mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-09-08 14:17:06 +03:00
Integration of OCCT 6.5.0 from SVN
This commit is contained in:
184
src/math/math_ComputeKronrodPointsAndWeights.cxx
Executable file
184
src/math/math_ComputeKronrodPointsAndWeights.cxx
Executable file
@@ -0,0 +1,184 @@
|
||||
// File: math_ComputeKronrodPointsAndWeights.cxx
|
||||
// Created: Wed Dec 21 18:11:52 2005
|
||||
// Author: Julia GERASIMOVA
|
||||
// <jgv@clubox>
|
||||
|
||||
|
||||
#include <math_ComputeKronrodPointsAndWeights.ixx>
|
||||
#include <math_EigenValuesSearcher.hxx>
|
||||
#include <math_Array1OfValueAndWeight.hxx>
|
||||
#include <math_CompareOfValueAndWeight.hxx>
|
||||
#include <math_QuickSortOfValueAndWeight.hxx>
|
||||
#include <Standard_ErrorHandler.hxx>
|
||||
|
||||
math_ComputeKronrodPointsAndWeights::math_ComputeKronrodPointsAndWeights(const Standard_Integer Number)
|
||||
{
|
||||
myIsDone = Standard_False;
|
||||
|
||||
try {
|
||||
Standard_Integer i, j;
|
||||
Standard_Integer a2NP1 = 2*Number + 1;
|
||||
|
||||
myPoints = new TColStd_HArray1OfReal(1, a2NP1);
|
||||
myWeights = new TColStd_HArray1OfReal(1, a2NP1);
|
||||
|
||||
TColStd_Array1OfReal aDiag(1, a2NP1);
|
||||
TColStd_Array1OfReal aSubDiag(1, a2NP1);
|
||||
|
||||
// Initialize symmetric tridiagonal matrix.
|
||||
Standard_Integer n = Number;
|
||||
Standard_Integer aKronrodN = 2*Number + 1;
|
||||
Standard_Integer a3KN2p1 = Min(3*(Number + 1)/2 + 1, aKronrodN);
|
||||
for (i = 1; i <= a3KN2p1; i++) {
|
||||
aDiag(i) = 0.;
|
||||
|
||||
if (i == 1)
|
||||
aSubDiag(i) = 0.;
|
||||
else {
|
||||
Standard_Integer sqrIm1 = (i-1)*(i-1);
|
||||
aSubDiag(i) = sqrIm1/(4.*sqrIm1 - 1);
|
||||
}
|
||||
}
|
||||
|
||||
for (i = a3KN2p1 + 1; i <= aKronrodN; i++) {
|
||||
aDiag(i) = 0.;
|
||||
aSubDiag(i) = 0.;
|
||||
}
|
||||
|
||||
// Initialization of temporary data structures.
|
||||
Standard_Integer aNd2 = Number/2;
|
||||
Standard_Real *s = new Standard_Real[aNd2 + 2];
|
||||
Standard_Real *t = new Standard_Real[aNd2 + 2];
|
||||
Standard_Real *ss = s++;
|
||||
Standard_Real *tt = t++;
|
||||
|
||||
for (i = -1; i <= aNd2; i++) {
|
||||
s[i] = 0.;
|
||||
t[i] = 0.;
|
||||
}
|
||||
|
||||
// Generation of Jacobi-Kronrod matrix.
|
||||
Standard_Real *aa = new Standard_Real [a2NP1+1];
|
||||
Standard_Real *bb = new Standard_Real [a2NP1+1];
|
||||
for (i = 1; i <= a2NP1; i++) {
|
||||
aa[i] = aDiag(i);
|
||||
bb[i] = aSubDiag(i);
|
||||
}
|
||||
Standard_Real *ptrtmp;
|
||||
Standard_Real u;
|
||||
Standard_Integer m;
|
||||
Standard_Integer k;
|
||||
Standard_Integer l;
|
||||
|
||||
Standard_Real *a = aa+1;
|
||||
Standard_Real *b = bb+1;
|
||||
|
||||
// Eastward phase.
