mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0024889: Geom2dAPI_InterCurveCurve produces result with parameter outside the curve limits
1. DRAW-command for testing was created (see QABugs_19.cxx) 2. Alignments were changed in other files. Main Changes are into IntCurve_IntConicConic_1.cxx file (variable isOutOfRange was added). If found intersection point is out of range, minimal distance between corresponding ends of interval is taken. If this distance is less than tolerance, this point replaces found intersection point. Otherwise, found intersection point is ignored. Modified QA command OCC24889 and added test case bugs/modalg_5/bug24889
This commit is contained in:
parent
dc244065a9
commit
8696d65d2c
@ -691,15 +691,16 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
gp_Circ2d Circle2=_Circle2;
|
||||
IntRes2d_Domain DomainCirc2=_DomainCirc2;
|
||||
Standard_Boolean IndirectCircles=Standard_False;
|
||||
if(Circle1.IsDirect() != _Circle2.IsDirect()) {
|
||||
if(Circle1.IsDirect() != _Circle2.IsDirect())
|
||||
{
|
||||
IndirectCircles=Standard_True;
|
||||
Circle2=_Circle2.Reversed();
|
||||
DomainCirc2.SetValues(_DomainCirc2.LastPoint(),
|
||||
PIpPI-_DomainCirc2.LastParameter(),
|
||||
_DomainCirc2.LastTolerance(),
|
||||
_DomainCirc2.FirstPoint(),
|
||||
PIpPI-_DomainCirc2.FirstParameter(),
|
||||
_DomainCirc2.FirstTolerance());
|
||||
PIpPI-_DomainCirc2.LastParameter(),
|
||||
_DomainCirc2.LastTolerance(),
|
||||
_DomainCirc2.FirstPoint(),
|
||||
PIpPI-_DomainCirc2.FirstParameter(),
|
||||
_DomainCirc2.FirstTolerance());
|
||||
DomainCirc2.SetEquivalentParameters(0.0,PIpPI);
|
||||
}
|
||||
|
||||
@ -720,21 +721,31 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
Standard_Real deltat = C1Domain.Bsup-C1Domain.Binf;
|
||||
if(deltat>=PIpPI) { deltat=PIpPI-1e-14; }
|
||||
|
||||
while(C1Domain.Binf >= PIpPI) C1Domain.Binf-=PIpPI;
|
||||
while(C1Domain.Binf < 0.0) C1Domain.Binf+=PIpPI;
|
||||
while(C1Domain.Binf >= PIpPI)
|
||||
C1Domain.Binf-=PIpPI;
|
||||
while(C1Domain.Binf < 0.0)
|
||||
C1Domain.Binf+=PIpPI;
|
||||
|
||||
C1Domain.Bsup=C1Domain.Binf+deltat;
|
||||
|
||||
PeriodicInterval C2Domain(DomainCirc2);
|
||||
deltat = C2Domain.Bsup-C2Domain.Binf;
|
||||
if(deltat>=PIpPI) { deltat=PIpPI-1e-14; }
|
||||
if(deltat>=PIpPI)
|
||||
{
|
||||
deltat=PIpPI-1e-14;
|
||||
}
|
||||
|
||||
while(C2Domain.Binf >= PIpPI)
|
||||
C2Domain.Binf-=PIpPI;
|
||||
while(C2Domain.Binf < 0.0)
|
||||
C2Domain.Binf+=PIpPI;
|
||||
|
||||
while(C2Domain.Binf >= PIpPI) C2Domain.Binf-=PIpPI;
|
||||
while(C2Domain.Binf < 0.0) C2Domain.Binf+=PIpPI;
|
||||
C2Domain.Bsup=C2Domain.Binf+deltat;
|
||||
|
||||
Standard_Boolean IdentCircles=Standard_False;
|
||||
|
||||
if(nbsol>2) {
|
||||
if(nbsol>2)
|
||||
{
|
||||
//-- Les 2 cercles sont confondus a Tol pres
|
||||
C1_Int1.SetValues(0,PIpPI);
|
||||
