1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0029935: Foundation Classes - introduce OSD_ThreadPool class defining a thread pool

New class OSD_ThreadPool has been introduced to define a Thread Pool for multi-threading algorithm.
Thread Pool assigns a serial number for each thread allowing Multi-Threading algorithm to allocate thread-local storage variables as an array whose size is the same as the number of threads.

OSD_ThreadPool also redirects exceptions to a thread calling parallel execution and consistently initializes FPE exception handling.

New class Standard_Condition provides a platform-independent  tool similar to Event in WinAPI.

A new auxiliary function Standard_Atomic_CompareAndSwap() has been introduced
for performing atomic compare and swap of integer number.
Standard_Atomic_Increment/Standard_Atomic_Decrement fallback implementation
using ASM code for x86 processors for GCC has been dropped;
instead, it is expected that GCC should be properly configured targeting modern x86 architectures.

OSD_Signal now declares fFltExceptions as thread_local variable accessible through OSD::ToCatchFloatingSignals() property.
Standard_THREADLOCAL macro (wrapping thread_local attribute) has been moved to public header Standard_Macro.hxx.

OSD_Parallel::ForEach() has been extended with new optional parameter theNbItems and uses OSD_ThreadPool::DefaultPool().
This commit is contained in:
kgv 2018-07-07 02:27:51 +03:00 committed by bugmaster
parent be3d8cbc02
commit 6f498847fa
17 changed files with 1404 additions and 125 deletions

View File

@ -120,7 +120,7 @@ void BRepMesh_FastDiscret::Perform(const TopoDS_Shape& theShape)
aFaces.push_back(aFace);
}
OSD_Parallel::ForEach(aFaces.begin(), aFaces.end(), *this, !myParameters.InParallel);
OSD_Parallel::ForEach(aFaces.begin(), aFaces.end(), *this, !myParameters.InParallel, (Standard_Integer )aFaces.size());
}

View File

@ -234,7 +234,7 @@ void BRepMesh_IncrementalMesh::update()
update(aFaceIt.Value());
// Mesh faces
OSD_Parallel::ForEach(myFaces.begin(), myFaces.end(), *myMesh, !myParameters.InParallel);
OSD_Parallel::ForEach(myFaces.begin(), myFaces.end(), *myMesh, !myParameters.InParallel, myFaces.Size());
commit();
clear();

View File

@ -85,6 +85,8 @@ OSD_SingleProtection.hxx
OSD_SysType.hxx
OSD_Thread.cxx
OSD_Thread.hxx
OSD_ThreadPool.cxx
OSD_ThreadPool.hxx
OSD_ThreadFunction.hxx
OSD_Timer.cxx
OSD_Timer.hxx

View File

@ -104,7 +104,10 @@ public:
//! user's code. Refer to Foundation Classes User's Guide for further details.
//!
Standard_EXPORT static void SetSignal (const Standard_Boolean theFloatingSignal = Standard_True);
//! Return floating signal catching value previously set by SetSignal().
Standard_EXPORT static Standard_Boolean ToCatchFloatingSignals();
//! Commands the process to sleep for a number of seconds.
Standard_EXPORT static void SecSleep (const Standard_Integer aDelay);

View File

@ -254,9 +254,11 @@ private:
//! @param theEnd the last index (exclusive)
//! @param theFunctor functor providing an interface "void operator(InputIterator theIter){}"
//! performing task for the specified iterator position
//! @param theNbItems number of items passed by iterator, -1 if unknown
Standard_EXPORT static void forEach (UniversalIterator& theBegin,
UniversalIterator& theEnd,
const FunctorInterface& theFunctor);
const FunctorInterface& theFunctor,
Standard_Integer theNbItems);
public: //! @name public methods
@ -274,13 +276,15 @@ public: //! @name public methods
//! @param theFunctor functor providing an interface "void operator(InputIterator theIter){}"
//! performing task for specified iterator position
//! @param isForceSingleThreadExecution if true, then no threads will be created
//! @param theNbItems number of items passed by iterator, -1 if unknown
template <typename InputIterator, typename Functor>
static void ForEach(InputIterator theBegin,
InputIterator theEnd,
const Functor& theFunctor,
const Standard_Boolean isForceSingleThreadExecution = Standard_False)
const Standard_Boolean isForceSingleThreadExecution = Standard_False,
Standard_Integer theNbItems = -1)
{
if (isForceSingleThreadExecution)
if (isForceSingleThreadExecution || theNbItems == 1)
{
for (InputIterator it(theBegin); it != theEnd; ++it)
theFunctor(*it);
@ -290,7 +294,7 @@ public: //! @name public methods
UniversalIterator aBegin(new IteratorWrapper<InputIterator>(theBegin));
UniversalIterator aEnd (new IteratorWrapper<InputIterator>(theEnd));
FunctorWrapperIter<InputIterator,Functor> aFunctor (theFunctor);
forEach(aBegin, aEnd, aFunctor);
forEach(aBegin, aEnd, aFunctor, theNbItems);
}
}
@ -311,7 +315,7 @@ public: //! @name public methods
const Functor& theFunctor,
const Standard_Boolean isForceSingleThreadExecution = Standard_False)
{
if (isForceSingleThreadExecution)
if (isForceSingleThreadExecution || (theEnd - theBegin) == 1)
{
for (Standard_Integer it (theBegin); it != theEnd; ++it)
theFunctor(it);
@ -321,7 +325,7 @@ public: //! @name public methods
UniversalIterator aBegin(new IteratorWrapper<Standard_Integer>(theBegin));
UniversalIterator aEnd (new IteratorWrapper<Standard_Integer>(theEnd));
FunctorWrapperInt<Functor> aFunctor (theFunctor);
forEach(aBegin, aEnd, aFunctor);
forEach(aBegin, aEnd, aFunctor, theEnd - theBegin);
}
}

View File

@ -31,8 +31,10 @@
void OSD_Parallel::forEach (UniversalIterator& theBegin,
UniversalIterator& theEnd,
const FunctorInterface& theFunctor)
const FunctorInterface& theFunctor,
Standard_Integer theNbItems)
{
(void )theNbItems;
try
{
tbb::parallel_for_each(theBegin, theEnd, theFunctor);

