1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-14 13:30:48 +03:00

Integration of OCCT 6.5.0 from SVN

This commit is contained in:
bugmaster
2011-03-16 07:30:28 +00:00
committed by bugmaster
parent 4903637061
commit 7fd59977df
16375 changed files with 3882564 additions and 0 deletions

329
src/Precision/Precision.cdl Executable file
View File

@@ -0,0 +1,329 @@
-- File: Precision.cdl
-- Created: Wed Feb 17 10:39:04 1993
-- Author: Remi LEQUETTE
-- <rle@phylox>
---Copyright: Matra Datavision 1993
package Precision
---Purpose: The Precision package offers a set of functions defining precision criteria
-- for use in conventional situations when comparing two numbers.
-- Generalities
-- It is not advisable to use floating number equality. Instead, the difference
-- between numbers must be compared with a given precision, i.e. :
-- Standard_Real x1, x2 ;
-- x1 = ...
-- x2 = ...
-- If ( x1 == x2 ) ...
-- should not be used and must be written as indicated below:
-- Standard_Real x1, x2 ;
-- Standard_Real Precision = ...
-- x1 = ...
-- x2 = ...
-- If ( Abs ( x1 - x2 ) < Precision ) ...
-- Likewise, when ordering floating numbers, you must take the following into account :
-- Standard_Real x1, x2 ;
-- Standard_Real Precision = ...
-- x1 = ... ! a large number
-- x2 = ... ! another large number
-- If ( x1 < x2 - Precision ) ...
-- is incorrect when x1 and x2 are large numbers ; it is better to write :
-- Standard_Real x1, x2 ;
-- Standard_Real Precision = ...
-- x1 = ... ! a large number
-- x2 = ... ! another large number
-- If ( x2 - x1 > Precision ) ...
-- Precision in Cas.Cade
-- Generally speaking, the precision criterion is not implicit in Cas.Cade. Low-level geometric algorithms accept
-- precision criteria as arguments. As a rule, they should not refer directly to the precision criteria provided by the
-- Precision package.
-- On the other hand, high-level modeling algorithms have to provide the low-level geometric algorithms that they
-- call, with a precision criteria. One way of doing this is to use the above precision criteria.
-- Alternatively, the high-level algorithms can have their own system for precision management. For example, the
-- Topology Data Structure stores precision criteria for each elementary shape (as a vertex, an edge or a face). When
-- a new topological object is constructed, the precision criteria are taken from those provided by the Precision
-- package, and stored in the related data structure. Later, a topological algorithm which analyses these objects will
-- work with the values stored in the data structure. Also, if this algorithm is to build a new topological object, from
-- these precision criteria, it will compute a new precision criterion for the new topological object, and write it into the
-- data structure of the new topological object.
-- The different precision criteria offered by the Precision package, cover the most common requirements of
-- geometric algorithms, such as intersections, approximations, and so on.
-- The choice of precision depends on the algorithm and on the geometric space. The geometric space may be :
-- - a "real" 2D or 3D space, where the lengths are measured in meters, millimeters, microns, inches, etc ..., or
-- - a "parametric" space, 1D on a curve or 2D on a surface, where lengths have no dimension.
-- The choice of precision criteria for real space depends on the choice of the product, as it is based on the accuracy
-- of the machine and the unit of measurement.
-- The choice of precision criteria for parametric space depends on both the accuracy of the machine and the
-- dimensions of the curve or the surface, since the parametric precision criterion and the real precision criterion are
-- linked : if the curve is defined by the equation P(t), the inequation :
-- Abs ( t2 - t1 ) < ParametricPrecision
-- means that the parameters t1 and t2 are considered to be equal, and the inequation :
-- Distance ( P(t2) , P(t1) ) < RealPrecision
-- means that the points P(t1) and P(t2) are considered to be coincident. It seems to be the same idea, and it
-- would be wonderful if these two inequations were equivalent. Note that this is rarely the case !
-- What is provided in this package?
-- The Precision package provides :
-- - a set of real space precision criteria for the algorithms, in view of checking distances and angles,
-- - a set of parametric space precision criteria for the algorithms, in view of checking both :
-- - the equality of parameters in a parametric space,
-- - or the coincidence of points in the real space, by using parameter values,
-- - the notion of infinite value, composed of a value assumed to be infinite, and checking tests designed to verify
-- if any value could be considered as infinite.
-- All the provided functions are very simple. The returned values result from the adaptation of the applications
-- developed by the Open CASCADE company to Open CASCADE algorithms. The main interest of these functions
-- lies in that it incites engineers developing applications to ask questions on precision factors. Which one is to be
-- used in such or such case ? Tolerance criteria are context dependent. They must first choose :
-- - either to work in real space,
-- - or to work in parametric space,
-- - or to work in a combined real and parametric space.
-- They must next decide which precision factor will give the best answer to the current problem. Within an application
