mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-14 13:30:48 +03:00
Integration of OCCT 6.5.0 from SVN
This commit is contained in:
609
src/AppParCurves/AppParCurves_Function.gxx
Executable file
609
src/AppParCurves/AppParCurves_Function.gxx
Executable file
@@ -0,0 +1,609 @@
|
||||
// File AppParCurves_Function.gxx
|
||||
// Lpa, le 20/09/91
|
||||
|
||||
|
||||
// Calcul de la valeur de F et grad_F, connaissant le parametrage.
|
||||
// Cette fonction, appelee par le gradient conjugue, calcul F et
|
||||
// DF(ui, Poles(ui)) ce qui implique un calcul des nouveaux poles
|
||||
// a chaque appel.
|
||||
|
||||
#define No_Standard_RangeError
|
||||
#define No_Standard_OutOfRange
|
||||
|
||||
|
||||
|
||||
#include <AppParCurves_MultiCurve.hxx>
|
||||
#include <AppParCurves_MultiPoint.hxx>
|
||||
#include <TColStd_HArray1OfInteger.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Pnt2d.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <gp_Vec2d.hxx>
|
||||
#include <TColgp_Array1OfPnt.hxx>
|
||||
#include <TColgp_Array1OfPnt2d.hxx>
|
||||
#include <AppParCurves_ConstraintCouple.hxx>
|
||||
|
||||
AppParCurves_Function::
|
||||
AppParCurves_Function(const MultiLine& SSP,
|
||||
const Standard_Integer FirstPoint,
|
||||
const Standard_Integer LastPoint,
|
||||
const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
||||
const math_Vector& Parameters,
|
||||
const Standard_Integer Deg) :
|
||||
MyMultiLine(SSP),
|
||||
MyMultiCurve(Deg+1),
|
||||
myParameters(Parameters.Lower(), Parameters.Upper()),
|
||||
ValGrad_F(FirstPoint, LastPoint),
|
||||
MyF(FirstPoint, LastPoint,
|
||||
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
||||
PTLX(FirstPoint, LastPoint,
|
||||
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
||||
PTLY(FirstPoint, LastPoint,
|
||||
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
||||
PTLZ(FirstPoint, LastPoint,
|
||||
1, ToolLine::NbP3d(SSP)+ToolLine::NbP2d(SSP), 0.0),
|
||||
A(FirstPoint, LastPoint, 1, Deg+1),
|
||||
DA(FirstPoint, LastPoint, 1, Deg+1),
|
||||
MyLeastSquare(SSP, FirstPoint, LastPoint,
|
||||
FirstConstraint(TheConstraints, FirstPoint),
|
||||
LastConstraint(TheConstraints, LastPoint), Deg+1)
|
||||
{
|
||||
Standard_Integer i;
|
||||
for (i=Parameters.Lower(); i<=Parameters.Upper();i++)
|
||||
myParameters(i)=Parameters(i);
|
||||
FirstP = FirstPoint;
|
||||
LastP = LastPoint;
|
||||
myConstraints = TheConstraints;
|
||||
NbP = LastP-FirstP+1;
|
||||
Adeb = FirstP;
|
||||
Afin = LastP;
|
||||
Degre = Deg;
|
||||
Contraintes = Standard_False;
|
||||
Standard_Integer myindex;
|
||||
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
||||
AppParCurves_ConstraintCouple mycouple;
|
||||
AppParCurves_Constraint Cons;
|
||||
|
||||