View File

@ -19,6 +19,8 @@
#include <OSD_Parallel.hxx>
#include <OSD_ThreadPool.hxx>
#include <NCollection_Array1.hxx>
#include <Standard_Mutex.hxx>
#include <OSD_Thread.hxx>
@ -29,7 +31,7 @@ namespace
//! using threads (when TBB is not available);
//! it is derived from OSD_Parallel to get access to
//! Iterator and FunctorInterface nested types.
class OSD_Parallel_Threads : public OSD_Parallel
class OSD_Parallel_Threads : public OSD_ThreadPool, public OSD_Parallel
{
public:
//! Auxiliary class which ensures exclusive
@ -84,7 +86,7 @@ namespace
};
//! Auxiliary wrapper class for thread function.
class Task
class Task : public JobInterface
{
public: //! @name public methods
@ -97,15 +99,12 @@ namespace
//! Method is executed in the context of thread,
//! so this method defines the main calculations.
static Standard_Address Run(Standard_Address theTask)
virtual void Perform (int ) Standard_OVERRIDE
{
Task& aTask = *(static_cast<Task*>(theTask));
const Range& aData(aTask.myRange);
for (OSD_Parallel::UniversalIterator i = aData.It(); i != aData.End(); i = aData.It())
aTask.myPerformer(i);
return NULL;
for (OSD_Parallel::UniversalIterator anIter = myRange.It(); anIter != myRange.End(); anIter = myRange.It())
{
myPerformer (anIter);
}
}
private: //! @name private methods
@ -117,9 +116,27 @@ namespace
Task& operator=(const Task& theCopy);
private: //! @name private fields
const FunctorInterface& myPerformer; //!< Link on functor
const Range& myRange; //!< Link on processed data block
};
const OSD_Parallel::FunctorInterface& myPerformer; //!< Link on functor.
const Range& myRange; //!< Link on processed data block.
//! Launcher specialization.
class UniversalLauncher : public Launcher
{
public:
//! Constructor.
UniversalLauncher (OSD_ThreadPool& thePool, int theMaxThreads = -1)
: Launcher (thePool, theMaxThreads) {}
//! Primitive for parallelization of "for" loops.
void Perform (OSD_Parallel::UniversalIterator& theBegin,
OSD_Parallel::UniversalIterator& theEnd,
const OSD_Parallel::FunctorInterface& theFunctor)
{
Range aData (theBegin, theEnd);
Task aJob (theFunctor, aData);
perform (aJob);
}
};
};
}
@ -130,22 +147,13 @@ namespace
//=======================================================================
void OSD_Parallel::forEach (UniversalIterator& theBegin,
UniversalIterator& theEnd,
const FunctorInterface& theFunctor)
const FunctorInterface& theFunctor,
Standard_Integer theNbItems)
{
OSD_Parallel_Threads::Range aData(theBegin, theEnd);
OSD_Parallel_Threads::Task aTask(theFunctor, aData);
const Standard_Integer aNbThreads = OSD_Parallel::NbLogicalProcessors();
NCollection_Array1<OSD_Thread> aThreads(0, aNbThreads - 1);
for (Standard_Integer i = 0; i < aNbThreads; ++i)
{
OSD_Thread& aThread = aThreads(i);
aThread.SetFunction(&OSD_Parallel_Threads::Task::Run);
aThread.Run(&aTask);
}
for (Standard_Integer i = 0; i < aNbThreads; ++i)
aThreads(i).Wait();
const Handle(OSD_ThreadPool)& aThreadPool = OSD_ThreadPool::DefaultPool();
const Standard_Integer aNbThreads = theNbItems != -1 ? Min (theNbItems, aThreadPool->NbDefaultThreadsToLaunch()) : -1;
OSD_Parallel_Threads::UniversalLauncher aLauncher (*aThreadPool, aNbThreads);
aLauncher.Perform (theBegin, theEnd, theFunctor);
}
#endif /* ! HAVE_TBB */
#endif /* ! HAVE_TBB */