C1_Int2.SetNull();
|
||||
@ -788,7 +799,8 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
//----------------------------------------------------------------------
|
||||
//----------- Traitement du second intervalle Geometrique C1_Int2 ----
|
||||
//----------------------------------------------------------------------
|
||||
if(nbsol==2) {
|
||||
if(nbsol==2)
|
||||
{
|
||||
C1DomainAndRes=C1Domain.FirstIntersection(C1_Int2);
|
||||
|
||||
ProjectOnC2AndIntersectWithC2Domain(Circle1,Circle2
|
||||
@ -819,14 +831,17 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
Standard_Real Tol2=Tol+Tol; //---- Pour eviter de toujours retourner
|
||||
//des segments
|
||||
Standard_Integer i ;
|
||||
if(Tol < (1e-10)) Tol2 = 1e-10;
|
||||
for( i=0; i<NbSolTotal ; i++) {
|
||||
if(((R1 * SolutionC1[i].Length()))<=Tol2
|
||||
&& ((R2 * SolutionC2[i].Length()))<=Tol2) {
|
||||
|
||||
if(Tol < (1e-10))
|
||||
Tol2 = 1e-10;
|
||||
|
||||
for( i=0; i<NbSolTotal ; i++)
|
||||
{
|
||||
if(((R1 * SolutionC1[i].Length()) <=Tol2) &&
|
||||
((R2 * SolutionC2[i].Length())<=Tol2))
|
||||
{
|
||||
Standard_Real t=(SolutionC1[i].Binf+SolutionC1[i].Bsup)*0.5;
|
||||
SolutionC1[i].Binf=SolutionC1[i].Bsup=t;
|
||||
|
||||
|
||||
t=(SolutionC2[i].Binf+SolutionC2[i].Bsup)*0.5;
|
||||
SolutionC2[i].Binf=SolutionC2[i].Bsup=t;
|
||||
}
|
||||
@ -842,21 +857,91 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
IntRes2d_Transition T1a,T1b,T2a,T2b;
|
||||
IntRes2d_Position Pos1a,Pos1b,Pos2a,Pos2b;
|
||||
|
||||
Standard_Boolean Opposite=((Circle1.Location().SquareDistance(Circle2.Location()))
|
||||
>(R1*R1+R2*R2))? Standard_True : Standard_False;
|
||||
Standard_Boolean Opposite =
|
||||
((Circle1.Location().SquareDistance(Circle2.Location())) > (R1*R1+R2*R2)) ?
|
||||
Standard_True : Standard_False;
|
||||
|
||||
//if(Circle1.IsDirect()) { cout<<" C1 Direct"<<endl; } else { cout<<" C1 INDirect"<<endl; }
|
||||
//if(Circle2.IsDirect()) { cout<<" C2 Direct"<<endl; } else { cout<<" C2 INDirect"<<endl; }
|
||||
|
||||
for(i=0; i<NbSolTotal; i++) {
|
||||
for(i=0; i<NbSolTotal; i++)
|
||||
{
|
||||
Standard_Real C2inf=(Opposite)? SolutionC2[i].Bsup : SolutionC2[i].Binf;
|
||||
Standard_Real C2sup=(Opposite)? SolutionC2[i].Binf : SolutionC2[i].Bsup;
|
||||
Standard_Real C1tinf = SolutionC1[i].Binf, C2tinf = C2inf;
|
||||
Standard_Real C1inf=NormalizeOnCircleDomain(C1tinf,DomainCirc1);
|
||||
C2inf=NormalizeOnCircleDomain(C2tinf,DomainCirc2);
|
||||
|
||||
Standard_Real C1inf=NormalizeOnCircleDomain(SolutionC1[i].Binf,DomainCirc1);
|
||||
C2inf=NormalizeOnCircleDomain(C2inf,DomainCirc2);
|
||||
Standard_Boolean isOutOfRange = Standard_False;
|
||||
if(C1inf < DomainCirc1.FirstParameter())
|
||||
{
|
||||
if(C1tinf < DomainCirc1.FirstParameter())
|
||||
{
|
||||
C1inf = DomainCirc1.FirstParameter();
|
||||
isOutOfRange = Standard_True;
|