for (i = low; i <= upp; i++) {
|
||||
mycouple = TheConstraints->Value(i);
|
||||
Cons = mycouple.Constraint();
|
||||
myindex = mycouple.Index();
|
||||
if (myindex == FirstP) {
|
||||
if (Cons >= 1) Adeb = Adeb+1;
|
||||
}
|
||||
else if (myindex == LastP) {
|
||||
if (Cons >= 1) Afin = Afin-1;
|
||||
}
|
||||
else {
|
||||
if (Cons >= 1) Contraintes = Standard_True;
|
||||
}
|
||||
}
|
||||
|
||||
Standard_Integer nb3d = ToolLine::NbP3d(SSP);
|
||||
Standard_Integer nb2d = ToolLine::NbP2d(SSP);
|
||||
Standard_Integer mynb3d= nb3d, mynb2d=nb2d;
|
||||
if (nb3d == 0) mynb3d = 1;
|
||||
if (nb2d == 0) mynb2d = 1;
|
||||
|
||||
NbCu = nb3d+nb2d;
|
||||
tabdim = new TColStd_HArray1OfInteger(0, NbCu-1);
|
||||
|
||||
if (Contraintes) {
|
||||
for (i = 1; i <= NbCu; i++) {
|
||||
if (i <= nb3d) tabdim->SetValue(i-1, 3);
|
||||
else tabdim->SetValue(i-1, 2);
|
||||
}
|
||||
|
||||
TColgp_Array1OfPnt TabP(1, mynb3d);
|
||||
TColgp_Array1OfPnt2d TabP2d(1, mynb2d);
|
||||
|
||||
for ( i = FirstP; i <= LastP; i++) {
|
||||
if (nb3d != 0 && nb2d != 0) ToolLine::Value(SSP, i, TabP, TabP2d);
|
||||
else if (nb3d != 0) ToolLine::Value(SSP, i, TabP);
|
||||
else ToolLine::Value(SSP, i, TabP2d);
|
||||
for (Standard_Integer j = 1; j <= NbCu; j++) {
|
||||
if (tabdim->Value(j-1) == 3) {
|
||||
TabP(j).Coord(PTLX(i, j), PTLY(i, j),PTLZ(i, j));
|
||||
}
|
||||
else {
|
||||
TabP2d(j).Coord(PTLX(i, j), PTLY(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
AppParCurves_Constraint AppParCurves_Function::FirstConstraint
|
||||
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
||||
const Standard_Integer FirstPoint) const
|
||||
{
|
||||
Standard_Integer i, myindex;
|
||||
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
||||
AppParCurves_ConstraintCouple mycouple;
|
||||
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
||||
|
||||
for (i = low; i <= upp; i++) {
|
||||
mycouple = TheConstraints->Value(i);
|
||||
Cons = mycouple.Constraint();
|
||||
myindex = mycouple.Index();
|
||||
if (myindex == FirstPoint) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return Cons;
|
||||
}
|
||||
|
||||
|
||||
AppParCurves_Constraint AppParCurves_Function::LastConstraint
|
||||
(const Handle(AppParCurves_HArray1OfConstraintCouple)& TheConstraints,
|
||||
const Standard_Integer LastPoint) const
|
||||
{
|
||||
Standard_Integer i, myindex;
|
||||
Standard_Integer low = TheConstraints->Lower(), upp= TheConstraints->Upper();
|
||||
AppParCurves_ConstraintCouple mycouple;
|
||||
AppParCurves_Constraint Cons = AppParCurves_NoConstraint;
|
||||
|
||||
for (i = low; i <= upp; i++) {
|
||||
mycouple = TheConstraints->Value(i);
|
||||
Cons = mycouple.Constraint();
|
||||
myindex = mycouple.Index();
|
||||