401
src/OSD/OSD_ThreadPool.cxx Normal file
View File

@ -0,0 +1,401 @@
// Created by: Kirill Gavrilov
// Copyright (c) 2017 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS.
//
// This software is furnished in accordance with the terms and conditions
// of the contract and with the inclusion of this copyright notice.
// This software or any other copy thereof may not be provided or otherwise
// be made available to any third party.
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#include <OSD_ThreadPool.hxx>
#include <OSD.hxx>
#include <Standard_Atomic.hxx>
#include <TCollection_AsciiString.hxx>
IMPLEMENT_STANDARD_RTTIEXT(OSD_ThreadPool, Standard_Transient)
// =======================================================================
// function : Lock
// purpose :
// =======================================================================
bool OSD_ThreadPool::EnumeratedThread::Lock()
{
return Standard_Atomic_CompareAndSwap (&myUsageCounter, 0, 1);
}
// =======================================================================
// function : Free
// purpose :
// =======================================================================
void OSD_ThreadPool::EnumeratedThread::Free()
{
Standard_Atomic_CompareAndSwap (&myUsageCounter, 1, 0);
}
// =======================================================================
// function : WakeUp
// purpose :
// =======================================================================
void OSD_ThreadPool::EnumeratedThread::WakeUp (JobInterface* theJob, bool theToCatchFpe)
{
myJob = theJob;
myToCatchFpe = theToCatchFpe;
if (myIsSelfThread)
{
if (theJob != NULL)
{
OSD_ThreadPool::performJob (myFailure, myJob, myThreadIndex);
}
return;
}
myWakeEvent.Set();
if (theJob != NULL && !myIsStarted)
{
myIsStarted = true;
Run (this);
}
}
// =======================================================================
// function : WaitIdle
// purpose :
// =======================================================================
void OSD_ThreadPool::EnumeratedThread::WaitIdle()
{
if (!myIsSelfThread)
{
myIdleEvent.Wait();
myIdleEvent.Reset();
}
}
// =======================================================================
// function : DefaultPool
// purpose :
// =======================================================================
const Handle(OSD_ThreadPool)& OSD_ThreadPool::DefaultPool (int theNbThreads)
{
static const Handle(OSD_ThreadPool) THE_GLOBAL_POOL = new OSD_ThreadPool (theNbThreads);
return THE_GLOBAL_POOL;
}
// =======================================================================
// function : OSD_ThreadPool
// purpose :
// =======================================================================
OSD_ThreadPool::OSD_ThreadPool (int theNbThreads)
: myNbDefThreads (0),
myShutDown (false)
{
Init (theNbThreads);
myNbDefThreads = NbThreads();
}
// =======================================================================
// function : IsInUse
// purpose :
// =======================================================================
bool OSD_ThreadPool::IsInUse()
{
for (NCollection_Array1<EnumeratedThread>::Iterator aThreadIter (myThreads);
aThreadIter.More(); aThreadIter.Next())
{
EnumeratedThread& aThread = aThreadIter.ChangeValue();
if (!aThread.Lock())
{
return true;
}
aThread.Free();
}
return false;
}
// =======================================================================
// function : Init
// purpose :
// =======================================================================
void OSD_ThreadPool::Init (int theNbThreads)
{
const int aNbThreads = Max (0, (theNbThreads > 0 ? theNbThreads : OSD_Parallel::NbLogicalProcessors()) - 1);
if (myThreads.Size() == aNbThreads)
{
return;
}
// release old threads
if (!myThreads.IsEmpty())
{
NCollection_Array1<EnumeratedThread*> aLockThreads (myThreads.Lower(), myThreads.Upper());
aLockThreads.Init (NULL);
int aThreadIndex = myThreads.Lower();
for (NCollection_Array1<EnumeratedThread>::Iterator aThreadIter (myThreads);
aThreadIter.More(); aThreadIter.Next())
{
EnumeratedThread& aThread = aThreadIter.ChangeValue();
if (!aThread.Lock())
{
for (NCollection_Array1<EnumeratedThread*>::Iterator aLockThreadIter (aLockThreads);
aLockThreadIter.More() && aLockThreadIter.Value() != NULL; aLockThreadIter.Next())
{
aLockThreadIter.ChangeValue()->Free();
}
throw Standard_ProgramError ("Error: active ThreadPool is reinitialized");
}
aLockThreads.SetValue (aThreadIndex++, &aThread);
}
}
release();
myShutDown = false;
if (aNbThreads > 0)
{
myThreads.Resize (0, aNbThreads - 1, false);
int aLastThreadIndex = 0;
for (NCollection_Array1<EnumeratedThread>::Iterator aThreadIter (myThreads);
aThreadIter.More(); aThreadIter.Next())
{
EnumeratedThread& aThread = aThreadIter.ChangeValue();
aThread.myPool = this;
aThread.myThreadIndex = aLastThreadIndex++;
aThread.SetFunction (&OSD_ThreadPool::EnumeratedThread::runThread);
}
}
else
{
NCollection_Array1<EnumeratedThread> anEmpty;
myThreads.Move (anEmpty);
}
}
// =======================================================================
// function : ~OSD_ThreadPool
// purpose :
// =======================================================================
OSD_ThreadPool::~OSD_ThreadPool()
{
release();
}
// =======================================================================
// function : release
// purpose :
// =======================================================================
void OSD_ThreadPool::release()
{
if (myThreads.IsEmpty())
{
return;
}
myShutDown = true;
for (NCollection_Array1<EnumeratedThread>::Iterator aThreadIter (myThreads);
aThreadIter.More(); aThreadIter.Next())
{
aThreadIter.ChangeValue().WakeUp (NULL, false);
aThreadIter.ChangeValue().Wait();
}
}
// =======================================================================
// function : perform
// purpose :
// =======================================================================
void OSD_ThreadPool::Launcher::perform (JobInterface& theJob)
{
run (theJob);
wait();
}
// =======================================================================
// function : run
// purpose :
// =======================================================================
void OSD_ThreadPool::Launcher::run (JobInterface& theJob)
{
bool toCatchFpe = OSD::ToCatchFloatingSignals();
for (NCollection_Array1<EnumeratedThread*>::Iterator aThreadIter (myThreads);
aThreadIter.More() && aThreadIter.Value() != NULL; aThreadIter.Next())
{
aThreadIter.ChangeValue()->WakeUp (&theJob, toCatchFpe);
}
}
// =======================================================================
// function : wait
// purpose :
// =======================================================================
void OSD_ThreadPool::Launcher::wait()
{
int aNbFailures = 0;
for (NCollection_Array1<EnumeratedThread*>::Iterator aThreadIter (myThreads);
aThreadIter.More() && aThreadIter.Value() != NULL; aThreadIter.Next())
{
aThreadIter.ChangeValue()->WaitIdle();
if (!aThreadIter.Value()->myFailure.IsNull())
{
++aNbFailures;
}
}
if (aNbFailures == 0)
{
return;
}
TCollection_AsciiString aFailures;
for (NCollection_Array1<EnumeratedThread*>::Iterator aThreadIter (myThreads);
aThreadIter.More() && aThreadIter.Value() != NULL; aThreadIter.Next())
{
if (!aThreadIter.Value()->myFailure.IsNull())
{
if (aNbFailures == 1)
{
aThreadIter.Value()->myFailure->Reraise();
}
if (!aFailures.IsEmpty())
{
aFailures += "\n";
}
aFailures += aThreadIter.Value()->myFailure->GetMessageString();
}
}
aFailures = TCollection_AsciiString("Multiple exceptions:\n") + aFailures;
throw Standard_ProgramError (aFailures.ToCString());
}
// =======================================================================
// function : performJob
// purpose :
// =======================================================================
void OSD_ThreadPool::performJob (Handle(Standard_Failure)& theFailure,
OSD_ThreadPool::JobInterface* theJob,
int theThreadIndex)
{
try
{
OCC_CATCH_SIGNALS
theJob->Perform (theThreadIndex);
}
catch (Standard_Failure const& aFailure)
{
TCollection_AsciiString aMsg = TCollection_AsciiString (aFailure.DynamicType()->Name())
+ ": " + aFailure.GetMessageString();
theFailure = new Standard_ProgramError (aMsg.ToCString());
}
catch (std::exception& anStdException)
{
TCollection_AsciiString aMsg = TCollection_AsciiString (typeid(anStdException).name())
+ ": " + anStdException.what();
theFailure = new Standard_ProgramError (aMsg.ToCString());
}
catch (...)
{
theFailure = new Standard_ProgramError ("Error: Unknown exception");
}
}
// =======================================================================
// function : performThread
// purpose :
// =======================================================================
void OSD_ThreadPool::EnumeratedThread::performThread()
{
OSD::SetSignal (false);
for (;;)
{
myWakeEvent.Wait();
myWakeEvent.Reset();
if (myPool->myShutDown)
{
return;
}
myFailure.Nullify();
if (myJob != NULL)
{
OSD::SetSignal (myToCatchFpe);
OSD_ThreadPool::performJob (myFailure, myJob, myThreadIndex);
myJob = NULL;
}
myIdleEvent.Set();
}
}
// =======================================================================
// function : runThread
// purpose :
// =======================================================================
Standard_Address OSD_ThreadPool::EnumeratedThread::runThread (Standard_Address theTask)
{
EnumeratedThread* aThread = static_cast<EnumeratedThread*>(theTask);
aThread->performThread();
return NULL;
}
// =======================================================================
// function : Launcher
// purpose :
// =======================================================================
OSD_ThreadPool::Launcher::Launcher (OSD_ThreadPool& thePool, Standard_Integer theMaxThreads)
: mySelfThread (true),
myNbThreads (0)
{
const int aNbThreads = theMaxThreads > 0
? Min (theMaxThreads, thePool.NbThreads())
: (theMaxThreads < 0
? Max (thePool.NbDefaultThreadsToLaunch(), 1)
: 1);
myThreads.Resize (0, aNbThreads - 1, false);
myThreads.Init (NULL);
if (aNbThreads > 1)
{
for (NCollection_Array1<EnumeratedThread>::Iterator aThreadIter (thePool.myThreads);
aThreadIter.More(); aThreadIter.Next())
{
if (aThreadIter.ChangeValue().Lock())
{
myThreads.SetValue (myNbThreads, &aThreadIter.ChangeValue());
// make thread index to fit into myThreads range
aThreadIter.ChangeValue().myThreadIndex = myNbThreads;
if (++myNbThreads == aNbThreads - 1)
{
break;
}
}
}
}
// self thread should be executed last
myThreads.SetValue (myNbThreads, &mySelfThread);
mySelfThread.myThreadIndex = myNbThreads;
++myNbThreads;
}
// =======================================================================
// function : Release
// purpose :
// =======================================================================
void OSD_ThreadPool::Launcher::Release()
{
for (NCollection_Array1<EnumeratedThread*>::Iterator aThreadIter (myThreads);
aThreadIter.More() && aThreadIter.Value() != NULL; aThreadIter.Next())
{
if (aThreadIter.Value() != &mySelfThread)
{
aThreadIter.Value()->Free();
}
}
NCollection_Array1<EnumeratedThread*> anEmpty;
myThreads.Move (anEmpty);
myNbThreads = 0;
}

