mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-19 13:40:49 +03:00
Integration of OCCT 6.5.0 from SVN
This commit is contained in:
635
src/BRepFill/BRepFill_LocationLaw.cxx
Executable file
635
src/BRepFill/BRepFill_LocationLaw.cxx
Executable file
@@ -0,0 +1,635 @@
|
||||
// File: BRepFill_LocationLaw.cxx
|
||||
// Created: Wed Jan 14 14:41:23 1998
|
||||
// Author: Philippe MANGIN
|
||||
// <pmn@sgi29>
|
||||
|
||||
|
||||
#include <BRepFill_LocationLaw.ixx>
|
||||
|
||||
#include <BRepTools_WireExplorer.hxx>
|
||||
#include <BRep_Tool.hxx>
|
||||
#include <BRep_Builder.hxx>
|
||||
#include <BRepAdaptor_Curve.hxx>
|
||||
#include <Adaptor3d_HCurve.hxx>
|
||||
#include <TopoDS.hxx>
|
||||
#include <TopoDS_Edge.hxx>
|
||||
#include <TopExp.hxx>
|
||||
#include <TopLoc_Location.hxx>
|
||||
|
||||
#include <GeomFill_LocationLaw.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <gp_Mat.hxx>
|
||||
#include <gp_XYZ.hxx>
|
||||
#include <gp_Trsf.hxx>
|
||||
#include <GCPnts_AbscissaPoint.hxx>
|
||||
#include <TColgp_Array1OfPnt2d.hxx>
|
||||
#include <TColgp_Array1OfVec2d.hxx>
|
||||
#include <TColStd_SequenceOfInteger.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Norm
|
||||
//purpose : Norme d'une Matrice
|
||||
//=======================================================================
|
||||
|
||||
static Standard_Real Norm(const gp_Mat& M) {
|
||||
Standard_Real R, Norme;
|
||||
gp_XYZ Coord;
|
||||
Coord = M.Row(1);
|
||||
Norme = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
|
||||
Coord = M.Row(2);
|
||||
R = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
|
||||
if (R>Norme) Norme = R;
|
||||
Coord = M.Row(3);
|
||||
R = Abs(Coord.X()) + Abs(Coord.Y())+ Abs(Coord.Z());
|
||||
if (R>Norme) Norme = R;
|
||||
|
||||
return Norme;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ToG0
|
||||
//purpose : Cacul une tranformation T tq T.M2 = M1
|
||||
//=======================================================================
|
||||
|
||||
static void ToG0(const gp_Mat& M1, const gp_Mat& M2, gp_Mat& T) {
|
||||
T = M2.Inverted();
|
||||
T *= M1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : BRepFill_LocationLaw
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void BRepFill_LocationLaw::Init(const TopoDS_Wire& Path)
|
||||
|
||||
{
|
||||
Standard_Integer NbEdge;
|
||||
BRepTools_WireExplorer wexp;
|
||||
// Class BRep_Tool without fields and without Constructor :
|
||||
// BRep_Tool B;
|
||||
TopoDS_Edge E;
|
||||
|
||||
myPath = Path;
|
||||
myTol = 1.e-4;
|
||||
|
||||
for (NbEdge=0, wexp.Init(myPath);
|
||||
wexp.More(); wexp.Next())
|
||||
// if (! B.Degenerated(wexp.Current())) NbEdge++;
|
||||
if (! BRep_Tool::Degenerated(wexp.Current())) NbEdge++;
|
||||
|
||||
|
||||
myLaws = new (GeomFill_HArray1OfLocationLaw)(1, NbEdge);
|
||||
myLength = new (TColStd_HArray1OfReal) (1, NbEdge+1);
|
||||
myLength->Init(-1.);
|
||||
myLength->SetValue(1, 0.);
|
||||
myEdges = new (TopTools_HArray1OfShape) (1, NbEdge);
|
||||
myDisc.Nullify();
|
||||
TangentIsMain();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetStatus
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GeomFill_PipeError BRepFill_LocationLaw::GetStatus() const