|
||||
t[0] = b[Number + 1];
|
||||
|
||||
for (m = 0; m <= n - 2; m++) {
|
||||
u = 0;
|
||||
|
||||
for (k = (m + 1)/2; k >= 0; k--) {
|
||||
l = m - k;
|
||||
u += (a[k + n + 1] - a[l])*t[k] + b[k + n + 1]*s[k - 1] - b[l]*s[k];
|
||||
s[k] = u;
|
||||
}
|
||||
|
||||
ptrtmp = t;
|
||||
t = s;
|
||||
s = ptrtmp;
|
||||
}
|
||||
|
||||
for (j = aNd2; j >= 0; j--)
|
||||
s[j] = s[j - 1];
|
||||
|
||||
// Southward phase.
|
||||
for (m = n - 1; m <= 2*n - 3; m++) {
|
||||
u = 0;
|
||||
|
||||
for (k = m + 1 - n; k <= (m - 1)/2; k++) {
|
||||
l = m - k;
|
||||
j = n - 1 - l;
|
||||
u += -(a[k + n + 1] - a[l])*t[j] - b[k + n + 1]*s[j] + b[l]*s[j + 1];
|
||||
s[j] = u;
|
||||
}
|
||||
|
||||
if (m % 2 == 0) {
|
||||
k = m/2;
|
||||
a[k + n + 1] = a[k] + (s[j] - b[k + n + 1]*s[j + 1])/ t[j + 1];
|
||||
} else {
|
||||
k = (m + 1)/2;
|
||||
b[k + n + 1] = s[j]/s[j + 1];
|
||||
}
|
||||
|
||||
ptrtmp = t;
|
||||
t = s;
|
||||
s = ptrtmp;
|
||||
}
|
||||
|
||||
// Termination phase.
|
||||
a[2*Number] = a[n - 1] - b[2*Number]*s[0]/t[0];
|
||||
|
||||
delete [] ss;
|
||||
delete [] tt;
|
||||
for (i = 1; i <= a2NP1; i++) {
|
||||
aDiag(i) = aa[i];
|
||||
aSubDiag(i) = bb[i];
|
||||
}
|
||||
delete [] aa;
|
||||
delete [] bb;
|
||||
|
||||
for (i = 1; i <= a2NP1; i++)
|
||||
aSubDiag(i) = Sqrt(aSubDiag(i));
|
||||
|
||||
// Compute eigen values.
|
||||
math_EigenValuesSearcher EVsearch(aDiag, aSubDiag);
|
||||
|
||||
if (EVsearch.IsDone()) {
|
||||
math_Array1OfValueAndWeight VWarray(1, a2NP1);
|
||||
for (i = 1; i <= a2NP1; i++) {
|
||||
math_Vector anEigenVector = EVsearch.EigenVector(i);
|
||||
Standard_Real aWeight = anEigenVector(1);
|
||||
aWeight = 2. * aWeight * aWeight;
|
||||
math_ValueAndWeight EVW( EVsearch.EigenValue(i), aWeight );
|
||||
VWarray(i) = EVW;
|
||||
}
|
||||
|
||||
math_CompareOfValueAndWeight theComparator;
|
||||
math_QuickSortOfValueAndWeight::Sort(VWarray, theComparator);
|
||||
|
||||
for (i = 1; i <= a2NP1; i++) {
|
||||
myPoints->ChangeValue(i) = VWarray(i).Value();
|
||||
myWeights->ChangeValue(i) = VWarray(i).Weight();
|
||||
}
|
||||
myIsDone = Standard_True;
|
||||
}
|
||||
} catch (Standard_Failure) {
|
||||
}
|
||||
}
|
||||
|
||||
Standard_Boolean math_ComputeKronrodPointsAndWeights::IsDone() const
|
||||
{
|
||||
return myIsDone;
|
||||
}
|
||||
|
||||
math_Vector math_ComputeKronrodPointsAndWeights::Points() const
|
||||
{
|
||||
Standard_Integer Number = myPoints->Length();
|
||||
math_Vector thePoints(1, Number);
|
||||
for (Standard_Integer i = 1; i <= Number; i++)
|
||||
thePoints(i) = myPoints->Value(i);
|
||||
|
||||
return thePoints;
|
||||
}
|
||||
|
||||
math_Vector math_ComputeKronrodPointsAndWeights::Weights() const
|
||||
{
|
||||
Standard_Integer Number = myWeights->Length();
|
||||
math_Vector theWeights(1, Number);
|
||||
for (Standard_Integer i = 1; i <= Number; i++)
|
||||
theWeights(i) = myWeights->Value(i);
|
||||
|
||||
return theWeights;
|
||||
}
|
Reference in New Issue
Block a user