||||
}
|
||||
else
|
||||
{
|
||||
C1inf = C1tinf;
|
||||
}
|
||||
}
|
||||
|
||||
if(IndirectCircles) {
|
||||
|
||||
if(C1inf > DomainCirc1.LastParameter())
|
||||
{
|
||||
if(C1tinf > DomainCirc1.LastParameter())
|
||||
{
|
||||
C1inf = DomainCirc1.LastParameter();
|
||||
isOutOfRange = Standard_True;
|
||||
}
|
||||
else
|
||||
{
|
||||
C1inf = C1tinf;
|
||||
}
|
||||
}
|
||||
|
||||
if(C2inf < DomainCirc2.FirstParameter())
|
||||
{
|
||||
if(C2tinf < DomainCirc2.FirstParameter())
|
||||
{
|
||||
C2inf = DomainCirc2.FirstParameter();
|
||||
isOutOfRange = Standard_True;
|
||||
}
|
||||
else
|
||||
{
|
||||
C2inf = C2tinf;
|
||||
}
|
||||
}
|
||||
|
||||
if(C2inf > DomainCirc2.LastParameter())
|
||||
{
|
||||
if(C2tinf > DomainCirc2.LastParameter())
|
||||
{
|
||||
C2inf = DomainCirc2.LastParameter();
|
||||
isOutOfRange = Standard_True;
|
||||
}
|
||||
else
|
||||
{
|
||||
C2inf = C2tinf;
|
||||
}
|
||||
}
|
||||
|
||||
if(isOutOfRange)
|
||||
{
|
||||
gp_Pnt2d aP1, aP2;
|
||||
gp_Vec2d aV11, aV12;
|
||||
gp_Vec2d aV21, aV22;
|
||||
|
||||
ElCLib::CircleD2(C1inf,Axis2C1,R1,aP1,aV11,aV12);
|
||||
ElCLib::CircleD2(C2inf,Axis2C2,R2,aP2,aV21,aV22);
|
||||
|
||||
if(aP1.SquareDistance(aP2) > Tol2*Tol2)
|
||||
{//there are not any solutions in given parametric range.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if(IndirectCircles)
|
||||
{
|
||||
ElCLib::CircleD2(C1inf,Axis2C1,R1,P1a,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2inf,Axis2C2,R2,P2a,Tan2,Norm2);
|
||||
Tan2.Reverse();
|
||||
@ -868,47 +953,52 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint1(P1a,C1inf,PIpPI-C2inf,T1a,T2a,Standard_False);
|
||||
|
||||
if((SolutionC1[i].Length()>0.0 ) || (SolutionC2[i].Length() >0.0)) {
|
||||
//-- On traite un intervalle non reduit a un point
|
||||
Standard_Real C1sup=NormalizeOnCircleDomain(SolutionC1[i].Bsup,DomainCirc1);
|
||||
if(C1sup<C1inf) C1sup+=PIpPI;
|
||||
C2sup=NormalizeOnCircleDomain(C2sup,DomainCirc2);
|
||||
|
||||
ElCLib::CircleD2(C1sup,Axis2C1,R1,P1b,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2sup,Axis2C2,R2,P2b,Tan2,Norm2);
|
||||
Tan2.Reverse();
|
||||
if((SolutionC1[i].Length()>0.0 ) || (SolutionC2[i].Length() >0.0))
|
||||
{
|
||||
//-- On traite un intervalle non reduit a un point
|
||||
Standard_Real C1sup=NormalizeOnCircleDomain(SolutionC1[i].Bsup,DomainCirc1);
|
||||
if(C1sup<C1inf) C1sup+=PIpPI;
|
||||
C2sup=NormalizeOnCircleDomain(C2sup,DomainCirc2);
|
||||
|
||||
IntImpParGen::DeterminePosition(Pos1b,DomainCirc1,P1b,C1sup);
|
||||
IntImpParGen::DeterminePosition(Pos2b,_DomainCirc2,P2b,PIpPI-C2sup);
|
||||
Determine_Transition_LC(Pos1b,Tan1,Norm1,T1b , Pos2b,Tan2,Norm2,T2b, Tol);
|
||||
|
||||
//--------------------------------------------------
|
||||
|
||||
if(Opposite) {
|
||||
if(nbsol!=3) {
|
||||