|
||||
{
|
||||
Standard_Integer ii, N = myLaws->Length();
|
||||
GeomFill_PipeError Status = GeomFill_PipeOk;
|
||||
for (ii=1; ii<=N && (Status == GeomFill_PipeOk); ii++) {
|
||||
Status = myLaws->Value(ii)->ErrorStatus();
|
||||
}
|
||||
return Status;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TangentIsMain
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::TangentIsMain()
|
||||
{
|
||||
myType = 1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NormalIsMain
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::NormalIsMain()
|
||||
{
|
||||
myType = 2;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : BiNormalIsMain
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::BiNormalIsMain()
|
||||
{
|
||||
myType = 3;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TransformInCompatibleLaw
|
||||
//purpose : Mise en continuite des loi
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::TransformInCompatibleLaw(const Standard_Real TolAngular)
|
||||
{
|
||||
|
||||
Standard_Real First, Last, Angle;
|
||||
Standard_Integer ipath;
|
||||
gp_Mat Trsf, M1, M2;
|
||||
gp_Vec V, T1, T2, N1, N2;
|
||||
gp_XYZ OZ(0, 0, 1);
|
||||
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
|
||||
for (ipath=2; ipath<=myLaws->Length(); ipath++) {
|
||||
myLaws->Value(ipath-1)->D0(Last, M1, V);
|
||||
myLaws->Value(ipath)->GetDomain(First, Last);
|
||||
myLaws->Value(ipath)->D0(First, M2, V);
|
||||
T1.SetXYZ(M1.Column(3));
|
||||
T2.SetXYZ(M2.Column(3));
|
||||
N1.SetXYZ(M1.Column(1));
|
||||
N2.SetXYZ(M2.Column(1));
|
||||
if (T1.IsParallel(T2, TolAngular ) &&
|
||||
!T1.IsOpposite(T2, TolAngular)) { // Correction G0
|
||||
ToG0(M1, M2, Trsf);
|
||||
}
|
||||
else {
|
||||
Standard_Real alpha;
|
||||
gp_Vec cross(T1);
|
||||
cross.Cross(T2);
|
||||
alpha = T2.AngleWithRef(T1, cross);
|
||||
gp_Ax1 axe(gp::Origin(), cross.XYZ());
|
||||
N2.Rotate(axe, alpha);
|
||||
|
||||
#if DEB
|
||||
if (N2.Dot(T1) > 1.e-9) {
|
||||
cout << "Imprecision dans TransformInCompatibleLaw" << endl;
|
||||
cout << "--- T1.R(N2) = " << N2.Dot(T1) << endl;
|
||||
gp_Vec tt;
|
||||
tt = T1;
|
||||
tt.Rotate(axe, alpha);
|
||||
cout << "--- T1.R(T2) = " << tt.Dot(T1) << endl;
|
||||
cout << "--- R(N2).R(T2) = " << N2.Dot(tt) << endl;
|
||||
}
|
||||
#endif
|
||||
Angle = N2.AngleWithRef(N1, T1);
|
||||
Trsf.SetRotation(OZ, Angle);
|
||||
}
|
||||
myLaws->Value(ipath)->SetTrsf(Trsf);
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TransformInG0Law
|
||||
//purpose : Mise en continuite des loi
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::TransformInG0Law()
|
||||
{
|
||||
|
||||
Standard_Real First, Last;
|
||||
Standard_Integer ipath;
|
||||
gp_Mat M1, M2, aux;//,Trsf
|
||||
gp_Vec V;
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
for (ipath=2; ipath<=myLaws->Length(); ipath++) {
|
||||
myLaws->Value(ipath-1)->D0(Last, M1, V);
|
||||
myLaws->Value(ipath)->GetDomain(First, Last);
|
||||
myLaws->Value(ipath)->D0(First, M2, V);
|
||||
ToG0(M1, M2, aux);
|
||||
myLaws->Value(ipath)->SetTrsf(aux);
|
||||
}
|
||||
|
||||
// La loi est elle periodique ?
