1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0028394: Not precise extrema solution of line and circle lying in the same plane

If the line is in the circle-plane completely (or parallel to the circle-plane) then extremas and intersections in 2D-space are looked for. These case are pure analytical and solutions will be found precisely.
This commit is contained in:
nbv 2017-01-30 14:01:24 +03:00 committed by apn
parent cbdcce0d64
commit 8cc8a6925d
4 changed files with 153 additions and 0 deletions

View File

@ -15,20 +15,24 @@
#include <ElCLib.hxx>
#include <Extrema_ExtElC.hxx>
#include <Extrema_ExtElC2d.hxx>
#include <Extrema_ExtPElC.hxx>
#include <Extrema_POnCurv.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax3.hxx>
#include <gp_Circ.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Dir.hxx>
#include <gp_Elips.hxx>
#include <gp_Hypr.hxx>
#include <gp_Lin.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <IntAna_QuadQuadGeo.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <math_DirectPolynomialRoots.hxx>
#include <math_TrigonometricFunctionRoots.hxx>
#include <Precision.hxx>
@ -323,6 +327,90 @@ Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& theC1,
myNbExt = 1;
myDone = Standard_True;
}
//=======================================================================
//function : PlanarLineCircleExtrema
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtElC::PlanarLineCircleExtrema(const gp_Lin& theLin,
const gp_Circ& theCirc)
{
const gp_Dir &aDirC = theCirc.Axis().Direction(),
&aDirL = theLin.Direction();
if (Abs(aDirC.Dot(aDirL)) > Precision::Angular())
return Standard_False;
//The line is in the circle-plane completely
//(or parallel to the circle-plane).
//Therefore, we are looking for extremas and
//intersections in 2D-space.
const gp_XYZ &aCLoc = theCirc.Location().XYZ();
const gp_XYZ &aDCx = theCirc.Position().XDirection().XYZ(),
&aDCy = theCirc.Position().YDirection().XYZ();
const gp_XYZ &aLLoc = theLin.Location().XYZ();
const gp_XYZ &aLDir = theLin.Direction().XYZ();
const gp_XYZ aVecCL(aLLoc - aCLoc);
//Center of 2D-circle
const gp_Pnt2d aPC(0.0, 0.0);
gp_Ax22d aCircAxis(aPC, gp_Dir2d(1.0, 0.0), gp_Dir2d(0.0, 1.0));
gp_Circ2d aCirc2d(aCircAxis, theCirc.Radius());
gp_Pnt2d aPL(aVecCL.Dot(aDCx), aVecCL.Dot(aDCy));
gp_Dir2d aDL(aLDir.Dot(aDCx), aLDir.Dot(aDCy));
gp_Lin2d aLin2d(aPL, aDL);
// Extremas
Extrema_ExtElC2d anExt2d(aLin2d, aCirc2d, Precision::Confusion());
//Intersections
IntAna2d_AnaIntersection anInters(aLin2d, aCirc2d);
myDone = anExt2d.IsDone() || anInters.IsDone();
if (!myDone)
return Standard_True;
const Standard_Integer aNbExtr = anExt2d.NbExt();
const Standard_Integer aNbSol = anInters.NbPoints();
const Standard_Integer aNbSum = aNbExtr + aNbSol;
for (Standard_Integer anExtrID = 1; anExtrID <= aNbSum; anExtrID++)
{
const Standard_Integer aDelta = anExtrID - aNbExtr;
Standard_Real aLinPar = 0.0, aCircPar = 0.0;
if (aDelta < 1)
{
Extrema_POnCurv2d aPLin2d, aPCirc2d;
anExt2d.Points(anExtrID, aPLin2d, aPCirc2d);
aLinPar = aPLin2d.Parameter();
aCircPar = aPCirc2d.Parameter();
}
else
{
aLinPar = anInters.Point(aDelta).ParamOnFirst();
aCircPar = anInters.Point(aDelta).ParamOnSecond();
}
const gp_Pnt aPOnL(ElCLib::LineValue(aLinPar, theLin.Position())),
aPOnC(ElCLib::CircleValue(aCircPar,
theCirc.Position(), theCirc.Radius()));
mySqDist[myNbExt] = aPOnL.SquareDistance(aPOnC);
myPoint[myNbExt][0].SetValues(aLinPar, aPOnL);
myPoint[myNbExt][1].SetValues(aCircPar, aPOnC);
myNbExt++;
}
return Standard_True;
}
//=======================================================================
//function : Extrema_ExtElC
//purpose :
@ -367,6 +455,11 @@ Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
myDone = Standard_False;
myNbExt = 0;
if (PlanarLineCircleExtrema(C1, C2))
{
return;
}
// Calculate T1 in the reference of the circle ...
D = C1.Direction();
D1 = D;

View File

@ -130,6 +130,9 @@ public:
protected:
//! Computes extrema in case when considered line and circle are in one plane
Standard_EXPORT Standard_Boolean PlanarLineCircleExtrema(const gp_Lin& C1,
const gp_Circ& C2);

View File

@ -0,0 +1,15 @@
puts "========"
puts "OCC28394"
puts "========"
puts ""
##############################################
# Not precise extrema solution of line and circle lying in the same plane
##############################################
restore [locate_data_file bug28394_edges.brep] e
explode e
set anInfo [distmini d e_1 e_2]
if {[dval d_val] > 1.0e-7} {
puts "Error: Extrema cannot find minimal distance"
}

View File

@ -0,0 +1,42 @@
puts "========"
puts "OCC28394"
puts "========"
puts ""
##############################################
# Not precise extrema solution of line and circle lying in the same plane
##############################################
set GoodNbExtremas 4
circle c1 5 5 10 0 1 1 20
mkedge e1 c1
bmirror e1 e1 5 5 10 1 0 0
mkcurve c1 e1
cvalue c1 0.63 x1 y1 z1
cvalue c1 5.47 x2 y2 z2
dset dlx x2-x1
dset dly y2-y1
dset dlz z2-z1
line l1 x1 y1+5 z1+5 dlx dly dlz
set extrema_length [ llength [ extrema c1 l1 1 ] ]
# Amount check
if {${extrema_length} != [ expr 5*${GoodNbExtremas}] } {
puts "Error: Number of extremas computed is wrong"
}
for {set i 1} {${i} <= 4} {incr i} {
regexp {Axis :([-0-9.+eE]+), ([-0-9.+eE]+), ([-0-9.+eE]+)} [dump ext_${i}] full dx dy dz
cvalue c1 prm_1_${i} x y z dcx dcy dcz
set DPL [ dval ${dx}*dlx+${dy}*dly+${dz}*dlz ]
set DPC [ dval ${dx}*dcx+${dy}*dcy+${dz}*dcz ]
if { (abs(${DPL}) > 1.0e-12) || (abs(${DPC}) > 1.0e-12) } {
puts "Error: extrema ext_${i} was computed wrong (is not the normal to the curves)"
}
}