if(C2inf<C2sup) C2inf+=PIpPI;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(nbsol!=3) {
|
||||
if(C2sup<C2inf) C2sup+=PIpPI;
|
||||
}
|
||||
}
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,PIpPI-C2sup,T1b,T2b,Standard_False);
|
||||
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,
|
||||
(Opposite==Standard_True)? Standard_False : Standard_True,
|
||||
Standard_False);
|
||||
Append(NewSeg);
|
||||
|
||||
ElCLib::CircleD2(C1sup,Axis2C1,R1,P1b,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2sup,Axis2C2,R2,P2b,Tan2,Norm2);
|
||||
Tan2.Reverse();
|
||||
|
||||
IntImpParGen::DeterminePosition(Pos1b,DomainCirc1,P1b,C1sup);
|
||||
IntImpParGen::DeterminePosition(Pos2b,_DomainCirc2,P2b,PIpPI-C2sup);
|
||||
Determine_Transition_LC(Pos1b,Tan1,Norm1,T1b , Pos2b,Tan2,Norm2,T2b, Tol);
|
||||
|
||||
//--------------------------------------------------
|
||||
|
||||
if(Opposite)
|
||||
{
|
||||
if(nbsol!=3)
|
||||
{
|
||||
if(C2inf<C2sup)
|
||||
C2inf+=PIpPI;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(nbsol!=3)
|
||||
{
|
||||
if(C2sup<C2inf) C2sup+=PIpPI;
|
||||
}
|
||||
}
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,PIpPI-C2sup,T1b,T2b,Standard_False);
|
||||
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,
|
||||
(Opposite==Standard_True)? Standard_False : Standard_True,
|
||||
Standard_False);
|
||||
Append(NewSeg);
|
||||
}
|
||||
else {
|
||||
Append(NewPoint1);
|
||||
else
|
||||
{
|
||||
Append(NewPoint1);
|
||||
}
|
||||
|
||||
}
|
||||
else {
|
||||
|
||||
else
|
||||
{
|
||||
ElCLib::CircleD2(C1inf,Axis2C1,R1,P1a,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2inf,Axis2C2,R2,P2a,Tan2,Norm2);
|
||||
|
||||
@ -919,39 +1009,46 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint1(P1a,C1inf,C2inf,T1a,T2a,Standard_False);
|
||||
|
||||
if((SolutionC1[i].Length()>0.0 ) || (SolutionC2[i].Length() >0.0)) {
|
||||
//-- On traite un intervalle non reduit a un point
|
||||
Standard_Real C1sup=NormalizeOnCircleDomain(SolutionC1[i].Bsup,DomainCirc1);
|
||||
if(C1sup<C1inf) C1sup+=PIpPI;
|
||||
C2sup=NormalizeOnCircleDomain(C2sup,DomainCirc2);
|
||||
|
||||
ElCLib::CircleD2(C1sup,Axis2C1,R1,P1b,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2sup,Axis2C2,R2,P2b,Tan2,Norm2);
|
||||
|
||||
IntImpParGen::DeterminePosition(Pos1b,DomainCirc1,P1b,C1sup);
|
||||
IntImpParGen::DeterminePosition(Pos2b,DomainCirc2,P2b,C2sup);
|
||||
Determine_Transition_LC(Pos1b,Tan1,Norm1,T1b , Pos2b,Tan2,Norm2,T2b, Tol);
|
||||
|
||||
//--------------------------------------------------
|
||||
|
||||
if(Opposite) {
|
||||
if(nbsol!=3) {
|
||||
if(C2inf<C2sup) C2inf+=PIpPI;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if(nbsol!=3) {
|
||||
if(C2sup<C2inf) C2sup+=PIpPI;
|
||||
}
|
||||
}
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,C2sup,T1b,T2b,Standard_False);
|
||||
