|
||||
return Parametric(P,Precision_DefTangent);
|
||||
#else
|
||||
return Parametric(P, 100.);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PConfusion
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PConfusion()
|
||||
{
|
||||
return Parametric(Confusion());
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PIntersection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PIntersection()
|
||||
{
|
||||
return Parametric(Intersection());
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PApproximation
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::PApproximation()
|
||||
{
|
||||
return Parametric(Approximation());
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsInfinite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Boolean Precision::IsInfinite(const Standard_Real R)
|
||||
{
|
||||
return Abs(R) >= (0.5*Precision::Infinite());
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsPositiveInfinite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Boolean Precision::IsPositiveInfinite(const Standard_Real R)
|
||||
{
|
||||
return R >= (0.5*Precision::Infinite());
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsNegativeInfinite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Boolean Precision::IsNegativeInfinite(const Standard_Real R)
|
||||
{
|
||||
return R <= -(0.5*Precision::Infinite());
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Infinite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Precision::Infinite()
|
||||
{
|
||||
#ifdef PRECISION_OBSOLETE
|
||||
static const Standard_Real Precision_Infinite = 1.e+100;
|
||||
static const Standard_Real Precision_InfiniteValue = 2 * Precision_Infinite;
|
||||
return Precision_InfiniteValue;
|
||||
#else
|
||||
return 2.e+100;
|
||||
#endif
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user