-- environment, it is crucial to master precision even though this process may take a great deal of time.
uses
Standard
is
Angular returns Real from Standard;
---Purpose: Returns the recommended precision value
-- when checking the equality of two angles (given in radians).
-- Standard_Real Angle1 = ... , Angle2 = ... ;
-- If ( Abs( Angle2 - Angle1 ) < Precision::Angular() ) ...
-- The tolerance of angular equality may be used to check the parallelism of two vectors :
-- gp_Vec V1, V2 ;
-- V1 = ...
-- V2 = ...
-- If ( V1.IsParallel (V2, Precision::Angular() ) ) ...
-- The tolerance of angular equality is equal to 1.e-12.
-- Note : The tolerance of angular equality can be used when working with scalar products or
-- cross products since sines and angles are equivalent for small angles. Therefore, in order to
-- check whether two unit vectors are perpendicular :
-- gp_Dir D1, D2 ;
-- D1 = ...
-- D2 = ...
-- you can use :
-- If ( Abs( D1.D2 ) < Precision::Angular() ) ...
-- (although the function IsNormal does exist).
Confusion returns Real from Standard;
---Purpose:
-- Returns the recommended precision value when
-- checking coincidence of two points in real space.
-- The tolerance of confusion is used for testing a 3D
-- distance :
-- - Two points are considered to be coincident if their
-- distance is smaller than the tolerance of confusion.
-- gp_Pnt P1, P2 ;
-- P1 = ...
-- P2 = ...
-- if ( P1.IsEqual ( P2 , Precision::Confusion() ) )
-- then ...
-- - A vector is considered to be null if it has a null length :
-- gp_Vec V ;
-- V = ...
-- if ( V.Magnitude() < Precision::Confusion() ) then ...
-- The tolerance of confusion is equal to 1.e-7.
-- The value of the tolerance of confusion is also used to
-- define :
-- - the tolerance of intersection, and
-- - the tolerance of approximation.
-- Note : As a rule, coordinate values in Cas.Cade are not
-- dimensioned, so 1. represents one user unit, whatever
-- value the unit may have : the millimeter, the meter, the
-- inch, or any other unit. Let's say that Cas.Cade
-- algorithms are written to be tuned essentially with
-- mechanical design applications, on the basis of the
-- millimeter. However, these algorithms may be used with
-- any other unit but the tolerance criterion does no longer
-- have the same signification.
-- So pay particular attention to the type of your application,
-- in relation with the impact of your unit on the precision criterion.
-- - For example in mechanical design, if the unit is the
-- millimeter, the tolerance of confusion corresponds to a
-- distance of 1 / 10000 micron, which is rather difficult to measure.
-- - However in other types of applications, such as
-- cartography, where the kilometer is frequently used,
-- the tolerance of confusion corresponds to a greater
-- distance (1 / 10 millimeter). This distance
-- becomes easily measurable, but only within a restricted
-- space which contains some small objects of the complete scene.
Intersection returns Real from Standard;
---Purpose:Returns the precision value in real space, frequently
-- used by intersection algorithms to decide that a solution is reached.
-- This function provides an acceptable level of precision
-- for an intersection process to define the adjustment limits.
-- The tolerance of intersection is designed to ensure
-- that a point computed by an iterative algorithm as the
-- intersection between two curves is indeed on the
-- intersection. It is obvious that two tangent curves are
-- close to each other, on a large distance. An iterative
-- algorithm of intersection may find points on these
-- curves within the scope of the confusion tolerance, but
-- still far from the true intersection point. In order to force
-- the intersection algorithm to continue the iteration
-- process until a correct point is found on the tangent
-- objects, the tolerance of intersection must be smaller
-- than the tolerance of confusion.
-- On the other hand, the tolerance of intersection must
-- be large enough to minimize the time required by the
-- process to converge to a solution.
-- The tolerance of intersection is equal to :
-- Precision::Confusion() / 100.
-- (that is, 1.e-9).
Approximation returns Real from Standard;
---Purpose: Returns the precision value in real space, frequently used
-- by approximation algorithms.
-- This function provides an acceptable level of precision for
-- an approximation process to define adjustment limits.
-- The tolerance of approximation is designed to ensure
-- an acceptable computation time when performing an
-- approximation process. That is why the tolerance of
-- approximation is greater than the tolerance of confusion.
-- The tolerance of approximation is equal to :
-- Precision::Confusion() * 10.
-- (that is, 1.e-6).
-- You may use a smaller tolerance in an approximation
-- algorithm, but this option might be costly.
Parametric(P : Real from Standard; T : Real from Standard)
returns Real from Standard;
---Purpose: Convert a real space precision to a parametric
-- space precision. <T> is the mean value of the
-- length of the tangent of the curve or the surface.
--
-- Value is P / T
--
---C++: inline
PConfusion(T : Real from Standard) returns Real from Standard;
---Purpose:
-- Returns a precision value in parametric space, which may be used :
-- - to test the coincidence of two points in the real space,
