1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0029694: Geom2dGcc_Circ2dTanCenGeo crash

The reason of this issue is in incorrectly interpreted the generic class "TheExtPC" (eliminated after the fix 0024773) as Extrema_ExtPC2d. Correct interpretation must be "Extrema_EPCOfExtPC2d" class.

Now this problem has been fixed in the class Geom2dGcc_Circ2dTanCenGeo.

New testgrid "lowalgos 2dgcc" has been created.
This commit is contained in:
nbv 2018-05-22 12:15:27 +03:00 committed by bugmaster
parent 638ad7f3c5
commit 894dba72a3
16 changed files with 265 additions and 272 deletions

View File

@ -5684,18 +5684,33 @@ projponf f pnt
Syntax:
~~~~~
cirtang cname curve/point/radius curve/point/radius curve/point/radius
cirtang result [-t <Tolerance>] -c <curve> -p <point> -r <Radius>...
~~~~~
Builds all circles satisfying the three constraints which are either a curve (the circle must be tangent to that curve), a point (the circle must pass through that point), or a radius for the circle. Only one constraint can be a radius. The solutions will be stored in variables *name_1*, *name_2*, etc.
Builds all circles satisfying the condition:
1. the circle must be tangent to every given curve;
2. the circle must pass through every given point;
3. the radius of the circle must be equal to the requested one.
Only following set of input data is supported: Curve-Curve-Curve, Curve-Curve-Point, Curve-Curve-Radius, Curve-Point-Point, Curve-Point-Radius, Point-Point-Point, Point-Point-Radius. The solutions will be stored in variables *result_1*, *result_2*, etc.
**Example:**
~~~~~
# a point, a line and a radius. 2 solutions
# a point, a line and a radius. 2 solutions of type Curve-Point-Radius (C-P-R)
point p 0 0
line 1 10 0 -1 1
cirtang c p 1 4
== c_1 c_2
line l 10 0 -1 1
cirtang c -p p -c l -r 4
== Solution of type C-P-R is: c_1 c_2
~~~~~
Additionally it is possible to create a circle(s) with given center and tangent to the given curve (Curve-Point type).
**Example:**
~~~~~
point pp 1 1
2dbsplinecurve cc 1 2 0 2 1 2 -10 -5 1 10 -5 1
cirtang r -p pp -c cc
== Solution of type C-P is: r_1 r_2
~~~~~
@subsubsection occt_draw_6_10_2 lintan

View File

@ -41,12 +41,13 @@ Geom2dGcc_Circ2dTanCenGeo (const Geom2dGcc_QCurve& Qualified1,
//========================================================================
// Initialisation des champs. +
//========================================================================
cirsol(1,2) ,
qualifier1(1,2),
pnttg1sol(1,2) ,
par1sol(1,2) ,
pararg1(1,2)
WellDone(Standard_False),
NbrSol(0),
cirsol(1, 2),
qualifier1(1, 2),
pnttg1sol(1, 2),
par1sol(1, 2),
pararg1(1, 2)
{
Standard_Real Tol = Abs(Tolerance);
TColgp_Array1OfPnt2d pTan(1,2);
@ -60,23 +61,19 @@ Geom2dGcc_Circ2dTanCenGeo (const Geom2dGcc_QCurve& Qualified1,
gp_Dir2d dirx(1.0,0.0);
Standard_Real thePar;
Geom2dAdaptor_Curve curve = Qualified1.Qualified();
Extrema_ExtPC2d distmin(Pcenter,curve,Geom2dGcc_CurveTool::NbSamples(curve),
Geom2dGcc_CurveTool::EpsX(curve,Tol),Tol);
Extrema_ExtPC2d distmin(Pcenter, curve, Geom2dGcc_CurveTool::FirstParameter(curve),
Geom2dGcc_CurveTool::LastParameter(curve), Tol);
if (!distmin.IsDone() ) { throw Standard_Failure(); }
Standard_Integer nbext = distmin.NbExt();
if(nbext==0) { throw Standard_Failure(); }
while (i<=nbext) {
thePar = distmin.Point(i).Parameter();
if (distmin.SquareDistance(i)<theDist2(1) &&
thePar>=Geom2dGcc_CurveTool::FirstParameter(curve) &&
thePar <= Geom2dGcc_CurveTool::LastParameter(curve)) {
if (distmin.SquareDistance(i)<theDist2(1)) {
theDist2(1) = distmin.SquareDistance(i);
theParam(1) = thePar;
pTan(1) = distmin.Point(i).Value();
}
if (distmin.SquareDistance(i)>theDist2(2) &&
thePar>=Geom2dGcc_CurveTool::FirstParameter(curve) &&
thePar <= Geom2dGcc_CurveTool::LastParameter(curve)) {
if (distmin.SquareDistance(i)>theDist2(2)) {
theDist2(2) = distmin.SquareDistance(i);
theParam(2) = thePar;
pTan(2) = distmin.Point(i).Value();