301
src/OSD/OSD_ThreadPool.hxx Normal file
View File

@ -0,0 +1,301 @@
// Created by: Kirill Gavrilov
// Copyright (c) 2017 OPEN CASCADE SAS
//
// This file is part of commercial software by OPEN CASCADE SAS.
//
// This software is furnished in accordance with the terms and conditions
// of the contract and with the inclusion of this copyright notice.
// This software or any other copy thereof may not be provided or otherwise
// be made available to any third party.
// No ownership title to the software is transferred hereby.
//
// OPEN CASCADE SAS makes no representation or warranties with respect to the
// performance of this software, and specifically disclaims any responsibility
// for any damages, special or consequential, connected with its use.
#ifndef _OSD_ThreadPool_HeaderFile
#define _OSD_ThreadPool_HeaderFile
#include <NCollection_Array1.hxx>
#include <OSD_Thread.hxx>
#include <OSD_Parallel.hxx>
#include <Standard_Atomic.hxx>
#include <Standard_Condition.hxx>
#include <Standard_Mutex.hxx>
//! Class defining a thread pool for executing algorithms in multi-threaded mode.
//! Thread pool allocates requested amount of threads and keep them alive
//! (in sleep mode when unused) during thread pool lifetime.
//! The same pool can be used by multiple consumers,
//! including nested multi-threading algorithms and concurrent threads:
//! - Thread pool can be used either by multi-threaded algorithm by creating OSD_ThreadPool::Launcher.
//! The functor performing a job takes two parameters - Thread Index and Data Index:
//! void operator(int theThreadIndex, int theDataIndex){}
//! Multi-threaded algorithm may rely on Thread Index for allocating thread-local variables in array form,
//! since the Thread Index is guaranteed to be within range OSD_ThreadPool::Lower() and OSD_ThreadPool::Upper().
//! - Default thread pool (OSD_ThreadPool::DefaultPool()) can be used in general case,
//! but application may prefer creating a dedicated pool for better control.
//! - Default thread pool allocates the amount of threads considering concurrency
//! level of the system (amount of logical processors).
//! This can be overridden during OSD_ThreadPool construction or by calling OSD_ThreadPool::Init()
//! (the pool should not be used!).
//! - OSD_ThreadPool::Launcher reserves specific amount of threads from the pool for executing multi-threaded Job.
//! Normally, single Launcher instance will occupy all threads available in thread pool,
//! so that nested multi-threaded algorithms (within the same thread)
//! and concurrent threads trying to use the same thread pool will run sequentially.
//! This behavior is affected by OSD_ThreadPool::NbDefaultThreadsToLaunch() parameter
//! and Launcher constructor, so that single Launcher instance will occupy not all threads
//! in the pool allowing other threads to be used concurrently.
//! - OSD_ThreadPool::Launcher locks thread one-by-one from thread pool in a thread-safe way.
//! - Each working thread catches exceptions occurred during job execution, and Launcher will
//! throw Standard_Failure in a caller thread on completed execution.
class OSD_ThreadPool : public Standard_Transient
{
DEFINE_STANDARD_RTTIEXT(OSD_ThreadPool, Standard_Transient)
public:
//! Return (or create) a default thread pool.
//! Number of threads argument will be considered only when called first time.
Standard_EXPORT static const Handle(OSD_ThreadPool)& DefaultPool (int theNbThreads = -1);
public:
//! Main constructor.
//! Application may consider specifying more threads than actually
//! available (OSD_Parallel::NbLogicalProcessors()) and set up NbDefaultThreadsToLaunch() to a smaller value
//! so that concurrent threads will be able using single Thread Pool instance more efficiently.
//! @param theNbThreads threads number to be created by pool
//! (if -1 is specified then OSD_Parallel::NbLogicalProcessors() will be used)
Standard_EXPORT OSD_ThreadPool (int theNbThreads = -1);
//! Destructor.
Standard_EXPORT virtual ~OSD_ThreadPool();
//! Return TRUE if at least 2 threads are available (including self-thread).
bool HasThreads() const { return NbThreads() >= 2; }
//! Return the lower thread index.
int LowerThreadIndex() const { return 0; }
//! Return the upper thread index (last index is reserved for self-thread).
int UpperThreadIndex() const { return LowerThreadIndex() + myThreads.Size(); }
//! Return the number of threads; >= 1.
int NbThreads() const { return myThreads.Size() + 1; }
//! Return maximum number of threads to be locked by a single Launcher object by default;
//! the entire thread pool size is returned by default.
int NbDefaultThreadsToLaunch() const { return myNbDefThreads; }
//! Set maximum number of threads to be locked by a single Launcher object by default.
//! Should be set BEFORE first usage.
void SetNbDefaultThreadsToLaunch (int theNbThreads) { myNbDefThreads = theNbThreads; }
//! Checks if thread pools has active consumers.
Standard_EXPORT bool IsInUse();
//! Reinitialize the thread pool with a different number of threads.
//! Should be called only with no active jobs, or exception Standard_ProgramError will be thrown!
Standard_EXPORT void Init (int theNbThreads);
protected:
//! Thread function interface.
class JobInterface
{
public:
virtual void Perform (int theThreadIndex) = 0;
};
//! Thread with back reference to thread pool and thread index in it.
class EnumeratedThread : public OSD_Thread
{
friend class OSD_ThreadPool;
public:
EnumeratedThread (bool theIsSelfThread = false)
: myPool (NULL), myJob (NULL), myWakeEvent (false),
myIdleEvent (false), myThreadIndex (0), myUsageCounter(0),
myIsStarted (false), myToCatchFpe (false),
myIsSelfThread (theIsSelfThread) {}
//! Occupy this thread for thread pool launcher.
//! @return TRUE on success, or FALSE if thread has been already occupied
Standard_EXPORT bool Lock();
//! Release this thread for thread pool launcher; should be called only after successful OccupyThread().
Standard_EXPORT void Free();
//! Wake up the thread.
Standard_EXPORT void WakeUp (JobInterface* theJob, bool theToCatchFpe);
//! Wait the thread going into Idle state (finished jobs).
Standard_EXPORT void WaitIdle();
private:
//! Method is executed in the context of thread.
void performThread();
//! Method is executed in the context of thread.
static Standard_Address runThread (Standard_Address theTask);
private:
OSD_ThreadPool* myPool;
JobInterface* myJob;
Handle(Standard_Failure) myFailure;
Standard_Condition myWakeEvent;
Standard_Condition myIdleEvent;
int myThreadIndex;
volatile int myUsageCounter;
bool myIsStarted;
bool myToCatchFpe;
bool myIsSelfThread;
};
public:
//! Launcher object locking a subset of threads (or all threads)
//! in a thread pool to perform parallel execution of the job.
class Launcher
{
public:
//! Lock specified number of threads from the thread pool.
//! If thread pool is already locked by another user,
//! Launcher will lock as many threads as possible
//! (if none will be locked, then single threaded execution will be done).
//! @param thePool thread pool to lock the threads
//! @param theMaxThreads number of threads to lock;
//! -1 specifies that default number of threads
//! to be used OSD_ThreadPool::NbDefaultThreadsToLaunch()
Standard_EXPORT Launcher (OSD_ThreadPool& thePool, int theMaxThreads = -1);
//! Release threads.
~Launcher() { Release(); }
//! Return TRUE if at least 2 threads have been locked for parallel execution (including self-thread);
//! otherwise, the functor will be executed within the caller thread.
bool HasThreads() const { return myNbThreads >= 2; }
//! Return amount of locked threads; >= 1.
int NbThreads() const { return myNbThreads; }
//! Return the lower thread index.
int LowerThreadIndex() const { return 0; }
//! Return the upper thread index (last index is reserved for the self-thread).
int UpperThreadIndex() const { return LowerThreadIndex() + myNbThreads - 1; }
//! Simple primitive for parallelization of "for" loops, e.g.:
//! @code
//! for (int anIter = theBegin; anIter < theEnd; ++anIter) {}
//! @endcode
//! @param theBegin the first data index (inclusive)
//! @param theEnd the last data index (exclusive)
//! @param theFunctor functor providing an interface
//! "void operator(int theThreadIndex, int theDataIndex){}" performing task for specified index
template<typename Functor>
void Perform (int theBegin, int theEnd, const Functor& theFunctor)
{
JobRange aData (theBegin, theEnd);
Job<Functor> aJob (theFunctor, aData);
perform (aJob);
}
//! Release threads before Launcher destruction.
Standard_EXPORT void Release();
protected:
//! Execute job.
Standard_EXPORT void perform (JobInterface& theJob);
//! Initialize job and start threads.
Standard_EXPORT void run (JobInterface& theJob);
//! Wait threads execution.
Standard_EXPORT void wait();
private:
Launcher (const Launcher& theCopy);
Launcher& operator=(const Launcher& theCopy);
private:
NCollection_Array1<EnumeratedThread*> myThreads; //!< array of locked threads (including self-thread)
EnumeratedThread mySelfThread;
int myNbThreads; //!< amount of locked threads
};
protected:
//! Auxiliary class which ensures exclusive access to iterators of processed data pool.
class JobRange
{
public:
//! Constructor
JobRange (const int& theBegin, const int& theEnd) : myBegin(theBegin), myEnd (theEnd), myIt (theBegin) {}
//! Returns const link on the first element.
const int& Begin() const { return myBegin; }
//! Returns const link on the last element.
const int& End() const { return myEnd; }
//! Returns first non processed element or end.
//! Thread-safe method.
int It() const { return Standard_Atomic_Increment (reinterpret_cast<volatile int*>(&myIt)) - 1; }
private:
JobRange (const JobRange& theCopy);
JobRange& operator=(const JobRange& theCopy);
private:
const int& myBegin; //!< First element of range
const int& myEnd; //!< Last element of range
mutable int myIt; //!< First non processed element of range
};
//! Auxiliary wrapper class for thread function.
template<typename FunctorT> class Job : public JobInterface
{
public:
//! Constructor.
Job (const FunctorT& thePerformer, JobRange& theRange)
: myPerformer (thePerformer), myRange (theRange) {}
//! Method is executed in the context of thread.
virtual void Perform (int theThreadIndex) Standard_OVERRIDE
{
for (Standard_Integer anIter = myRange.It(); anIter < myRange.End(); anIter = myRange.It())
{
myPerformer (theThreadIndex, anIter);
}
}
private:
Job (const Job& theCopy);
Job& operator=(const Job& theCopy);
private: //! @name private fields
const FunctorT& myPerformer; //!< Link on functor
const JobRange& myRange; //!< Link on processed data block
};
//! Release threads.
void release();
//! Perform the job and catch exceptions.
static void performJob (Handle(Standard_Failure)& theFailure,
OSD_ThreadPool::JobInterface* theJob,
int theThreadIndex);
private:
NCollection_Array1<EnumeratedThread> myThreads; //!< array of defined threads (excluding self-thread)
int myNbDefThreads; //!< maximum number of threads to be locked by a single Launcher by default
bool myShutDown; //!< flag to shut down (destroy) the thread pool
};
#endif // _OSD_ThreadPool_HeaderFile