|
||||
if (myPath.Closed()) {
|
||||
myLaws->Value(myLaws->Length())->D0(Last, M1, V);
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
myLaws->Value(1)->D0(First, M2, V);
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : DeleteTransform
|
||||
//purpose : Supprime la Mise en continuite des loi
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::DeleteTransform()
|
||||
{
|
||||
gp_Mat Id;
|
||||
Id.SetIdentity();
|
||||
for (Standard_Integer ii=1; ii<=myEdges->Length(); ii++) {
|
||||
myLaws->ChangeValue(ii)->SetTrsf(Id);
|
||||
}
|
||||
myDisc.Nullify();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbHoles
|
||||
//purpose : Rechecherche des "Trous"
|
||||
//=======================================================================
|
||||
Standard_Integer BRepFill_LocationLaw::NbHoles(const Standard_Real Tol)
|
||||
{
|
||||
if (myDisc.IsNull()) {
|
||||
TColStd_SequenceOfInteger Seq;
|
||||
Standard_Integer ii, NbDisc;
|
||||
for (ii=2, NbDisc=-1; ii<=myLaws->Length()+1; ii++) {
|
||||
if (IsG1(ii-1, Tol, 1.e-12) == -1) {
|
||||
Seq.Append(ii);
|
||||
}
|
||||
}
|
||||
NbDisc = Seq.Length();
|
||||
if ( NbDisc > 0) {
|
||||
myDisc = new (TColStd_HArray1OfInteger)(1, NbDisc);
|
||||
for (ii=1; ii<=NbDisc; ii++)
|
||||
myDisc->SetValue(ii, Seq(ii));
|
||||
}
|
||||
}
|
||||
if (myDisc.IsNull()) return 0;
|
||||
return myDisc->Length();
|
||||
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Holes
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::Holes(TColStd_Array1OfInteger& Disc) const
|
||||
{
|
||||
if (!myDisc.IsNull()) {
|
||||
for (Standard_Integer ii=1; ii<=myDisc->Length(); ii++)
|
||||
Disc(ii) = myDisc->Value(ii);
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbLaw
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer BRepFill_LocationLaw::NbLaw() const
|
||||
{
|
||||
return myLaws->Length();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Law
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
const Handle(GeomFill_LocationLaw)&
|
||||
BRepFill_LocationLaw::Law(const Standard_Integer Index) const
|
||||
{
|
||||
return myLaws->Value(Index);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Wire
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
const TopoDS_Wire& BRepFill_LocationLaw::Wire() const
|
||||
{
|
||||
return myPath;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Edge
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
const TopoDS_Edge& BRepFill_LocationLaw::Edge(const Standard_Integer Index) const
|
||||
{
|
||||
return TopoDS::Edge(myEdges->Value(Index));
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Vertex
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
TopoDS_Vertex BRepFill_LocationLaw::Vertex(const Standard_Integer Index) const
|
||||
{
|
||||
TopoDS_Edge E;
|
||||
TopoDS_Vertex V;
|
||||
if (Index <= myEdges->Length()) {
|
||||
E = TopoDS::Edge(myEdges->Value(Index));
|
||||
if (E.Orientation() == TopAbs_REVERSED)
|
||||
V = TopExp::LastVertex(E);
|
||||
else V = TopExp::FirstVertex(E);
|
||||
}
|
||||
else if (Index == myEdges->Length()+1) {
|
||||
E = TopoDS::Edge(myEdges->Value(Index-1));
|
||||
if (E.Orientation() == TopAbs_REVERSED)