if (myindex == LastPoint) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return Cons;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
Standard_Boolean AppParCurves_Function::Value (const math_Vector& X,
|
||||
Standard_Real& F) {
|
||||
|
||||
myParameters = X;
|
||||
|
||||
// Resolution moindres carres:
|
||||
// ===========================
|
||||
MyLeastSquare.Perform(myParameters);
|
||||
if (!(MyLeastSquare.IsDone())) {
|
||||
Done = Standard_False;
|
||||
return Standard_False;
|
||||
}
|
||||
if (!Contraintes) {
|
||||
MyLeastSquare.Error(FVal, ERR3d, ERR2d);
|
||||
F = FVal;
|
||||
}
|
||||
|
||||
// Resolution avec contraintes:
|
||||
// ============================
|
||||
else {
|
||||
Standard_Integer Npol = Degre+1;
|
||||
// Standard_Boolean Ext = Standard_True;
|
||||
Standard_Integer Ci, i, j, dimen;
|
||||
Standard_Real AA, BB, CC, AIJ, FX, FY, FZ, Fi;
|
||||
math_Vector PTCXCI(1, Npol), PTCYCI(1, Npol), PTCZCI(1, Npol);
|
||||
ERR3d = ERR2d = 0.0;
|
||||
|
||||
MyMultiCurve = MyLeastSquare.BezierValue();
|
||||
|
||||
A = MyLeastSquare.FunctionMatrix();
|
||||
ResolCons Resol(MyMultiLine, MyMultiCurve, FirstP, LastP, myConstraints,
|
||||
A, MyLeastSquare.DerivativeFunctionMatrix());
|
||||
if (!Resol.IsDone()) {
|
||||
Done = Standard_False;
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
// Calcul de F = Sum||C(ui)-Ptli||2 sur toutes les courbes :
|
||||
// ========================================================================
|
||||
FVal = 0.0;
|
||||
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
if (dimen == 3){
|
||||
MyMultiCurve.Value(j).Point(Ci).Coord(PTCXCI(j),PTCYCI(j),PTCZCI(j));
|
||||
}
|
||||
else{
|
||||
MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCXCI(j), PTCYCI(j));
|
||||
}
|
||||
}
|
||||
|
||||
// Calcul de F:
|
||||
// ============
|
||||
for (i = Adeb; i <= Afin; i++) {
|
||||
AA = 0.0; BB = 0.0; CC = 0.0;
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
AIJ = A(i, j);
|
||||
AA += AIJ*PTCXCI(j);
|
||||
BB += AIJ*PTCYCI(j);
|
||||
if (dimen == 3) {
|
||||
CC += AIJ*PTCZCI(j);
|
||||
}
|
||||
}
|
||||
FX = AA-PTLX(i, Ci);
|
||||
FY = BB-PTLY(i, Ci);
|
||||
MyF(i,Ci) = FX*FX + FY*FY;
|
||||
if (dimen == 3) {
|
||||
FZ = CC-PTLZ(i,Ci);
|
||||
MyF(i, Ci) += FZ*FZ;
|
||||
Fi = MyF(i, Ci);
|
||||
if (Sqrt(Fi) > ERR3d) ERR3d = Sqrt(Fi);
|
||||
}
|
||||
else {
|
||||
Fi = MyF(i, Ci);
|
||||
if (Sqrt(Fi) > ERR2d) ERR2d = Sqrt(Fi);
|
||||
}
|
||||
FVal += Fi;
|
||||
}
|
||||
}
|
||||
F = FVal;
|
||||
}
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void AppParCurves_Function::Perform(const math_Vector& X) {
|
||||
Standard_Integer j;
|
||||
|
||||
myParameters = X;
|
||||
// Resolution moindres carres:
|
||||
// ===========================
|
||||