View File

@ -83,8 +83,7 @@ static Standard_Integer solutions(Draw_Interpretor& di,
for (Standard_Integer i = 1 ; i <= ct3.NbSolutions() ; i++) {
Handle(Geom2d_Circle) C = new Geom2d_Circle(ct3.ThisSolution(i));
Sprintf(solname,"%s_%d",name,i);
char* temp = solname; // pour portage WNT
DrawTrSurf::Set(temp,C);
DrawTrSurf::Set(solname, C);
di << solname << " ";
}
return 0;
@ -107,8 +106,7 @@ static Standard_Integer solutions(Draw_Interpretor& di,
for (Standard_Integer i = 1 ; i <= ct3.NbSolutions() ; i++) {
Handle(Geom2d_Circle) C = new Geom2d_Circle(ct3.ThisSolution(i));
Sprintf(solname,"%s_%d",name,i);
char* temp = solname; // pour portage WNT
DrawTrSurf::Set(temp,C);
DrawTrSurf::Set(solname, C);
di << solname << " ";
}
return 0;
@ -120,260 +118,211 @@ static Standard_Integer solutions(Draw_Interpretor& di,
}
//=======================================================================
//function : cirtang
//function : solutions
//purpose :
//=======================================================================
static Standard_Integer cirtang (Draw_Interpretor& di,Standard_Integer n, const char** a)
static Standard_Integer solutions(Draw_Interpretor& theDI,
Geom2dGcc_Circ2dTanCen& theCt2,
const char* theName)
{
if (n < 5) return 1;
char solname[200];
Handle(Geom2d_Curve) C1 = DrawTrSurf::GetCurve2d(a[2]);
Handle(Geom2d_Curve) C2 = DrawTrSurf::GetCurve2d(a[3]);
Handle(Geom2d_Curve) C3 = DrawTrSurf::GetCurve2d(a[4]);
gp_Pnt2d P1,P2,P3;
Standard_Boolean ip1 = DrawTrSurf::GetPoint2d(a[2],P1);
Standard_Boolean ip2 = DrawTrSurf::GetPoint2d(a[3],P2);
Standard_Boolean ip3 = DrawTrSurf::GetPoint2d(a[4],P3);
Draw_Color col = DrawTrSurf_CurveColor(Draw_Color(Draw_vert));
DrawTrSurf_CurveColor(col);
Standard_Real tol = Precision::Confusion();
if (n > 5) tol = Draw::Atof(a[5]);
if (!C1.IsNull()) {
// C-...
if (!C2.IsNull()) {
// C-C-...
if (!C3.IsNull()) {
// C-C-C
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C1),
Geom2dGcc::Unqualified(C2),
Geom2dGcc::Unqualified(C3),
tol,0,0,0);
return solutions(di,ct3,a[1]);
}
else if (ip3) {
// C-C-P
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C1),
Geom2dGcc::Unqualified(C2),
new Geom2d_CartesianPoint(P3),
tol,0,0);
return solutions(di,ct3,a[1]);
}
else {
// C-C-R
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C1),
Geom2dGcc::Unqualified(C2),
Draw::Atof(a[4]),tol);
return solutions(di,ct3,a[1]);
}
if (theCt2.IsDone())
{
for (Standard_Integer i = 1; i <= theCt2.NbSolutions(); i++)
{
Handle(Geom2d_Circle) C = new Geom2d_Circle(theCt2.ThisSolution(i));
Sprintf(solname, "%s_%d", theName, i);
DrawTrSurf::Set(solname, C);
theDI << solname << " ";
}
else if (ip2) {