|
||||
V = TopExp::FirstVertex(E);
|
||||
else V = TopExp::LastVertex(E);
|
||||
}
|
||||
return V;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformVertex
|
||||
//purpose : Calcul un vertex du balayage a partir d'un vertex d'une section
|
||||
// et de l'indice de l'edge dans la trajectoire
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::PerformVertex(const Standard_Integer Index,
|
||||
const TopoDS_Vertex& Input,
|
||||
const Standard_Real TolMin,
|
||||
TopoDS_Vertex& Output,
|
||||
const Standard_Integer ILoc) const
|
||||
{
|
||||
BRep_Builder B;
|
||||
Standard_Boolean IsBary = (ILoc == 0);
|
||||
Standard_Real First, Last;
|
||||
gp_Pnt P;
|
||||
gp_Vec V1, V2;//, V;
|
||||
gp_Mat M1, M2;
|
||||
|
||||
if (Index>0 && Index<myLaws->Length()) {
|
||||
if (ILoc <=0) {
|
||||
myLaws->Value(Index)->GetDomain(First, Last);
|
||||
myLaws->Value(Index)->D0(Last, M1, V1);
|
||||
}
|
||||
|
||||
if (ILoc >= 0) {
|
||||
myLaws->Value(Index+1)->GetDomain(First, Last);
|
||||
if (ILoc == 0)
|
||||
myLaws->Value(Index+1)->D0(First, M2, V2);
|
||||
else
|
||||
myLaws->Value(Index+1)->D0(First, M1, V1);
|
||||
}
|
||||
}
|
||||
|
||||
if (Index == 0 || Index == myLaws->Length()) {
|
||||
if (!myPath.Closed() || (IsG1(Index, TolMin) != 1)) {
|
||||
IsBary = Standard_False;
|
||||
if (Index == 0) {
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
myLaws->Value(1)->D0(First, M1, V1);
|
||||
}
|
||||
else {
|
||||
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
|
||||
myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (ILoc <=0) {
|
||||
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
|
||||
myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
|
||||
}
|
||||
|
||||
if (ILoc >=0) {
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
if (ILoc==0)
|
||||
myLaws->Value(1)->D0(First, M2, V2);
|
||||
else
|
||||
myLaws->Value(1)->D0(First, M1, V1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
P = BRep_Tool::Pnt(Input);
|
||||
|
||||
if (IsBary) {
|
||||
gp_XYZ P1(P.XYZ()), P2(P.XYZ());
|
||||
P1 *= M1;
|
||||
P1 += V1.XYZ();
|
||||
P2 *= M2;
|
||||
P2 += V2.XYZ();
|
||||
|
||||
P.ChangeCoord().SetLinearForm(0.5, P1, 0.5, P2);
|
||||
P1 -= P2;
|
||||
Standard_Real Tol = P1.Modulus()/2;
|
||||
Tol += TolMin;
|
||||
B.MakeVertex(Output, P, Tol);
|
||||
}
|
||||
else {
|
||||
P.ChangeCoord() *= M1;
|
||||
P.ChangeCoord() += V1.XYZ();
|
||||
B.MakeVertex(Output, P, TolMin);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : CurvilinearBounds
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::CurvilinearBounds(const Standard_Integer Index,
|
||||
Standard_Real& First,
|
||||
Standard_Real& Last) const
|
||||
{
|
||||
First = myLength->Value(Index);
|
||||
Last = myLength->Value(Index+1);
|
||||
if (Last<0) { //Il faut effectuer le calcul
|
||||
Standard_Integer ii, NbE = myEdges->Length();
|
||||
Standard_Real Length, f, l;
|
||||
GCPnts_AbscissaPoint AbsC;
|
||||
|
||||
for (ii=1, Length=0.; ii<=NbE; ii++) {
|
||||
myLaws->Value(ii)->GetDomain(f, l);
|
||||
Length += AbsC.Length(myLaws->Value(ii)->GetCurve()->GetCurve(), myTol);
|
||||
myLength->SetValue(ii+1, Length);
|
||||
