mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0028394: Not precise extrema solution of line and circle lying in the same plane
If the line is in the circle-plane completely (or parallel to the circle-plane) then extremas and intersections in 2D-space are looked for. These case are pure analytical and solutions will be found precisely.
This commit is contained in:
parent
cbdcce0d64
commit
8cc8a6925d
@ -15,20 +15,24 @@
|
||||
|
||||
#include <ElCLib.hxx>
|
||||
#include <Extrema_ExtElC.hxx>
|
||||
#include <Extrema_ExtElC2d.hxx>
|
||||
#include <Extrema_ExtPElC.hxx>
|
||||
#include <Extrema_POnCurv.hxx>
|
||||
#include <gp_Ax1.hxx>
|
||||
#include <gp_Ax2.hxx>
|
||||
#include <gp_Ax3.hxx>
|
||||
#include <gp_Circ.hxx>
|
||||
#include <gp_Circ2d.hxx>
|
||||
#include <gp_Dir.hxx>
|
||||
#include <gp_Elips.hxx>
|
||||
#include <gp_Hypr.hxx>
|
||||
#include <gp_Lin.hxx>
|
||||
#include <gp_Lin2d.hxx>
|
||||
#include <gp_Parab.hxx>
|
||||
#include <gp_Pln.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <IntAna_QuadQuadGeo.hxx>
|
||||
#include <IntAna2d_AnaIntersection.hxx>
|
||||
#include <math_DirectPolynomialRoots.hxx>
|
||||
#include <math_TrigonometricFunctionRoots.hxx>
|
||||
#include <Precision.hxx>
|
||||
@ -323,6 +327,90 @@ Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& theC1,
|
||||
myNbExt = 1;
|
||||
myDone = Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : PlanarLineCircleExtrema
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_ExtElC::PlanarLineCircleExtrema(const gp_Lin& theLin,
|
||||
const gp_Circ& theCirc)
|
||||
{
|
||||
const gp_Dir &aDirC = theCirc.Axis().Direction(),
|
||||
&aDirL = theLin.Direction();
|
||||
|
||||
if (Abs(aDirC.Dot(aDirL)) > Precision::Angular())
|
||||
return Standard_False;
|
||||
|
||||
//The line is in the circle-plane completely
|
||||
//(or parallel to the circle-plane).
|
||||
//Therefore, we are looking for extremas and
|
||||
//intersections in 2D-space.
|
||||
|
||||
const gp_XYZ &aCLoc = theCirc.Location().XYZ();
|
||||
const gp_XYZ &aDCx = theCirc.Position().XDirection().XYZ(),
|
||||
&aDCy = theCirc.Position().YDirection().XYZ();
|
||||
|
||||
const gp_XYZ &aLLoc = theLin.Location().XYZ();
|
||||
const gp_XYZ &aLDir = theLin.Direction().XYZ();
|
||||
|
||||
const gp_XYZ aVecCL(aLLoc - aCLoc);
|
||||
|
||||
//Center of 2D-circle
|
||||
const gp_Pnt2d aPC(0.0, 0.0);
|
||||
|
||||
gp_Ax22d aCircAxis(aPC, gp_Dir2d(1.0, 0.0), gp_Dir2d(0.0, 1.0));
|
||||
gp_Circ2d aCirc2d(aCircAxis, theCirc.Radius());
|
||||
|
||||
gp_Pnt2d aPL(aVecCL.Dot(aDCx), aVecCL.Dot(aDCy));
|
||||
gp_Dir2d aDL(aLDir.Dot(aDCx), aLDir.Dot(aDCy));
|
||||
gp_Lin2d aLin2d(aPL, aDL);
|
||||
|
||||
// Extremas
|
||||
Extrema_ExtElC2d anExt2d(aLin2d, aCirc2d, Precision::Confusion());
|
||||
//Intersections
|
||||
IntAna2d_AnaIntersection anInters(aLin2d, aCirc2d);
|
||||
|
||||
myDone = anExt2d.IsDone() || anInters.IsDone();
|
||||
|
||||
if (!myDone)
|
||||
return Standard_True;
|
||||
|
||||
const Standard_Integer aNbExtr = anExt2d.NbExt();
|
||||
const Standard_Integer aNbSol = anInters.NbPoints();
|
||||
|
||||
const Standard_Integer aNbSum = aNbExtr + aNbSol;
|
||||
for (Standard_Integer anExtrID = 1; anExtrID <= aNbSum; anExtrID++)
|
||||
{
|
||||
const Standard_Integer aDelta = anExtrID - aNbExtr;
|
||||
|
||||
Standard_Real aLinPar = 0.0, aCircPar = 0.0;
|
||||
|
||||
if (aDelta < 1)
|
||||
{
|
||||
Extrema_POnCurv2d aPLin2d, aPCirc2d;
|
||||
anExt2d.Points(anExtrID, aPLin2d, aPCirc2d);
|
||||
aLinPar = aPLin2d.Parameter();
|
||||
aCircPar = aPCirc2d.Parameter();
|
||||
}
|
||||
else
|
||||
{
|
||||
aLinPar = anInters.Point(aDelta).ParamOnFirst();
|
||||
aCircPar = anInters.Point(aDelta).ParamOnSecond();
|
||||
}
|
||||
|
||||
const gp_Pnt aPOnL(ElCLib::LineValue(aLinPar, theLin.Position())),
|
||||
aPOnC(ElCLib::CircleValue(aCircPar,
|
||||
theCirc.Position(), theCirc.Radius()));
|
||||
|
||||
mySqDist[myNbExt] = aPOnL.SquareDistance(aPOnC);
|
||||
myPoint[myNbExt][0].SetValues(aLinPar, aPOnL);
|
||||
myPoint[myNbExt][1].SetValues(aCircPar, aPOnC);
|
||||
myNbExt++;
|
||||
}
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_ExtElC
|
||||
//purpose :
|
||||
@ -367,6 +455,11 @@ Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
|
||||
myDone = Standard_False;
|
||||
myNbExt = 0;
|
||||
|
||||
if (PlanarLineCircleExtrema(C1, C2))
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate T1 in the reference of the circle ...