View File

@ -17,6 +17,17 @@
#include <Standard_DivideByZero.hxx>
#include <Standard_Overflow.hxx>
static Standard_THREADLOCAL Standard_Boolean fFltExceptions = Standard_False;
//=======================================================================
//function : ToCatchFloatingSignals
//purpose :
//=======================================================================
Standard_Boolean OSD::ToCatchFloatingSignals()
{
return fFltExceptions;
}
#ifdef _WIN32
//---------------------------- Windows NT System --------------------------------
@ -67,7 +78,6 @@
static Standard_Boolean fCtrlBrk;
static Standard_Boolean fMsgBox;
static Standard_Boolean fFltExceptions;
// used to forbid simultaneous execution of setting / executing handlers
static Standard_Mutex THE_SIGNAL_MUTEX;
@ -616,7 +626,6 @@ LONG _osd_debug ( void ) {
#ifdef __linux__
#include <cfenv>
//#include <fenv.h>
static Standard_Boolean fFltExceptions = Standard_False;
#endif
// variable signalling that Control-C has been pressed (SIGINT signal)

View File

@ -39,6 +39,7 @@
#include <OSD_Parallel.hxx>
#include <OSD_PerfMeter.hxx>
#include <OSD_Timer.hxx>
#include <OSD_ThreadPool.hxx>
#include <Precision.hxx>
#include <Prs3d_ShadingAspect.hxx>
#include <Prs3d_Text.hxx>
@ -55,9 +56,16 @@
#include <TDataStd_Real.hxx>
#include <Standard_Atomic.hxx>
#ifdef HAVE_TBB
#include <tbb/parallel_for.h>
#include <tbb/parallel_for_each.h>
#include <tbb/blocked_range.h>
#endif
#include <cstdio>
#include <cmath>
#include <iostream>
#include <random>
#define QCOMPARE(val1, val2) \
di << "Checking " #val1 " == " #val2 << \
@ -2512,19 +2520,25 @@ static Standard_Integer OCC25340 (Draw_Interpretor& /*theDI*/,
class ParallelTest_Saxpy
{
public:
typedef NCollection_Array1<Standard_Real> Vector;
//! Constructor
ParallelTest_Saxpy(const Vector& theX, Vector& theY, Standard_Real theScalar)
: myX(theX),
myY(theY),
myScalar(theScalar)
ParallelTest_Saxpy (const NCollection_Array1<Standard_Real>& theX,
NCollection_Array1<Standard_Real>& theY,
Standard_Real theScalar)
: myX (theX), myY (theY), myScalar (theScalar) {}
int Begin() const { return 0; }
int End() const { return myX.Size(); }
//! Dummy calculation
void operator() (Standard_Integer theIndex) const
{
myY(theIndex) = myScalar * myX(theIndex) + myY(theIndex);
}
//! Dummy calculation
void operator() (const Standard_Integer theIndex) const
void operator() (Standard_Integer theThreadIndex, Standard_Integer theIndex) const
{
(void )theThreadIndex;
myY(theIndex) = myScalar * myX(theIndex) + myY(theIndex);
}
@ -2532,18 +2546,51 @@ private:
ParallelTest_Saxpy( const ParallelTest_Saxpy& );
ParallelTest_Saxpy& operator =( ParallelTest_Saxpy& );
private:
const Vector& myX;
Vector& myY;
protected:
const NCollection_Array1<Standard_Real>& myX;
NCollection_Array1<Standard_Real>& myY;
const Standard_Real myScalar;
};
class ParallelTest_SaxpyBatch : private ParallelTest_Saxpy
{
public:
static const Standard_Integer THE_BATCH_SIZE = 10000000;
ParallelTest_SaxpyBatch (const NCollection_Array1<Standard_Real>& theX,
NCollection_Array1<Standard_Real>& theY,
Standard_Real theScalar)
: ParallelTest_Saxpy (theX, theY, theScalar),
myNbBatches ((int )Ceiling ((double )theX.Size() / THE_BATCH_SIZE)) {}
int Begin() const { return 0; }
int End() const { return myNbBatches; }
void operator() (int theBatchIndex) const
{
const int aLower = theBatchIndex * THE_BATCH_SIZE;
const int anUpper = Min (aLower + THE_BATCH_SIZE - 1, myX.Upper());
for (int i = aLower; i <= anUpper; ++i)
{
myY(i) = myScalar * myX(i) + myY(i);
}
}
void operator() (int theThreadIndex, int theBatchIndex) const
{
(void )theThreadIndex;
(*this)(theBatchIndex);
}
private:
int myNbBatches;
};
//---------------------------------------------------------------------
static Standard_Integer OCC24826(Draw_Interpretor& theDI,
Standard_Integer trheArgc,
Standard_Integer theArgc,
const char** theArgv)
{
if ( trheArgc != 2 )
if ( theArgc != 2 )
{
theDI << "Usage: "
<< theArgv[0]
@ -2556,38 +2603,240 @@ static Standard_Integer OCC24826(Draw_Interpretor& theDI,
NCollection_Array1<Standard_Real> aX (0, aLength - 1);
NCollection_Array1<Standard_Real> anY(0, aLength - 1);
for ( Standard_Integer i = 0; i < aLength; ++i )
{
aX(i) = anY(i) = (Standard_Real) i;
}
OSD_Timer aTimer;
aTimer.Start();
//! Serial proccesing
for ( Standard_Integer i = 0; i < aLength; ++i )
//! Serial processing
NCollection_Array1<Standard_Real> anY1 = anY;
Standard_Real aTimeSeq = 0.0;
{
anY(i) = 1e-6 * aX(i) + anY(i);
OSD_Timer aTimer;
aTimer.Start();
const ParallelTest_Saxpy aFunctor (aX, anY1, 1e-6);
for (Standard_Integer i = 0; i < aLength; ++i)
{
aFunctor(i);
}
aTimer.Stop();
std::cout << " Processing time (sequential mode): 1x [reference]\n";
aTimeSeq = aTimer.ElapsedTime();
aTimer.Show (std::cout);
}
aTimer.Stop();
cout << "Processing time (sequential mode):\n";
aTimer.Show();
// Parallel processing
for (Standard_Integer aMode = 0; aMode <= 4; ++aMode)
{
NCollection_Array1<Standard_Real> anY2 = anY;
OSD_Timer aTimer;
aTimer.Start();
const char* aModeDesc = NULL;
const ParallelTest_Saxpy aFunctor1 (aX, anY2, 1e-6);
const ParallelTest_SaxpyBatch aFunctor2 (aX, anY2, 1e-6);
switch (aMode)
{
case 0:
{
aModeDesc = "OSD_Parallel::For()";
OSD_Parallel::For (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
}
case 1:
{
aModeDesc = "OSD_ThreadPool::Launcher";
OSD_ThreadPool::Launcher aLauncher (*OSD_ThreadPool::DefaultPool());
aLauncher.Perform (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
}
case 2:
{
aModeDesc = "OSD_Parallel::Batched()";