}
|
||||
|
||||
First = myLength->Value(Index);
|
||||
Last = myLength->Value(Index+1);
|
||||
}
|
||||
}
|
||||
|
||||
Standard_Boolean BRepFill_LocationLaw::IsClosed() const
|
||||
{
|
||||
return myPath.Closed();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsG1
|
||||
//purpose : Evalue la continuite de la loi en un vertex
|
||||
//=======================================================================
|
||||
Standard_Integer
|
||||
BRepFill_LocationLaw::IsG1(const Standard_Integer Index,
|
||||
const Standard_Real SpatialTolerance,
|
||||
const Standard_Real AngularTolerance) const
|
||||
{
|
||||
gp_Vec V1, DV1, V2, DV2;
|
||||
gp_Mat M1, M2, DM1, DM2;
|
||||
Standard_Real First, Last, EpsNul = 1.e-12;
|
||||
Standard_Real TolEps = SpatialTolerance;
|
||||
#ifndef DEB
|
||||
Standard_Boolean Ok_D1 = Standard_False;
|
||||
#else
|
||||
Standard_Boolean Ok_D1;
|
||||
#endif
|
||||
TopoDS_Vertex V;
|
||||
TopoDS_Edge E;
|
||||
TColgp_Array1OfPnt2d Bid1 (1,1);
|
||||
TColgp_Array1OfVec2d Bid2 (1,1);
|
||||
|
||||
if (Index>0 && Index<myLaws->Length()) {
|
||||
myLaws->Value(Index)->GetDomain(First, Last);
|
||||
Ok_D1 = myLaws->Value(Index)->D1(Last, M1, V1, DM1, DV1,
|
||||
Bid1, Bid2);
|
||||
if (!Ok_D1) myLaws->Value(Index)->D0(Last, M1, V1);
|
||||
|
||||
myLaws->Value(Index+1)->GetDomain(First, Last);
|
||||
if (Ok_D1)
|
||||
Ok_D1 = myLaws->Value(Index+1)->D1(First, M2, V2, DM2, DV2,
|
||||
Bid1, Bid2);
|
||||
if (!Ok_D1) myLaws->Value(Index+1)->D0(First, M2, V2);
|
||||
|
||||
E = TopoDS::Edge(myEdges->Value(Index+1));
|
||||
}
|
||||
if (Index == 0 || Index == myLaws->Length()) {
|
||||
if (!myPath.Closed()) return -1;
|
||||
myLaws->Value(myLaws->Length())->GetDomain(First, Last);
|
||||
Ok_D1 = myLaws->Value(myLaws->Length())->D1(Last, M1, V1, DM1, DV1,
|
||||
Bid1, Bid2);
|
||||
if (!Ok_D1) myLaws->Value(myLaws->Length())->D0(Last, M1, V1);
|
||||
|
||||
myLaws->Value(1)->GetDomain(First, Last);
|
||||
if (Ok_D1)
|
||||
myLaws->Value(1)->D1(First, M2, V2, DM2, DV2,
|
||||
Bid1, Bid2);
|
||||
if (!Ok_D1) myLaws->Value(1)->D0(First, M2, V2);
|
||||
|
||||
E = TopoDS::Edge(myEdges->Value(1));
|
||||
}
|
||||
|
||||
if (E.Orientation() == TopAbs_REVERSED)
|
||||
V = TopExp::LastVertex(E);
|
||||
else
|
||||
V = TopExp::FirstVertex(E);
|
||||
|
||||
TolEps += 2*BRep_Tool::Tolerance(V);
|
||||
|
||||
Standard_Boolean isG0 = Standard_True;
|
||||
Standard_Boolean isG1 = Standard_True;
|
||||
|
||||
if ((V1-V2).Magnitude() > TolEps) isG0 = Standard_False;
|
||||
if (Norm(M1-M2) > SpatialTolerance) isG0 = Standard_False;
|
||||
|
||||
if (!isG0) return -1;
|
||||
if (!Ok_D1) return 0; // Pas de controle de la derive
|
||||
|
||||
if ( (DV1.Magnitude()>EpsNul) && (DV2.Magnitude()>EpsNul)
|
||||
&& (DV1.Angle(DV2) > AngularTolerance) ) isG1 = Standard_False;
|
||||
|
||||
// Pour la suite, les test sont plutot empirique
|
||||
Standard_Real Norm1 = Norm(DM1);
|
||||
Standard_Real Norm2 = Norm(DM2);
|
||||
// Si les 2 normes sont nulle c'est bon
|
||||
if ((Norm1 > EpsNul) || (Norm2 > EpsNul)) {
|
||||
// sinon on compare les matrice normalise
|
||||
if ((Norm1 > EpsNul) && (Norm2 > EpsNul)) {
|
||||
DM1 /= Norm1;