-- by using parameter values, or
-- - to test the equality of two parameter values in a parametric space.
-- The parametric tolerance of confusion is designed to
-- give a mean value in relation with the dimension of
-- the curve or the surface. It considers that a variation of
-- parameter equal to 1. along a curve (or an
-- isoparametric curve of a surface) generates a segment
-- whose length is equal to 100. (default value), or T.
-- The parametric tolerance of confusion is equal to :
-- - Precision::Confusion() / 100., or Precision::Confusion() / T.
-- The value of the parametric tolerance of confusion is also used to define :
-- - the parametric tolerance of intersection, and
-- - the parametric tolerance of approximation.
-- Warning
-- It is rather difficult to define a unique precision value in parametric space.
-- - First consider a curve (c) ; if M is the point of
-- parameter u and M' the point of parameter u+du on
-- the curve, call 'parametric tangent' at point M, for the
-- variation du of the parameter, the quantity :
-- T(u,du)=MM'/du (where MM' represents the
-- distance between the two points M and M', in the real space).
-- - Consider the other curve resulting from a scaling
-- transformation of (c) with a scale factor equal to
-- 10. The 'parametric tangent' at the point of
-- parameter u of this curve is ten times greater than the
-- previous one. This shows that for two different curves,
-- the distance between two points on the curve, resulting
-- from the same variation of parameter du, may vary considerably.
-- - Moreover, the variation of the parameter along the
-- curve is generally not proportional to the curvilinear
-- abscissa along the curve. So the distance between two
-- points resulting from the same variation of parameter
-- du, at two different points of a curve, may completely differ.
-- - Moreover, the parameterization of a surface may
-- generate two quite different 'parametric tangent' values
-- in the u or in the v parametric direction.
-- - Last, close to the poles of a sphere (the points which
-- correspond to the values -Pi/2. and Pi/2. of the
-- v parameter) the u parameter may change from 0 to
-- 2.Pi without impacting on the resulting point.
-- Therefore, take great care when adjusting a parametric
-- tolerance to your own algorithm.
PIntersection(T : Real from Standard) returns Real from Standard;
---Purpose:
-- Returns a precision value in parametric space, which
-- may be used by intersection algorithms, to decide that
-- a solution is reached. The purpose of this function is to
-- provide an acceptable level of precision in parametric
-- space, for an intersection process to define the adjustment limits.
-- The parametric tolerance of intersection is
-- designed to give a mean value in relation with the
-- dimension of the curve or the surface. It considers
-- that a variation of parameter equal to 1. along a curve
-- (or an isoparametric curve of a surface) generates a
-- segment whose length is equal to 100. (default value), or T.
-- The parametric tolerance of intersection is equal to :
-- - Precision::Intersection() / 100., or Precision::Intersection() / T.
PApproximation(T : Real from Standard) returns Real from Standard;
---Purpose: Returns a precision value in parametric space, which may
-- be used by approximation algorithms. The purpose of this
-- function is to provide an acceptable level of precision in
-- parametric space, for an approximation process to define
-- the adjustment limits.
-- The parametric tolerance of approximation is
-- designed to give a mean value in relation with the
-- dimension of the curve or the surface. It considers
-- that a variation of parameter equal to 1. along a curve
-- (or an isoparametric curve of a surface) generates a
-- segment whose length is equal to 100. (default value), or T.
-- The parametric tolerance of intersection is equal to :
-- - Precision::Approximation() / 100., or Precision::Approximation() / T.
Parametric(P : Real from Standard)
returns Real from Standard;
---Purpose: Convert a real space precision to a parametric
-- space precision on a default curve.
--
-- Value is Parametric(P,1.e+2)
--
PConfusion returns Real from Standard;
---Purpose: Used to test distances in parametric space on a
-- default curve.
--
-- This is Precision::Parametric(Precision::Confusion())
--
---C++: inline
PIntersection returns Real from Standard;
---Purpose: Used for Intersections in parametric space on a
-- default curve.
--
-- This is Precision::Parametric(Precision::Intersection())
--
---C++: inline
PApproximation returns Real from Standard;
---Purpose: Used for Approximations in parametric space on a
-- default curve.
--
-- This is Precision::Parametric(Precision::Approximation())
--
---C++: inline
IsInfinite(R : Real from Standard) returns Boolean;
---Purpose: Returns True if R may be considered as an infinite
-- number. Currently Abs(R) > 1e100
IsPositiveInfinite(R : Real from Standard) returns Boolean;
---Purpose: Returns True if R may be considered as a positive
-- infinite number. Currently R > 1e100
IsNegativeInfinite(R : Real from Standard) returns Boolean;
---Purpose: Returns True if R may be considered as a negative
-- infinite number. Currently R < -1e100
Infinite returns Real;
---Purpose: Returns a big number that can be considered as
-- infinite. Use -Infinite() for a negative big number.
end Precision;