// C-P-..
if (!C3.IsNull()) {
// C-P-C
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C1),
Geom2dGcc::Unqualified(C3),
new Geom2d_CartesianPoint(P2),
tol,0,0);
return solutions(di,ct3,a[1]);
}
return 0;
}
else
{
theDI << "Circ2dTanCen Not done";
return 1;
}
}
else if (ip3) {
// C-P-P
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C1),
new Geom2d_CartesianPoint(P2),
new Geom2d_CartesianPoint(P3),
tol,0);
return solutions(di,ct3,a[1]);
}
else {
// C-P-R
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C1),
new Geom2d_CartesianPoint(P2),
Draw::Atof(a[4]),tol);
return solutions(di,ct3,a[1]);
}
}
else {
// C-R-..
if (!C3.IsNull()) {
// C-R-C
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C1),
Geom2dGcc::Unqualified(C3),
Draw::Atof(a[3]),
tol);
return solutions(di,ct3,a[1]);
}
else if (ip3) {
// C-R-P
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C1),
new Geom2d_CartesianPoint(P3),
Draw::Atof(a[3]),
tol);
return solutions(di,ct3,a[1]);
}
else {
// C-R-R
di << "Curve, radius, radius ???\n";
return 1;
}
}
//=======================================================================
//function : Cirtang
//purpose :
//=======================================================================
static Standard_Integer Cirtang(Draw_Interpretor& theDI,
Standard_Integer theNArgs,
const char** theArgVals)
{
if (theNArgs < 3)
{
theDI << "Use: " << theArgVals[0] << "result [-t <Tolerance>] -c <curve> -p <point> -r <Radius>...\n";
return 1;
}
else if (ip1) {
// P-...
if (!C2.IsNull()) {
// P-C-...
if (!C3.IsNull()) {
// P-C-C
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C2),
Geom2dGcc::Unqualified(C3),
new Geom2d_CartesianPoint(P1),
tol,0,0);
return solutions(di,ct3,a[1]);
}
Standard_Real aTol = Precision::Confusion();
Handle(Geom2d_Curve) aC[3];
gp_Pnt2d aP[3];
Standard_Real aRadius = -1.0;
else if (ip3) {
// P-C-P
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C2),
new Geom2d_CartesianPoint(P1),
new Geom2d_CartesianPoint(P3),
tol,0);
return solutions(di,ct3,a[1]);
}
Standard_Integer aNbCurves = 0, aNbPnts = 0;
else {
// P-C-R
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C2),
new Geom2d_CartesianPoint(P1),
Draw::Atof(a[4]),tol);
return solutions(di,ct3,a[1]);
}
for (Standard_Integer anArgID = 2; anArgID < theNArgs; anArgID++)
{
if (theArgVals[anArgID][0] != '-')
{
theDI << "Cannot interpret the argument #" << anArgID << " (" << theArgVals[anArgID] << ")\n";
return 1;
}
else if (ip2) {
// P-P-..
if (!C3.IsNull()) {
// P-P-C
Geom2dGcc_Circ2d3Tan ct3(Geom2dGcc::Unqualified(C3),
new Geom2d_CartesianPoint(P1),
new Geom2d_CartesianPoint(P2),
tol,0);
return solutions(di,ct3,a[1]);