|
||||
DM2 /= Norm2;
|
||||
if (Norm(DM1 - DM2) > AngularTolerance) isG1 = Standard_False;
|
||||
}
|
||||
else isG1 = Standard_False; // 1 Null l'autre pas
|
||||
}
|
||||
|
||||
if (isG1) return 1;
|
||||
else return 0;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Parameter
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::Parameter(const Standard_Real Abcissa,
|
||||
Standard_Integer& Index,
|
||||
Standard_Real& U)
|
||||
{
|
||||
Standard_Integer iedge, NbE=myEdges->Length();
|
||||
Standard_Boolean Trouve = Standard_False;
|
||||
|
||||
//Controle que les longueurs sont calcules
|
||||
if (myLength->Value(NbE+1) < 0) {
|
||||
Standard_Real f, l;
|
||||
CurvilinearBounds(NbE, f, l);
|
||||
}
|
||||
|
||||
// Recherche de l'interval
|
||||
for (iedge=1; iedge<=NbE && !Trouve; ) {
|
||||
if (myLength->Value(iedge+1) >= Abcissa) {
|
||||
Trouve = Standard_True;
|
||||
}
|
||||
else iedge++;
|
||||
}
|
||||
|
||||
if (Trouve) {
|
||||
Standard_Real f, l;
|
||||
const Handle(GeomFill_LocationLaw)& Law = myLaws->Value(iedge);
|
||||
Law->GetDomain(f, l);
|
||||
|
||||
if (Abcissa == myLength->Value(iedge+1)) {
|
||||
U = l;
|
||||
}
|
||||
else if (Abcissa == myLength->Value(iedge)) {
|
||||
U = f;
|
||||
}
|
||||
else {
|
||||
GCPnts_AbscissaPoint
|
||||
AbsC(myTol,
|
||||
myLaws->Value(iedge)->GetCurve()->GetCurve(),
|
||||
Abcissa-myLength->Value(iedge), f);
|
||||
U = AbsC.Parameter();
|
||||
}
|
||||
Index = iedge;
|
||||
}
|
||||
else {
|
||||
Index = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : D0
|
||||
//purpose : Positionement d'une section, a une abscisse curviligne donnee
|
||||
//=======================================================================
|
||||
void BRepFill_LocationLaw::D0(const Standard_Real Abcissa,
|
||||
TopoDS_Shape& W)
|
||||
{
|
||||
Standard_Real u;
|
||||
Standard_Integer ind;
|
||||
gp_Mat M;
|
||||
gp_Vec V;
|
||||
|
||||
Parameter(Abcissa, ind, u);
|
||||
if (ind != 0) {
|
||||
// Positionement
|
||||
myLaws->Value(ind)->D0(u, M, V);
|
||||
gp_Trsf fila;
|
||||
fila.SetValues(M(1,1), M(1,2), M(1,3), V.X(),
|
||||
M(2,1), M(2,2), M(2,3), V.Y(),
|
||||
M(3,1), M(3,2), M(3,3), V.Z(),
|
||||
1.e-12, 1.e-14);
|
||||
TopLoc_Location Loc(fila);
|
||||
W.Location(Loc.Multiplied(W.Location()));
|
||||
}
|
||||
else {
|
||||
W.Nullify();
|
||||
#if DEB
|
||||
cout << "BRepFill_LocationLaw::D0 : Attention positionement hors borne"
|
||||
<< endl;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Abscissa
|
||||
//purpose : Calcul l'abscisse d'un point
|
||||
//=======================================================================
|
||||
Standard_Real BRepFill_LocationLaw::Abscissa(const Standard_Integer Index,
|
||||
const Standard_Real Param)
|
||||
{
|
||||
GCPnts_AbscissaPoint AbsC;
|
||||
Standard_Real Length = myLength->Value(Index);
|
||||
if (Length < 0) {
|
||||
Standard_Real bid;
|
||||
CurvilinearBounds(Index, bid, Length);
|
||||
}
|
||||
|
||||
Length += AbsC.Length(myLaws->Value(Index)->GetCurve()->GetCurve(),
|
||||
myLaws->Value(Index)->GetCurve()->FirstParameter(),
|
||||
Param, myTol);
|
||||
return Length;
|
||||
}
|
Reference in New Issue
Block a user