MyLeastSquare.Perform(myParameters);
|
||||
|
||||
if (!(MyLeastSquare.IsDone())) {
|
||||
Done = Standard_False;
|
||||
return;
|
||||
}
|
||||
|
||||
for(j = myParameters.Lower(); j <= myParameters.Upper(); j++) {
|
||||
ValGrad_F(j) = 0.0;
|
||||
}
|
||||
|
||||
if (!Contraintes) {
|
||||
MyLeastSquare.ErrorGradient(ValGrad_F, FVal, ERR3d, ERR2d);
|
||||
}
|
||||
else {
|
||||
Standard_Integer Pi, Ci, i, k, dimen;
|
||||
Standard_Integer Npol = Degre+1;
|
||||
Standard_Real Scal, AA, BB, CC, DAA, DBB, DCC;
|
||||
Standard_Real FX, FY, FZ, AIJ, DAIJ, px, py, pz, Fi;
|
||||
AppParCurves_Constraint Cons=AppParCurves_NoConstraint;
|
||||
math_Matrix Grad_F(FirstP, LastP, 1, NbCu, 0.0);
|
||||
math_Vector PTCXCI(1, Npol), PTCYCI(1, Npol), PTCZCI(1, Npol);
|
||||
math_Vector PTCOXCI(1, Npol), PTCOYCI(1, Npol), PTCOZCI(1, Npol);
|
||||
// Standard_Boolean Ext = Standard_True;
|
||||
ERR3d = ERR2d = 0.0;
|
||||
|
||||
math_Matrix PTCOX(1, Npol, 1, NbCu), PTCOY(1, Npol, 1, NbCu),
|
||||
PTCOZ(1, Npol,1, NbCu);
|
||||
math_Matrix PTCX(1, Npol, 1, NbCu), PTCY(1, Npol, 1, NbCu),
|
||||
PTCZ(1, Npol,1, NbCu);
|
||||
Standard_Integer Inc;
|
||||
|
||||
MyMultiCurve = MyLeastSquare.BezierValue();
|
||||
|
||||
for (Ci =1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
if (dimen == 3){
|
||||
MyMultiCurve.Value(j).Point(Ci).Coord(PTCOX(j, Ci),
|
||||
PTCOY(j, Ci),
|
||||
PTCOZ(j, Ci));
|
||||
}
|
||||
else{
|
||||
MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCOX(j, Ci), PTCOY(j, Ci));
|
||||
PTCOZ(j, Ci) = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
A = MyLeastSquare.FunctionMatrix();
|
||||
DA = MyLeastSquare.DerivativeFunctionMatrix();
|
||||
|
||||
// Resolution avec contraintes:
|
||||
// ============================
|
||||
|
||||
ResolCons Resol(MyMultiLine, MyMultiCurve, FirstP, LastP,
|
||||
myConstraints, A, DA);
|
||||
if (!Resol.IsDone()) {
|
||||
Done = Standard_False;
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// Calcul de F = Sum||C(ui)-Ptli||2 et du gradient non contraint de F pour
|
||||
// chaque point PointIndex.
|
||||
// ========================================================================
|
||||
FVal = 0.0;
|
||||
for(j = FirstP; j <= LastP; j++) {
|
||||
ValGrad_F(j) = 0.0;
|
||||
}
|
||||
|
||||
math_Matrix TrA(A.LowerCol(), A.UpperCol(), A.LowerRow(), A.UpperRow());
|
||||
math_Matrix TrDA(DA.LowerCol(), DA.UpperCol(), DA.LowerRow(), DA.UpperRow());
|
||||
math_Matrix RESTM(A.LowerCol(), A.UpperCol(), A.LowerCol(), A.UpperCol());
|
||||
|
||||
const math_Matrix& K = Resol.ConstraintMatrix();
|
||||
const math_Matrix& DK = Resol.ConstraintDerivative(MyMultiLine, X, Degre, DA);
|
||||
math_Matrix TK(K.LowerCol(), K.UpperCol(), K.LowerRow(), K.UpperRow());
|
||||