}
else if (ip3) {
// P-P-P
Geom2dGcc_Circ2d3Tan ct3(new Geom2d_CartesianPoint(P1),
new Geom2d_CartesianPoint(P2),
new Geom2d_CartesianPoint(P3),
tol);
return solutions(di,ct3,a[1]);
}
else {
// P-P-R
Geom2dGcc_Circ2d2TanRad ct3(new Geom2d_CartesianPoint(P1),
new Geom2d_CartesianPoint(P2),
Draw::Atof(a[4]),tol);
return solutions(di,ct3,a[1]);
}
}
else {
// P-R-..
if (!C3.IsNull()) {
// P-R-C
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C3),
new Geom2d_CartesianPoint(P1),
Draw::Atof(a[3]),
tol);
return solutions(di,ct3,a[1]);
}
else if (ip3) {
// P-R-P
Geom2dGcc_Circ2d2TanRad ct3(new Geom2d_CartesianPoint(P1),
new Geom2d_CartesianPoint(P3),
Draw::Atof(a[3]),
tol);
return solutions(di,ct3,a[1]);
}
else {
// P-R-R
di << "Point, radius, radius ???\n";
return 1;
}
}
}
else {
// R-...
if (!C2.IsNull()) {
// R-C-...
if (!C3.IsNull()) {
// R-C-C
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C2),
Geom2dGcc::Unqualified(C3),
Draw::Atof(a[2]),
tol);
return solutions(di,ct3,a[1]);
}
else if (ip3) {
// R-C-P
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C2),
new Geom2d_CartesianPoint(P3),
Draw::Atof(a[2]),
tol);
return solutions(di,ct3,a[1]);
}
else {
// R-C-R
di << "Radius - Curve - Radius ??\n";
return 1;
}
}
else if (ip2) {
// R-P-..
if (!C3.IsNull()) {
// R-P-C
Geom2dGcc_Circ2d2TanRad ct3(Geom2dGcc::Unqualified(C3),
new Geom2d_CartesianPoint(P2),
Draw::Atof(a[2]),
tol);
return solutions(di,ct3,a[1]);
}
else if (ip3)
else if (!strcmp(theArgVals[anArgID], "-c"))
{
if (aNbCurves >= 3)
{
// R-P-P
Geom2dGcc_Circ2d2TanRad ct3(new Geom2d_CartesianPoint(P2),
new Geom2d_CartesianPoint(P3),
Draw::Atof(a[2]),
tol);
return solutions(di,ct3,a[1]);
}
else {
// R-P-R
di << "Radius - Point - Radius ??\n";
theDI << "A lot of curves are given (not greater than 3 ones are expected)\n";
return 1;
}
aC[aNbCurves] = DrawTrSurf::GetCurve2d(theArgVals[++anArgID]);
if (aC[aNbCurves].IsNull())
{
theDI << "Error: " << theArgVals[anArgID] << " is not a curve\n";
return 1;
}
aNbCurves++;
}
else {
// R-R-..
di << "radius, radius ???\n";
else if (!strcmp(theArgVals[anArgID], "-p"))
{
if (aNbPnts >= 3)
{
theDI << "A lot of points are given (not greater than 3 ones are expected)\n";
return 1;
}
if (!DrawTrSurf::GetPoint2d(theArgVals[++anArgID], aP[aNbPnts]))
{
theDI << "Error: " << theArgVals[anArgID] << " is not a point\n";
return 1;
}
aNbPnts++;
}
else if (!strcmp(theArgVals[anArgID], "-r"))
{
aRadius = Draw::Atof(theArgVals[++anArgID]);
}
else if (!strcmp(theArgVals[anArgID], "-t"))
{
aTol = Draw::Atof(theArgVals[++anArgID]);
}
else
{
theDI << "Unknown option " << theArgVals[anArgID] << "\n";
return 1;
}
}