OSD_Parallel::For (aFunctor2.Begin(), aFunctor2.End(), aFunctor2);
break;
}
case 3:
{
aModeDesc = "OSD_ThreadPool::Launcher, Batched";
OSD_ThreadPool::Launcher aLauncher (*OSD_ThreadPool::DefaultPool());
aLauncher.Perform (aFunctor2.Begin(), aFunctor2.End(), aFunctor2);
break;
}
case 4:
{
#ifdef HAVE_TBB
aModeDesc = "tbb::parallel_for";
tbb::parallel_for (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
#else
continue;
#endif
}
}
aTimer.Stop();
std::cout << " " << aModeDesc << ": "
<< aTimeSeq / aTimer.ElapsedTime() << "x " << (aTimer.ElapsedTime() < aTimeSeq ? "[boost]" : "[slow-down]") << "\n";
aTimer.Show (std::cout);
const ParallelTest_Saxpy aFunctor(aX, anY, 1e-6);
for (Standard_Integer i = 0; i < aLength; ++i)
{
if (anY2(i) != anY1(i))
{
std::cerr << "Error: Parallel algorithm produced invalid result!\n";
break;
}
}
}
return 0;
}
aTimer.Reset();
aTimer.Start();
//! Initializes the given square matrix with values that are generated by the given generator function.
template<class GeneratorT> void initRandMatrix (NCollection_Array2<double>& theMat, GeneratorT& theGen)
{
for (int i = theMat.LowerRow(); i <= theMat.UpperRow(); ++i)
{
for (int j = theMat.LowerCol(); j <= theMat.UpperCol(); ++j)
{
theMat(i, j) = static_cast<double>(theGen());
}
}
}
//! Compute the product of two square matrices in parallel.
class ParallelTest_MatMult
{
public:
ParallelTest_MatMult (const NCollection_Array2<double>& theMat1,
const NCollection_Array2<double>& theMat2,
NCollection_Array2<double>& theResult, int theSize)
: myMat1 (theMat1), myMat2 (theMat2), myResult (theResult), mySize (theSize) {}
int Begin() const { return 0; }
int End() const { return mySize; }
void operator() (int theIndex) const
{
for (int j = 0; j < mySize; ++j)
{
double aTmp = 0;
for (int k = 0; k < mySize; ++k)
{
aTmp += myMat1(theIndex, k) * myMat2(k, j);
}
myResult(theIndex, j) = aTmp;
}
}
void operator() (int theThreadIndex, int theIndex) const
{
(void )theThreadIndex;
(*this)(theIndex);
}
private:
ParallelTest_MatMult (const ParallelTest_MatMult& );
ParallelTest_MatMult& operator= (ParallelTest_MatMult& );
protected:
const NCollection_Array2<double>& myMat1;
const NCollection_Array2<double>& myMat2;
NCollection_Array2<double>& myResult;
int mySize;
};
//---------------------------------------------------------------------
static Standard_Integer OCC29935(Draw_Interpretor& ,
Standard_Integer theArgc,
const char** theArgv)
{
if (theArgc != 2)
{
std::cout << "Syntax error: wrong number of arguments\n";
return 1;
}
// Generate data;
Standard_Integer aSize = Draw::Atoi (theArgv[1]);
opencascade::std::mt19937 aGen (42);
NCollection_Array2<double> aMat1 (0, aSize - 1, 0, aSize - 1);
NCollection_Array2<double> aMat2 (0, aSize - 1, 0, aSize - 1);
NCollection_Array2<double> aMatResRef(0, aSize - 1, 0, aSize - 1);
NCollection_Array2<double> aMatRes (0, aSize - 1, 0, aSize - 1);
initRandMatrix (aMat1, aGen);
initRandMatrix (aMat2, aGen);
//! Serial processing
Standard_Real aTimeSeq = 0.0;
{
OSD_Timer aTimer;
aTimer.Start();
ParallelTest_MatMult aFunctor (aMat1, aMat2, aMatResRef, aSize);
for (int i = aFunctor.Begin(); i < aFunctor.End(); ++i)
{
aFunctor(i);
}
aTimer.Stop();
std::cout << " Processing time (sequential mode): 1x [reference]\n";
aTimeSeq = aTimer.ElapsedTime();
aTimer.Show (std::cout);
}
// Parallel processing
OSD_Parallel::For(0, aLength, aFunctor);
for (Standard_Integer aMode = 0; aMode <= 2; ++aMode)
{
aMatRes.Init (0.0);
aTimer.Stop();
cout << "Processing time (parallel mode):\n";
aTimer.Show();
OSD_Timer aTimer;
aTimer.Start();
const char* aModeDesc = NULL;
ParallelTest_MatMult aFunctor1 (aMat1, aMat2, aMatRes, aSize);
switch (aMode)
{
case 0:
{
aModeDesc = "OSD_Parallel::For()";
OSD_Parallel::For (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
}
case 1:
{
aModeDesc = "OSD_ThreadPool::Launcher";
OSD_ThreadPool::Launcher aLauncher (*OSD_ThreadPool::DefaultPool());
aLauncher.Perform (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
}
case 2:
{
#ifdef HAVE_TBB
aModeDesc = "tbb::parallel_for";
tbb::parallel_for (aFunctor1.Begin(), aFunctor1.End(), aFunctor1);
break;
#else
continue;
#endif
}
}
aTimer.Stop();
std::cout << " " << aModeDesc << ": "
<< aTimeSeq / aTimer.ElapsedTime() << "x " << (aTimer.ElapsedTime() < aTimeSeq ? "[boost]" : "[slow-down]") << "\n";
aTimer.Show (std::cout);
for (int i = 0; i < aSize; ++i)
{
for (int j = 0; j < aSize; ++j)
{
if (aMatRes(i, j) != aMatResRef(i, j))
{
std::cerr << "Error: Parallel algorithm produced invalid result!\n";
i = aSize;
break;
}
}
}
}
return 0;
}
@ -5160,7 +5409,8 @@ void QABugs::Commands_19(Draw_Interpretor& theCommands) {
"\nOCAF persistence without setting environment variables",
__FILE__, OCC24925, group);
theCommands.Add ("OCC25043", "OCC25043 shape", __FILE__, OCC25043, group);
theCommands.Add ("OCC24826,", "This test performs simple saxpy test.\n Usage: OCC24826 length", __FILE__, OCC24826, group);
theCommands.Add ("OCC24826,", "This test performs simple saxpy test using multiple threads.\n Usage: OCC24826 length", __FILE__, OCC24826, group);
theCommands.Add ("OCC29935,", "This test performs product of two square matrices using multiple threads.\n Usage: OCC29935 size", __FILE__, OCC29935, group);
theCommands.Add ("OCC24606", "OCC24606 : Tests ::FitAll for V3d view ('vfit' is for NIS view)", __FILE__, OCC24606, group);
theCommands.Add ("OCC25202", "OCC25202 res shape numF1 face1 numF2 face2", __FILE__, OCC25202, group);
theCommands.Add ("OCC7570", "OCC7570 shape", __FILE__, OCC7570, group);