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,Opposite,Standard_False);
|
||||
Append(NewSeg);
|
||||
|
||||
if((SolutionC1[i].Length()>0.0 ) || (SolutionC2[i].Length() >0.0))
|
||||
{
|
||||
//-- On traite un intervalle non reduit a un point
|
||||
Standard_Real C1sup=NormalizeOnCircleDomain(SolutionC1[i].Bsup,DomainCirc1);
|
||||
if(C1sup<C1inf) C1sup+=PIpPI;
|
||||
C2sup=NormalizeOnCircleDomain(C2sup,DomainCirc2);
|
||||
|
||||
ElCLib::CircleD2(C1sup,Axis2C1,R1,P1b,Tan1,Norm1);
|
||||
ElCLib::CircleD2(C2sup,Axis2C2,R2,P2b,Tan2,Norm2);
|
||||
|
||||
IntImpParGen::DeterminePosition(Pos1b,DomainCirc1,P1b,C1sup);
|
||||
IntImpParGen::DeterminePosition(Pos2b,DomainCirc2,P2b,C2sup);
|
||||
Determine_Transition_LC(Pos1b,Tan1,Norm1,T1b , Pos2b,Tan2,Norm2,T2b, Tol);
|
||||
|
||||
//--------------------------------------------------
|
||||
|
||||
if(Opposite)
|
||||
{
|
||||
if(nbsol!=3)
|
||||
{
|
||||
if(C2inf<C2sup)
|
||||
C2inf+=PIpPI;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(nbsol!=3)
|
||||
{
|
||||
if(C2sup<C2inf)
|
||||
C2sup+=PIpPI;
|
||||
}
|
||||
}
|
||||
|
||||
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,C2sup,T1b,T2b,Standard_False);
|
||||
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,Opposite,Standard_False);
|
||||
Append(NewSeg);
|
||||
}
|
||||
else {
|
||||
Append(NewPoint1);
|
||||
else
|
||||
{
|
||||
Append(NewPoint1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2268,6 +2268,59 @@ static Standard_Integer OCC24834 (Draw_Interpretor& di, Standard_Integer n, cons
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#include <Geom2dAPI_InterCurveCurve.hxx>
|
||||
#include <IntRes2d_IntersectionPoint.hxx>
|
||||
//=======================================================================
|
||||
//function : OCC24889
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Integer OCC24889 (Draw_Interpretor& theDI,
|
||||
Standard_Integer /*theNArg*/,
|
||||
const char** /*theArgs*/)
|
||||
{
|
||||
// Curves
|
||||
Handle( Geom2d_Circle ) aCircle1 = new Geom2d_Circle(
|
||||
gp_Ax22d( gp_Pnt2d( 25, -25 ), gp_Dir2d( 1, 0 ), gp_Dir2d( -0, 1 ) ), 155 );
|
||||
|
||||
Handle( Geom2d_Circle ) aCircle2 = new Geom2d_Circle(
|
||||
gp_Ax22d( gp_Pnt2d( 25, 25 ), gp_Dir2d( 1, 0 ), gp_Dir2d( -0, 1 ) ), 155 );
|
||||
|
||||
Handle( Geom2d_TrimmedCurve ) aTrim[2] = {
|
||||
new Geom2d_TrimmedCurve( aCircle1, 1.57079632679490, 2.97959469729228 ),
|
||||
new Geom2d_TrimmedCurve( aCircle2, 3.30359060633978, 4.71238898038469 )
|
||||
};
|
||||
|
||||
DrawTrSurf::Set("c_1", aTrim[0]);
|
||||
DrawTrSurf::Set("c_2", aTrim[1]);
|
||||
|
||||
// Intersection
|
||||
const Standard_Real aTol = Precision::Confusion();
|
||||
Geom2dAPI_InterCurveCurve aIntTool( aTrim[0], aTrim[1], aTol );
|
||||
|
||||
const IntRes2d_IntersectionPoint& aIntPnt =
|
||||
aIntTool.Intersector().Point( 1 );
|
||||
|
||||