if (aNbCurves == 3)
{
// C-C-C
Geom2dGcc_Circ2d3Tan aCt3(Geom2dGcc::Unqualified(aC[0]),
Geom2dGcc::Unqualified(aC[1]),
Geom2dGcc::Unqualified(aC[2]),
aTol, 0, 0, 0);
theDI << "Solution of type C-C-C is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
else if (aNbCurves == 2)
{
if (aNbPnts >= 1)
{
// C-C-P
Geom2dGcc_Circ2d3Tan aCt3(Geom2dGcc::Unqualified(aC[0]),
Geom2dGcc::Unqualified(aC[1]),
new Geom2d_CartesianPoint(aP[0]),
aTol, 0, 0);
theDI << "Solution of type C-C-P is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
else if (aRadius > 0)
{
// C-C-R
Geom2dGcc_Circ2d2TanRad aCt3(Geom2dGcc::Unqualified(aC[0]),
Geom2dGcc::Unqualified(aC[1]),
aRadius, aTol);
theDI << "Solution of type C-C-R is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
theDI << "Error: Unsupported set of input data!\n";
return 1;
}
else if (aNbCurves == 1)
{
if (aNbPnts == 2)
{
//C-P-P
Geom2dGcc_Circ2d3Tan aCt3(Geom2dGcc::Unqualified(aC[0]),
new Geom2d_CartesianPoint(aP[0]),
new Geom2d_CartesianPoint(aP[1]),
aTol,0);
theDI << "Solution of type C-P-P is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
else if (aNbPnts == 1)
{
if (aRadius > 0.0)
{
//C-P-R
Geom2dGcc_Circ2d2TanRad aCt3(Geom2dGcc::Unqualified(aC[0]),
new Geom2d_CartesianPoint(aP[0]),
aRadius, aTol);
theDI << "Solution of type C-P-R is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
else
{
// C-P
Geom2dGcc_Circ2dTanCen aCt2(Geom2dGcc::Unqualified(aC[0]),
new Geom2d_CartesianPoint(aP[0]), aTol);
theDI << "Solution of type C-P is: ";
return solutions(theDI, aCt2, theArgVals[1]);
}
}
theDI << "Error: Unsupported set of input data!\n";
return 1;
}
else if (aNbPnts >= 2)
{
if (aNbPnts == 3)
{
//P-P-P
Geom2dGcc_Circ2d3Tan aCt3(new Geom2d_CartesianPoint(aP[0]),
new Geom2d_CartesianPoint(aP[1]),
new Geom2d_CartesianPoint(aP[2]),
aTol);
theDI << "Solution of type P-P-P is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
else if (aRadius > 0)
{
//P-P-R
Geom2dGcc_Circ2d2TanRad aCt3(new Geom2d_CartesianPoint(aP[0]),
new Geom2d_CartesianPoint(aP[1]),
aRadius, aTol);
theDI << "Solution of type P-P-R is: ";
return solutions(theDI, aCt3, theArgVals[1]);
}
theDI << "Error: Unsupported set of input data!\n";
return 1;
}
theDI << "Error: Unsupported set of input data!\n";
return 1;
}
@ -805,9 +754,9 @@ void GeometryTest::ConstraintCommands(Draw_Interpretor& theCommands)
g = "GEOMETRY Constraints";
theCommands.Add("cirtang",
"cirtang cname curve/point/radius curve/point/radius curve/point/radius",
"cirtang cname [-t <Tolerance>] -c <curve> -p <point> -r <Radius>...",
__FILE__,
cirtang,g);
Cirtang, g);
theCommands.Add("lintan",
"lintan lname curve1 curve2 [angle]",