View File

@ -11,6 +11,8 @@ Standard_Byte.hxx
Standard_Character.hxx
Standard_CLocaleSentry.cxx
Standard_CLocaleSentry.hxx
Standard_Condition.cxx
Standard_Condition.hxx
Standard_ConstructionError.hxx
Standard_Copy.tcl
Standard_CString.cxx

View File

@ -35,6 +35,14 @@ inline int Standard_Atomic_Increment (volatile int* theValue);
//! and returns resulting decremented value.
inline int Standard_Atomic_Decrement (volatile int* theValue);
//! Perform an atomic compare and swap.
//! That is, if the current value of *theValue is theOldValue, then write theNewValue into *theValue.
//! @param theValue pointer to variable to modify
//! @param theOldValue expected value to perform modification
//! @param theNewValue new value to set in case if *theValue was equal to theOldValue
//! @return TRUE if theNewValue has been set to *theValue
inline bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue);
// Platform-dependent implementation
#if defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
// gcc explicitly defines the macros __GCC_HAVE_SYNC_COMPARE_AND_SWAP_*
@ -55,16 +63,23 @@ int Standard_Atomic_Decrement (volatile int* theValue)
return __sync_sub_and_fetch (theValue, 1);
}
bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue)
{
return __sync_val_compare_and_swap (theValue, theOldValue, theNewValue) == theOldValue;
}
#elif defined(_WIN32)
extern "C" {
long _InterlockedIncrement (volatile long* lpAddend);
long _InterlockedDecrement (volatile long* lpAddend);
long _InterlockedCompareExchange (long volatile* Destination, long Exchange, long Comparand);
}
#if defined(_MSC_VER) && ! defined(__INTEL_COMPILER)
// force intrinsic instead of WinAPI calls
#pragma intrinsic (_InterlockedIncrement)
#pragma intrinsic (_InterlockedDecrement)
#pragma intrinsic (_InterlockedCompareExchange)
#endif
// WinAPI function or MSVC intrinsic
@ -80,6 +95,11 @@ int Standard_Atomic_Decrement (volatile int* theValue)
return _InterlockedDecrement (reinterpret_cast<volatile long*>(theValue));
}
bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue)
{
return _InterlockedCompareExchange (reinterpret_cast<volatile long*>(theValue), theNewValue, theOldValue) == theOldValue;
}
#elif defined(__APPLE__)
// use atomic operations provided by MacOS
@ -95,6 +115,11 @@ int Standard_Atomic_Decrement (volatile int* theValue)
return OSAtomicDecrement32Barrier (theValue);
}
bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue)
{
return OSAtomicCompareAndSwapInt (theOldValue, theNewValue, theValue);
}
#elif defined(__ANDROID__)
// Atomic operations that were exported by the C library didn't
@ -114,34 +139,9 @@ int Standard_Atomic_Decrement (volatile int* theValue)
return __atomic_dec (theValue) - 1; // analog of __sync_fetch_and_sub
}
#elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64))
// use x86 / x86_64 inline assembly (compatibility with alien compilers / old GCC)
inline int Standard_Atomic_Add (volatile int* theValue, int theVal)
bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue)
{
// C equivalent:
// *theValue += theVal;
// return *theValue;
int previous;
__asm__ __volatile__
(
"lock xadd %0,%1"
: "=q"(previous), "=m"(*theValue) //output
: "0"(theVal), "m"(*theValue) //input
: "memory" //clobbers
);
return previous + theVal;
}
int Standard_Atomic_Increment (volatile int* theValue)
{
return Standard_Atomic_Add (theValue, 1);
}
int Standard_Atomic_Decrement (volatile int* theValue)
{
return Standard_Atomic_Add (theValue, -1);
return __atomic_cmpxchg (theOldValue, theNewValue, theValue) == 0;
}
#else
@ -159,6 +159,16 @@ int Standard_Atomic_Decrement (volatile int* theValue)
return --(*theValue);
}
bool Standard_Atomic_CompareAndSwap (volatile int* theValue, int theOldValue, int theNewValue)
{
if (*theValue == theOldValue)
{
*theValue = theNewValue;
return true;
}
return false;
}
#endif
#endif //_Standard_Atomic_HeaderFile