TK = K.Transposed();
|
||||
const math_Vector& Vardua = Resol.Duale();
|
||||
math_Matrix KK(K.LowerCol(), K.UpperCol(), Vardua.Lower(), Vardua.Upper());
|
||||
KK = (K.Transposed())*(Resol.InverseMatrix());
|
||||
math_Matrix DTK(DK.LowerCol(), DK.UpperCol(), DK.LowerRow(), DK.UpperRow());
|
||||
DTK = DK.Transposed();
|
||||
TrA = A.Transposed();
|
||||
TrDA = DA.Transposed();
|
||||
RESTM = ((A.Transposed()*A).Inverse());
|
||||
|
||||
math_Vector DPTCO(1, K.ColNumber());
|
||||
math_Matrix DPTCO1(FirstP, LastP, 1, K.ColNumber());
|
||||
math_Vector DKPTC(1, K.RowNumber());
|
||||
|
||||
|
||||
|
||||
|
||||
FVal = 0.0;
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
if (dimen == 3){
|
||||
MyMultiCurve.Value(j).Point(Ci).Coord(PTCX(j, Ci),
|
||||
PTCY(j, Ci),
|
||||
PTCZ(j, Ci));
|
||||
}
|
||||
else{
|
||||
MyMultiCurve.Value(j).Point2d(Ci).Coord(PTCX(j, Ci), PTCY(j,Ci));
|
||||
PTCZ(j, Ci) = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Calcul du gradient sans contraintes:
|
||||
// ====================================
|
||||
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
for (i = Adeb; i <= Afin; i++) {
|
||||
AA = 0.0; BB = 0.0; CC = 0.0; DAA = 0.0; DBB = 0.0; DCC = 0.0;
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
AIJ = A(i, j); DAIJ = DA(i, j);
|
||||
px = PTCX(j, Ci); py = PTCY(j, Ci);
|
||||
AA += AIJ*px; BB += AIJ*py;
|
||||
DAA += DAIJ*px; DBB += DAIJ*py;
|
||||
if (dimen == 3) {
|
||||
pz = PTCZ(j, Ci);
|
||||
CC += AIJ*pz; DCC += DAIJ*pz;
|
||||
}
|
||||
}
|
||||
FX = AA-PTLX(i, Ci);
|
||||
FY = BB-PTLY(i, Ci);
|
||||
MyF(i,Ci) = FX*FX + FY*FY;
|
||||
Grad_F(i, Ci) = 2.0*(DAA*FX + DBB*FY);
|
||||
if (dimen == 3) {
|
||||
FZ = CC-PTLZ(i,Ci);
|
||||
MyF(i, Ci) += FZ*FZ;
|
||||
Grad_F(i, Ci) += 2.0*DCC*FZ;
|
||||
Fi = MyF(i, Ci);
|
||||
if (Sqrt(Fi) > ERR3d) ERR3d = Sqrt(Fi);
|
||||
}
|
||||
else {
|
||||
Fi = MyF(i, Ci);
|
||||
if (Sqrt(Fi) > ERR2d) ERR2d = Sqrt(Fi);
|
||||
}
|
||||
FVal += Fi;
|
||||
ValGrad_F(i) += Grad_F(i, Ci);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Calcul de DK*PTC:
|
||||
// =================
|
||||
for (i = 1; i <= K.RowNumber(); i++) {
|
||||
Inc = 0;
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
DKPTC(i) = 0.0;
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
DKPTC(i) += DK(i, j+Inc)*PTCX(j, Ci)+ DK(i, j+Inc+Npol)*PTCY(j, Ci);
|
||||
if (dimen == 3) {
|
||||
DKPTC(i) += DK(i, j+Inc+2*Npol)*PTCZ(j, Ci);
|
||||
}
|
||||
}
|
||||
if (dimen == 3) Inc = Inc +3*Npol;
|
||||
else Inc = Inc +2*Npol;
|
||||
}
|
||||
}
|
||||
|
||||
math_Vector DERR(DTK.LowerRow(), DTK.UpperRow());
|
||||
DERR = (DTK)*Vardua-KK* ((DKPTC) + K*(DTK)*Vardua);
|
||||
|
||||
// rajout du gradient avec contraintes:
|
||||
// ====================================