|
||||
D = C1.Direction();
|
||||
D1 = D;
|
||||
|
@ -130,6 +130,9 @@ public:
|
||||
|
||||
protected:
|
||||
|
||||
//! Computes extrema in case when considered line and circle are in one plane
|
||||
Standard_EXPORT Standard_Boolean PlanarLineCircleExtrema(const gp_Lin& C1,
|
||||
const gp_Circ& C2);
|
||||
|
||||
|
||||
|
||||
|
15
tests/bugs/modalg_6/bug28394_1
Normal file
15
tests/bugs/modalg_6/bug28394_1
Normal file
@ -0,0 +1,15 @@
|
||||
puts "========"
|
||||
puts "OCC28394"
|
||||
puts "========"
|
||||
puts ""
|
||||
##############################################
|
||||
# Not precise extrema solution of line and circle lying in the same plane
|
||||
##############################################
|
||||
|
||||
restore [locate_data_file bug28394_edges.brep] e
|
||||
explode e
|
||||
set anInfo [distmini d e_1 e_2]
|
||||
|
||||
if {[dval d_val] > 1.0e-7} {
|
||||
puts "Error: Extrema cannot find minimal distance"
|
||||
}
|
42
tests/bugs/modalg_6/bug28394_2
Normal file
42
tests/bugs/modalg_6/bug28394_2
Normal file
@ -0,0 +1,42 @@
|
||||
puts "========"
|
||||
puts "OCC28394"
|
||||
puts "========"
|
||||
puts ""
|
||||
##############################################
|
||||
# Not precise extrema solution of line and circle lying in the same plane
|
||||
##############################################
|
||||
|
||||
set GoodNbExtremas 4
|
||||
|
||||
circle c1 5 5 10 0 1 1 20
|
||||
mkedge e1 c1
|
||||
bmirror e1 e1 5 5 10 1 0 0
|
||||
mkcurve c1 e1
|
||||
|
||||
cvalue c1 0.63 x1 y1 z1
|
||||
cvalue c1 5.47 x2 y2 z2
|
||||
|
||||
dset dlx x2-x1
|
||||
dset dly y2-y1
|
||||
dset dlz z2-z1
|
||||
line l1 x1 y1+5 z1+5 dlx dly dlz
|
||||
|
||||
set extrema_length [ llength [ extrema c1 l1 1 ] ]
|
||||
|
||||
# Amount check
|
||||
if {${extrema_length} != [ expr 5*${GoodNbExtremas}] } {
|
||||
puts "Error: Number of extremas computed is wrong"
|
||||
}
|
||||
|
||||
for {set i 1} {${i} <= 4} {incr i} {
|
||||
regexp {Axis :([-0-9.+eE]+), ([-0-9.+eE]+), ([-0-9.+eE]+)} [dump ext_${i}] full dx dy dz
|
||||
|
||||
cvalue c1 prm_1_${i} x y z dcx dcy dcz
|
||||
|
||||
set DPL [ dval ${dx}*dlx+${dy}*dly+${dz}*dlz ]
|
||||
set DPC [ dval ${dx}*dcx+${dy}*dcy+${dz}*dcz ]
|
||||
|
||||
if { (abs(${DPL}) > 1.0e-12) || (abs(${DPC}) > 1.0e-12) } {
|
||||
puts "Error: extrema ext_${i} was computed wrong (is not the normal to the curves)"
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user