View File

@ -0,0 +1,207 @@
// Created by: Kirill Gavrilov
// Copyright (c) 2018 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifdef _WIN32
#include <windows.h>
#else
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#endif
#include "Standard_Condition.hxx"
namespace
{
#ifndef _WIN32
//! clock_gettime() wrapper.
static void conditionGetRealTime (struct timespec& theTime)
{
#if defined(__APPLE__)
struct timeval aTime;
gettimeofday (&aTime, NULL);
theTime.tv_sec = aTime.tv_sec;
theTime.tv_nsec = aTime.tv_usec * 1000;
#else
clock_gettime (CLOCK_REALTIME, &theTime);
#endif
}
#endif
}
// =======================================================================
// function : Standard_Condition
// purpose :
// =======================================================================
Standard_Condition::Standard_Condition (bool theIsSet)
#ifdef _WIN32
: myEvent((void* )::CreateEvent (0, true, theIsSet, NULL))
#else
: myFlag (theIsSet)
#endif
{
#ifndef _WIN32
pthread_mutex_init(&myMutex, 0);
pthread_cond_init (&myCond, 0);
#endif
}
// =======================================================================
// function : ~Standard_Condition
// purpose :
// =======================================================================
Standard_Condition::~Standard_Condition()
{
#ifdef _WIN32
::CloseHandle ((HANDLE )myEvent);
#else
pthread_mutex_destroy(&myMutex);
pthread_cond_destroy (&myCond);
#endif
}
// =======================================================================
// function : Set
// purpose :
// =======================================================================
void Standard_Condition::Set()
{
#ifdef _WIN32
::SetEvent ((HANDLE )myEvent);
#else
pthread_mutex_lock(&myMutex);
myFlag = true;
pthread_cond_broadcast(&myCond);
pthread_mutex_unlock (&myMutex);
#endif
}
// =======================================================================
// function : Reset
// purpose :
// =======================================================================
void Standard_Condition::Reset()
{
#ifdef _WIN32
::ResetEvent ((HANDLE )myEvent);
#else
pthread_mutex_lock (&myMutex);
myFlag = false;
pthread_mutex_unlock (&myMutex);
#endif
}
// =======================================================================
// function : Wait
// purpose :
// =======================================================================
void Standard_Condition::Wait()
{
#ifdef _WIN32
::WaitForSingleObject ((HANDLE )myEvent, INFINITE);
#else
pthread_mutex_lock (&myMutex);
if (!myFlag)
{
pthread_cond_wait (&myCond, &myMutex);
}
pthread_mutex_unlock (&myMutex);
#endif
}
// =======================================================================
// function : Wait
// purpose :
// =======================================================================
bool Standard_Condition::Wait (int theTimeMilliseconds)
{
#ifdef _WIN32
return (::WaitForSingleObject ((HANDLE )myEvent, (DWORD )theTimeMilliseconds) != WAIT_TIMEOUT);
#else
bool isSignalled = true;
pthread_mutex_lock (&myMutex);
if (!myFlag)
{
struct timespec aNow;
struct timespec aTimeout;
conditionGetRealTime (aNow);
aTimeout.tv_sec = (theTimeMilliseconds / 1000);
aTimeout.tv_nsec = (theTimeMilliseconds - aTimeout.tv_sec * 1000) * 1000000;
if (aTimeout.tv_nsec > 1000000000)
{
aTimeout.tv_sec += 1;
aTimeout.tv_nsec -= 1000000000;
}
aTimeout.tv_sec += aNow.tv_sec;
aTimeout.tv_nsec += aNow.tv_nsec;
isSignalled = (pthread_cond_timedwait (&myCond, &myMutex, &aTimeout) != ETIMEDOUT);
}
pthread_mutex_unlock (&myMutex);
return isSignalled;
#endif
}
// =======================================================================
// function : Check
// purpose :
// =======================================================================
bool Standard_Condition::Check()
{
#ifdef _WIN32
return (::WaitForSingleObject ((HANDLE )myEvent, (DWORD )0) != WAIT_TIMEOUT);
#else
bool isSignalled = true;
pthread_mutex_lock (&myMutex);
if (!myFlag)
{
struct timespec aNow;
struct timespec aTimeout;
conditionGetRealTime (aNow);
aTimeout.tv_sec = aNow.tv_sec;
aTimeout.tv_nsec = aNow.tv_nsec + 100;
isSignalled = (pthread_cond_timedwait (&myCond, &myMutex, &aTimeout) != ETIMEDOUT);
}
pthread_mutex_unlock (&myMutex);
return isSignalled;
#endif
}
// =======================================================================
// function : CheckReset
// purpose :
// =======================================================================
bool Standard_Condition::CheckReset()
{
#ifdef _WIN32
const bool wasSignalled = (::WaitForSingleObject ((HANDLE )myEvent, (DWORD )0) != WAIT_TIMEOUT);
::ResetEvent ((HANDLE )myEvent);
return wasSignalled;
#else
pthread_mutex_lock (&myMutex);
bool wasSignalled = myFlag;
if (!myFlag)
{
struct timespec aNow;
struct timespec aTimeout;
conditionGetRealTime (aNow);
aTimeout.tv_sec = aNow.tv_sec;
aTimeout.tv_nsec = aNow.tv_nsec + 100;
wasSignalled = (pthread_cond_timedwait (&myCond, &myMutex, &aTimeout) != ETIMEDOUT);
}
myFlag = false;
pthread_mutex_unlock (&myMutex);
return wasSignalled;
#endif
}

View File

@ -0,0 +1,80 @@
// Created by: Kirill Gavrilov
// Copyright (c) 2018 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Standard_Condition_HeaderFile
#define _Standard_Condition_HeaderFile
#include <Standard.hxx>
#ifndef _WIN32
#include <pthread.h>
#endif
//! This is boolean flag intended for communication between threads.
//! One thread sets this flag to TRUE to indicate some event happened
//! and another thread either waits this event or checks periodically its state to perform job.
//!
//! This class provides interface similar to WinAPI Event objects.
class Standard_Condition
{
public:
//! Default constructor.
//! @param theIsSet Initial flag state
Standard_EXPORT Standard_Condition (bool theIsSet);
//! Destructor.
Standard_EXPORT ~Standard_Condition();
//! Set event into signaling state.
Standard_EXPORT void Set();
//! Reset event (unset signaling state)
Standard_EXPORT void Reset();
//! Wait for Event (infinity).
Standard_EXPORT void Wait();
//! Wait for signal requested time.
//! @param theTimeMilliseconds wait limit in milliseconds
//! @return true if get event
Standard_EXPORT bool Wait (int theTimeMilliseconds);
//! Do not wait for signal - just test it state.
//! @return true if get event
Standard_EXPORT bool Check();
//! Method perform two steps at-once - reset the event object
//! and returns true if it was in signaling state.
//! @return true if event object was in signaling state.
Standard_EXPORT bool CheckReset();
#ifdef _WIN32
//! Access native HANDLE to Event object.
void* getHandle() const { return myEvent; }
#endif
private:
#ifdef _WIN32
void* myEvent;
#else
pthread_mutex_t myMutex;
pthread_cond_t myCond;
bool myFlag;
#endif
};
#endif // _Standard_Condition_HeaderFile

View File

@ -58,33 +58,6 @@ static void deallocate_message(Standard_CString aMessage)
}
}
//! @def Standard_THREADLOCAL
//! Define Standard_THREADLOCAL modifier as C++11 thread_local keyword where it is available.
#if defined(__clang__)
// CLang version: standard CLang > 3.3 or XCode >= 8 (but excluding 32-bit ARM)
// Note: this has to be in separate #if to avoid failure of preprocessor on other platforms
#if __has_feature(cxx_thread_local)
#define Standard_THREADLOCAL thread_local
#endif
#elif defined(__INTEL_COMPILER)
#if (defined(_MSC_VER) && _MSC_VER >= 1900 && __INTEL_COMPILER > 1400)
// requires msvcrt vc14+ (Visual Studio 2015+)
#define Standard_THREADLOCAL thread_local
#elif (!defined(_MSC_VER) && __INTEL_COMPILER > 1500)
#define Standard_THREADLOCAL thread_local
#endif
#elif (defined(_MSC_VER) && _MSC_VER >= 1900)
// msvcrt coming with vc14+ (VS2015+)
#define Standard_THREADLOCAL thread_local
#elif (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
// GCC >= 4.8
#define Standard_THREADLOCAL thread_local
#endif
#ifndef Standard_THREADLOCAL
#define Standard_THREADLOCAL
#endif
// ******************************************************************
// Standard_Failure *
// ******************************************************************

View File

@ -68,6 +68,33 @@
#define Standard_UNUSED
#endif
//! @def Standard_THREADLOCAL
//! Define Standard_THREADLOCAL modifier as C++11 thread_local keyword where it is available.
#if defined(__clang__)
// CLang version: standard CLang > 3.3 or XCode >= 8 (but excluding 32-bit ARM)
// Note: this has to be in separate #if to avoid failure of preprocessor on other platforms
#if __has_feature(cxx_thread_local)
#define Standard_THREADLOCAL thread_local
#endif
#elif defined(__INTEL_COMPILER)
#if (defined(_MSC_VER) && _MSC_VER >= 1900 && __INTEL_COMPILER > 1400)
// requires msvcrt vc14+ (Visual Studio 2015+)
#define Standard_THREADLOCAL thread_local
#elif (!defined(_MSC_VER) && __INTEL_COMPILER > 1500)
#define Standard_THREADLOCAL thread_local
#endif
#elif (defined(_MSC_VER) && _MSC_VER >= 1900)
// msvcrt coming with vc14+ (VS2015+)
#define Standard_THREADLOCAL thread_local
#elif (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))
// GCC >= 4.8
#define Standard_THREADLOCAL thread_local
#endif
#ifndef Standard_THREADLOCAL
#define Standard_THREADLOCAL
#endif
//! @def Standard_DEPRECATED("message")
//! Can be used in declaration of a method or a class to mark it as deprecated.
//! Use of such method or class will cause compiler warning (if supported by