gp_Pnt2d aIntRes = aIntTool.Point( 1 );
|
||||
Standard_Real aPar[2] = {
|
||||
aIntPnt.ParamOnFirst(),
|
||||
aIntPnt.ParamOnSecond()
|
||||
};
|
||||
|
||||
//theDI.precision( 5 );
|
||||
theDI << "Int point: X = " << aIntRes.X() << "; Y = " << aIntRes.Y() << "\n";
|
||||
for (int i = 0; i < 2; ++i)
|
||||
{
|
||||
theDI << "Curve " << i << ": FirstParam = " << aTrim[i]->FirstParameter() <<
|
||||
"; LastParam = " << aTrim[i]->LastParameter() <<
|
||||
"; IntParameter = " << aPar[i] << "\n";
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void QABugs::Commands_19(Draw_Interpretor& theCommands) {
|
||||
const char *group = "QABugs";
|
||||
|
||||
@ -2309,6 +2362,7 @@ void QABugs::Commands_19(Draw_Interpretor& theCommands) {
|
||||
theCommands.Add ("OCC24565", "OCC24565 FileNameIGS FileNameSTOR", __FILE__, OCC24565, group);
|
||||
theCommands.Add ("OCC24755", "OCC24755", __FILE__, OCC24755, group);
|
||||
theCommands.Add ("OCC24834", "OCC24834", __FILE__, OCC24834, group);
|
||||
theCommands.Add ("OCC24889", "OCC24889", __FILE__, OCC24889, group);
|
||||
theCommands.Add ("OCC23951", "OCC23951", __FILE__, OCC23951, group);
|
||||
theCommands.Add ("OCC24931", "OCC24931", __FILE__, OCC24931, group);
|
||||
return;
|
||||
|
38
tests/bugs/modalg_5/bug24889
Normal file
38
tests/bugs/modalg_5/bug24889
Normal file
@ -0,0 +1,38 @@
|
||||
puts "=========="
|
||||
puts "OCC24889"
|
||||
puts "=========="
|
||||
puts ""
|
||||
#####################################################################################
|
||||
# Geom2dAPI_InterCurveCurve produces result with parameter outside the curve limits
|
||||
#####################################################################################
|
||||
|
||||
pload QAcommands
|
||||
|
||||
set info [OCC24889]
|
||||
regexp {Curve 0: +FirstParam += +([-0-9.+eE]+); +LastParam += +([-0-9.+eE]+); +IntParameter += +([-0-9.+eE]+)} $info full first1 last1 intp1
|
||||
regexp {Curve 1: +FirstParam += +([-0-9.+eE]+); +LastParam += +([-0-9.+eE]+); +IntParameter += +([-0-9.+eE]+)} $info full first2 last2 intp2
|
||||
|
||||
if { $intp1 >= $first1 && $intp1 <= $last1 } {
|
||||
puts "OK: IntParameter1 inside the curve limits"
|
||||
} else {
|
||||
puts "Error: IntParameter1 outside the curve limits"
|
||||
}
|
||||
|
||||
if { $intp2 >= $first2 && $intp2 <= $last2 } {
|
||||
puts "OK: IntParameter2 inside the curve limits"
|
||||
} else {
|
||||
puts "Error: IntParameter2 outside the curve limits"
|
||||
}
|
||||
|
||||
2dcvalue c_1 $intp1 xx1 yy1
|
||||
2dcvalue c_2 $intp2 xx2 yy2
|
||||
|
||||
dump xx1 yy1
|
||||
dump xx2 yy2
|
||||
|
||||
set dist_val [dval (xx1-xx2)*(xx1-xx2)+(yy1-yy2)*(yy1-yy2)]
|
||||
if { $dist_val < 1.0e-14 } {
|
||||
puts "OK: point distance is good"
|
||||
} else {
|
||||
puts "Error: point distance is wrong"
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user