|
||||
// dPTCO1/duk = [d(TA)/duk*[A*PTCO-PTL] + TA*dA/duk*PTCO]
|
||||
|
||||
|
||||
Inc = 0;
|
||||
|
||||
math_Vector Errx(A.LowerRow(), A.UpperRow());
|
||||
math_Vector Erry(A.LowerRow(), A.UpperRow());
|
||||
math_Vector Errz(A.LowerRow(), A.UpperRow());
|
||||
math_Vector Scalx(DA.LowerRow(), DA.UpperRow());
|
||||
math_Vector Scaly(DA.LowerRow(), DA.UpperRow());
|
||||
math_Vector Scalz(DA.LowerRow(), DA.UpperRow());
|
||||
math_Vector Erruzax(PTCXCI.Lower(), PTCXCI.Upper());
|
||||
math_Vector Erruzay(PTCYCI.Lower(), PTCYCI.Upper());
|
||||
math_Vector Erruzaz(PTCZCI.Lower(), PTCZCI.Upper());
|
||||
math_Vector TrDAPI(TrDA.LowerRow(), TrDA.UpperRow());
|
||||
math_Vector TrAPI(TrA.LowerRow(), TrA.UpperRow());
|
||||
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
PTCOXCI = PTCOX.Col(Ci);
|
||||
PTCOYCI = PTCOY.Col(Ci);
|
||||
PTCOZCI = PTCOZ.Col(Ci);
|
||||
PTCXCI = PTCX.Col(Ci);
|
||||
PTCYCI = PTCY.Col(Ci);
|
||||
PTCZCI = PTCZ.Col(Ci);
|
||||
|
||||
|
||||
Errx = (A*PTCOXCI - PTLX.Col(Ci));
|
||||
Erry = (A*PTCOYCI - PTLY.Col(Ci));
|
||||
Errz = (A*PTCOZCI - PTLZ.Col(Ci));
|
||||
Scalx = (DA*PTCOXCI); // Scal = DA * PTCO
|
||||
Scaly = (DA*PTCOYCI);
|
||||
Scalz = (DA*PTCOZCI);
|
||||
Erruzax = (PTCXCI - PTCOXCI);
|
||||
Erruzay = (PTCYCI - PTCOYCI);
|
||||
Erruzaz = (PTCZCI - PTCOZCI);
|
||||
|
||||
for (Pi = FirstP; Pi <= LastP; Pi++) {
|
||||
TrDAPI = (TrDA.Col(Pi));
|
||||
TrAPI = (TrA.Col(Pi));
|
||||
Standard_Real Taa = TrAPI*A.Row(Pi);
|
||||
Scal = 0.0;
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
DPTCO1(Pi, j + Inc) = (TrDAPI*Errx(Pi)+TrAPI*Scalx(Pi))(j);
|
||||
DPTCO1(Pi, j + Inc+ Npol) = (TrDAPI*Erry(Pi)+TrAPI*Scaly(Pi))(j);
|
||||
Scal += DPTCO1(Pi, j+Inc)* Taa*Erruzax(j) + DPTCO1(Pi, j+Inc+Npol)*Taa*Erruzay(j);
|
||||
if (dimen == 3) {
|
||||
DPTCO1(Pi, j + Inc+ 2*Npol) = (TrDAPI*Errz(Pi)+TrAPI*Scalz(Pi))(j);
|
||||
Scal += DPTCO1(Pi, j+Inc+2*Npol)*Taa*Erruzaz(j);
|
||||
}
|
||||
}
|
||||
ValGrad_F(Pi) = ValGrad_F(Pi) - 2*Scal;
|
||||
}
|
||||
if (dimen == 3) Inc = Inc + 3*Npol;
|
||||
else Inc = Inc +2*Npol;
|
||||
}
|
||||
|
||||
|
||||
// on calcule DPTCO = - RESTM * DPTCO1:
|
||||
|
||||
// Calcul de DPTCO/duk:
|
||||
// dPTCO/duk = -Inv(T(A)*A)*[d(TA)/duk*[A*PTCO-PTL] + TA*dA/duk*PTCO]
|
||||
|
||||
Standard_Integer low=myConstraints->Lower(), upp=myConstraints->Upper();
|
||||
Inc = 0;
|
||||
for (Pi = FirstP; Pi <= LastP; Pi++) {
|
||||
for (i = low; i <= upp; i++) {
|
||||
if (myConstraints->Value(i).Index() == Pi) {
|
||||
Cons = myConstraints->Value(i).Constraint();
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (Cons >= 1) {
|
||||
Inc = 0;
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
for (j = 1; j <= Npol; j++) {
|
||||