9
src/Precision/Precision.cxx Executable file
View File

@@ -0,0 +1,9 @@
// File: Precision.cxx
// Created: Mon Mar 8 14:41:13 1993
// Author: Remi LEQUETTE
// <rle@phobox>
#define _Precision_SourceFile
#include <Precision.ixx>

209
src/Precision/Precision.lxx Executable file
View File

@@ -0,0 +1,209 @@
// File: Precision.lxx
// Created: Mon Mar 8 14:41:24 1993
// Author: Remi LEQUETTE
// <rle@phobox>
//=======================================================================
//function : Angular
//purpose :
//=======================================================================
inline Standard_Real Precision::Angular()
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_Angular = 1.e-12;
return Precision_Angular;
#else
return 1.e-12;
#endif
}
//=======================================================================
//function : Confusion
//purpose :
//=======================================================================
inline Standard_Real Precision::Confusion()
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_Confusion = 1.e-7;
return Precision_Confusion;
#else
return 1.e-7;
#endif
}
//=======================================================================
//function : Intersection
//purpose :
//=======================================================================
inline Standard_Real Precision::Intersection()
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_Intersection = Precision::Confusion() / 100.;
return Precision_Intersection;
#else
return Confusion() * 0.01;
#endif
}
//=======================================================================
//function : Approximation
//purpose :
//=======================================================================
inline Standard_Real Precision::Approximation()
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_Approximation = Precision::Confusion() * 10.;
return Precision_Approximation;
#else
return Confusion() * 10.;
#endif
}
//=======================================================================
//function : Parametric
//purpose :
//=======================================================================
inline Standard_Real Precision::Parametric(const Standard_Real P,
const Standard_Real T)
{
return P / T;
}
//=======================================================================
//function : PConfusion
//purpose :
//=======================================================================
inline Standard_Real Precision::PConfusion(const Standard_Real T)
{
return Parametric(Confusion(),T);
}
//=======================================================================
//function : PIntersection
//purpose :
//=======================================================================
inline Standard_Real Precision::PIntersection(const Standard_Real T)
{
return Parametric(Intersection(),T);
}
//=======================================================================
//function : PApproximation
//purpose :
//=======================================================================
inline Standard_Real Precision::PApproximation(const Standard_Real T)
{
return Parametric(Approximation(),T);
}
//=======================================================================
//function : Parametric
//purpose :
//=======================================================================
inline Standard_Real Precision::Parametric(const Standard_Real P)
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_DefTangent = 1.e+2;
return Parametric(P,Precision_DefTangent);
#else
return Parametric(P, 100.);
#endif
}
//=======================================================================
//function : PConfusion
//purpose :
//=======================================================================
inline Standard_Real Precision::PConfusion()
{
return Parametric(Confusion());
}
//=======================================================================
//function : PIntersection
//purpose :
//=======================================================================
inline Standard_Real Precision::PIntersection()
{
return Parametric(Intersection());
}
//=======================================================================
//function : PApproximation
//purpose :
//=======================================================================
inline Standard_Real Precision::PApproximation()
{
return Parametric(Approximation());
}
//=======================================================================
//function : IsInfinite
//purpose :
//=======================================================================
inline Standard_Boolean Precision::IsInfinite(const Standard_Real R)
{
return Abs(R) >= (0.5*Precision::Infinite());
}
//=======================================================================
//function : IsPositiveInfinite
//purpose :
//=======================================================================
inline Standard_Boolean Precision::IsPositiveInfinite(const Standard_Real R)
{
return R >= (0.5*Precision::Infinite());
}
//=======================================================================
//function : IsNegativeInfinite
//purpose :
//=======================================================================
inline Standard_Boolean Precision::IsNegativeInfinite(const Standard_Real R)
{
return R <= -(0.5*Precision::Infinite());
}
//=======================================================================
//function : Infinite
//purpose :
//=======================================================================
inline Standard_Real Precision::Infinite()
{
#ifdef PRECISION_OBSOLETE
static const Standard_Real Precision_Infinite = 1.e+100;
static const Standard_Real Precision_InfiniteValue = 2 * Precision_Infinite;
return Precision_InfiniteValue;
#else
return 2.e+100;
#endif
}