View File

@ -7,6 +7,6 @@ set len_ch 2513
point p 1600 300
line l 0 500 2000 500
cirtang c p l 400
cirtang c -p p -c l -r 400
checklength c_1 -l 2513.2741228718346
checklength c_2 -l 2513.2741228718346

View File

@ -5,4 +5,4 @@ puts "======================="
point p 1600 300
line l 0 500 2000 500
cirtang c1 p l 200
cirtang c1 -p p -c l -r 200

View File

@ -5,4 +5,4 @@ puts "======================="
point p2 1400 1400
line l2 3000 1700 1000 1550
cirtang c3 p2 l2 300
cirtang c3 -p p2 -c l2 -r 300

View File

@ -5,4 +5,4 @@ puts "======================="
point p2 1400 1400
line l2 3000 1700 1000 1550
cirtang result p2 l2 150
cirtang result -p p2 -c l2 -r 150

View File

@ -10,7 +10,7 @@ puts ""
circle c1 0 0 100
circle c2 500 -400 300
circle c3 300 200 200
cirtang result c1 c2 c3
cirtang result -c c1 -c c2 -c c3
checklength result_1 -l 3568.9587306060739
checklength result_2 -l 9964.7111736227271
checklength result_3 -l 2082.9371204466097

View File

@ -10,5 +10,5 @@ puts ""
circle c1 2900 800 500
circle c2 2900 900 400
circle c3 2900 1000 300
catch {cirtang result c1 c2 c3}
catch {cirtang result -c c1 -c c2 -c c3}

View File

@ -10,7 +10,7 @@ puts ""
circle c1 500 1800 500
circle c2 500 1900 400
circle c3 700 1900 200
cirtang result c1 c2 c3
cirtang result -c c1 -c c2 -c c3
checklength result_1 -l 2513.2741228703289
checklength result_2 -l 837.75804095727631

View File

@ -10,7 +10,7 @@ puts ""
circle c3 500 3000 250
circle c2 375 3000 125
circle c1 625 3000 125
cirtang result c1 c2 c3
cirtang result -c c1 -c c2 -c c3
checklength result_1 -l 1570.7963267948965
checklength result_2 -l 785.39816339744868

View File

@ -13,7 +13,7 @@ set knots { { 0 4 } { 8.6971225126475 1 } { 16.903955884905 1 } { 28.00871675581
eval 2dbsplinecurve curve_2 3 [ llength $knots ] [ join $knots ] [ join $poles ]
if [catch {cirtang result curve_1 curve_2 2} catch_result] {
if [catch {cirtang result -c curve_1 -c curve_2 -r 2} catch_result] {
puts "Faulty BUC60941: function cirtang works wrongly"
} else {
puts "BUC60941 OK: function cirtang works properly"

View File

@ -18,7 +18,10 @@ to2d 2d_curve_1 3d_curve_1
to2d 2d_curve_2 3d_curve_2
to2d 2d_curve_3 3d_curve_3
set circles_Nb [llength [cirtang cir 2d_curve_1 2d_curve_2 2d_curve_3] ]
foreach a [directory cir*] { unset $a }
cirtang cir -c 2d_curve_1 -c 2d_curve_2 -c 2d_curve_3
set circles_Nb [llength [directory cir*] ]
if { ${circles_Nb} != 8 } {
puts "Error: GccAna_Circ2d3Tan does not find a circle"

View File

@ -0,0 +1,18 @@
puts "========"
puts "0029694: Geom2dGcc_Circ2dTanCenGeo crash"
puts "========"
puts ""
point pp 1 1
2dbsplinecurve cc 1 2 0 2 1 2 -10 -5 1 10 -5 1
if { ![regexp {Solution of type C-P is} [cirtang result -p pp -c cc] ] } {
puts "Error: Cannot find any solution"
}
regexp "Center\\s*:\\s*(\[-0-9.+eE\]+)\\s*,\\s*(\[-0-9.+eE\]+)\\s*" [dump result_1] full pcx pcy
checkreal CenterX $pcx 1.0 1.0e-7 0
checkreal CenterX $pcy 1.0 1.0e-7 0
checkdump result_1 -name Radius -ref 6

View File

@ -0,0 +1,10 @@
point p 0 0
line l 10 0 -1 1
cirtang c -p p -c l -r 4
smallview -2D-
don c_1 c_2
2dfit
disp l p
checkview -screenshot -2d -path ${imagedir}/${test_image}.png

View File

@ -1,4 +1,5 @@
001 2dinter
002 bnd
003 extcs
004 extcc
004 extcc
005 2dgcc