DPTCO(j+Inc) = 0.0;
|
||||
DPTCO(j+Inc+Npol) = 0.0;
|
||||
if (dimen == 3) DPTCO(j+Inc+2*Npol) = 0.0;
|
||||
for (k = 1; k <= Npol; k++) {
|
||||
DPTCO(j+Inc) = DPTCO(j+Inc) -RESTM(j, k) * DPTCO1(Pi, j+Inc);
|
||||
DPTCO(j+Inc+Npol)=DPTCO(j+Inc+Npol)-RESTM(j, k)*DPTCO1(Pi,j+Inc+Npol);
|
||||
if (dimen == 3) {
|
||||
DPTCO(j+Inc+2*Npol) = DPTCO(j+Inc+2*Npol)
|
||||
-RESTM(j, k) * DPTCO1(Pi, j+Inc+2*Npol);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (dimen == 3) Inc += 3*Npol;
|
||||
else Inc += 2*Npol;
|
||||
}
|
||||
|
||||
DERR = DERR-KK*K*DPTCO;
|
||||
|
||||
Inc = 0;
|
||||
for (Ci = 1; Ci <= NbCu; Ci++) {
|
||||
dimen = tabdim->Value(Ci-1);
|
||||
PTCOXCI = PTCOX.Col(Ci);
|
||||
PTCOYCI = PTCOY.Col(Ci);
|
||||
PTCOZCI = PTCOZ.Col(Ci);
|
||||
PTCXCI = PTCX.Col(Ci);
|
||||
PTCYCI = PTCY.Col(Ci);
|
||||
PTCZCI = PTCZ.Col(Ci);
|
||||
Erruzax = (PTCXCI - PTCOXCI);
|
||||
Erruzay = (PTCYCI - PTCOYCI);
|
||||
Erruzaz = (PTCZCI - PTCOZCI);
|
||||
Scal = 0.0;
|
||||
|
||||
for (j = 1; j <= Npol ; j++) {
|
||||
Scal = (A(Pi, j)*Erruzax(j)) * (A(Pi, j)*DERR(j+Inc)) +
|
||||
(A(Pi, j)*Erruzay(j)) * (A(Pi, j)*DERR(j+Inc+Npol));
|
||||
if (dimen == 3) {
|
||||
Scal += (A(Pi, j)*Erruzax(j)) * (A(Pi, j)*DERR(j+Inc+2*Npol));
|
||||
}
|
||||
}
|
||||
|
||||
ValGrad_F(Pi) = ValGrad_F(Pi) + 2*Scal;
|
||||
if (dimen == 3) Inc = Inc +3*Npol;
|
||||
else Inc = Inc + 2*Npol;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Standard_Integer AppParCurves_Function::NbVariables() const{
|
||||
return NbP;
|
||||
}
|
||||
|
||||
|
||||
Standard_Boolean AppParCurves_Function::Gradient (const math_Vector& X,
|
||||
math_Vector& G) {
|
||||
|
||||
Perform(X);
|
||||
G = ValGrad_F;
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
Standard_Boolean AppParCurves_Function::Values (const math_Vector& X,
|
||||
Standard_Real& F,
|
||||
math_Vector& G) {
|
||||
|
||||
|
||||
Perform(X);
|
||||
F = FVal;
|
||||
G = ValGrad_F;
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
const AppParCurves_MultiCurve& AppParCurves_Function::CurveValue() {
|
||||
if (!Contraintes) MyMultiCurve = MyLeastSquare.BezierValue();
|
||||
return MyMultiCurve;
|
||||
}
|
||||
|
||||
|
||||
Standard_Real AppParCurves_Function::Error(const Standard_Integer IPoint,
|
||||
const Standard_Integer CurveIndex) const {
|
||||
return Sqrt(MyF(IPoint, CurveIndex));
|
||||
}
|
||||
|
||||
Standard_Real AppParCurves_Function::MaxError3d() const
|
||||
{
|
||||
return ERR3d;
|
||||
}
|
||||
|
||||
Standard_Real AppParCurves_Function::MaxError2d() const
|
||||
{
|
||||
return ERR2d;
|
||||
}
|
||||
|
||||
|
||||
|
||||
const math_Vector& AppParCurves_Function::NewParameters() const
|
||||
{
|
||||
return myParameters;
|
||||
}
|
Reference in New Issue
Block a user