mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
0022848: Optimize projection of points in ShapeAnalysis_Surface
This commit is contained in:
parent
88c36d5906
commit
6062bf3e4a
@ -10,8 +10,28 @@
|
|||||||
private class FuncExtPS from Extrema
|
private class FuncExtPS from Extrema
|
||||||
|
|
||||||
inherits FunctionSetWithDerivatives from math
|
inherits FunctionSetWithDerivatives from math
|
||||||
---Purpose: Function to find the extrema of the
|
---Purpose:
|
||||||
-- distance between a point and a surface.
|
--
|
||||||
|
-- Functional for search of extremum of the distance between point P and
|
||||||
|
-- surface S, starting from approximate solution (u0, v0).
|
||||||
|
--
|
||||||
|
-- The class inherits math_FunctionSetWithDerivatives and thus is intended
|
||||||
|
-- for use in math_FunctionSetRoot algorithm .
|
||||||
|
--
|
||||||
|
-- Denoting derivatives of the surface S(u,v) by u and v, respectively, as
|
||||||
|
-- Su and Sv, the two functions to be nullified are:
|
||||||
|
--
|
||||||
|
-- F1(u,v) = (S - P) * Su
|
||||||
|
-- F2(u,v) = (S - P) * Sv
|
||||||
|
--
|
||||||
|
-- The derivatives of the functional are:
|
||||||
|
--
|
||||||
|
-- Duf1(u,v) = Su^2 + (S-P) * Suu;
|
||||||
|
-- Dvf1(u,v) = Su * Sv + (S-P) * Suv
|
||||||
|
-- Duf2(u,v) = Sv * Su + (S-P) * Suv = Dvf1
|
||||||
|
-- Dvf2(u,v) = Sv^2 + (S-P) * Svv
|
||||||
|
--
|
||||||
|
-- Here * denotes scalar product, and ^2 is square power.
|
||||||
|
|
||||||
uses POnSurf from Extrema,
|
uses POnSurf from Extrema,
|
||||||
SequenceOfPOnSurf from Extrema,
|
SequenceOfPOnSurf from Extrema,
|
||||||
@ -74,13 +94,6 @@ is
|
|||||||
raises OutOfRange;
|
raises OutOfRange;
|
||||||
-- if N < 1 or N > NbExt(me).
|
-- if N < 1 or N > NbExt(me).
|
||||||
|
|
||||||
-- Modified by skv - Thu Sep 30 15:19:59 2004 OCC593 Begin
|
|
||||||
HasDegIso(me) returns Boolean from Standard;
|
|
||||||
-- Modified by skv - Thu Sep 30 15:19:59 2004 OCC593 End
|
|
||||||
|
|
||||||
Bidon(me) returns SurfacePtr from Adaptor3d
|
|
||||||
is static private;
|
|
||||||
|
|
||||||
fields
|
fields
|
||||||
myP : Pnt from gp;
|
myP : Pnt from gp;
|
||||||
myS : SurfacePtr from Adaptor3d;
|
myS : SurfacePtr from Adaptor3d;
|
||||||
@ -93,7 +106,5 @@ fields
|
|||||||
myPoint: SequenceOfPOnSurf from Extrema;
|
myPoint: SequenceOfPOnSurf from Extrema;
|
||||||
myPinit: Boolean;
|
myPinit: Boolean;
|
||||||
mySinit: Boolean;
|
mySinit: Boolean;
|
||||||
myUIsoIsDeg: Boolean;
|
|
||||||
myVIsoIsDeg: Boolean;
|
|
||||||
|
|
||||||
end FuncExtPS;
|
end FuncExtPS;
|
||||||
|
@ -13,108 +13,19 @@
|
|||||||
#include <Precision.hxx>
|
#include <Precision.hxx>
|
||||||
#include <GeomAbs_IsoType.hxx>
|
#include <GeomAbs_IsoType.hxx>
|
||||||
|
|
||||||
/*-----------------------------------------------------------------------------
|
|
||||||
Fonctions permettant de rechercher une distance extremale entre un point P
|
|
||||||
et une surface S (en partant d'un point approche S(u0,v0)).
|
|
||||||
Cette classe herite de math_FunctionSetWithDerivatives et est utilisee par
|
|
||||||
l'algorithme math_FunctionSetRoot.
|
|
||||||
Si on note Dus et Dvs, les derivees en u et v, les 2 fonctions a annuler sont:
|
|
||||||
{ F1(u,v) = (S(u,v)-P).Dus(u,v) }
|
|
||||||
{ F2(u,v) = (S(u,v)-P).Dvs(u,v) }
|
|
||||||
Si on note Duus, Dvvs et Duvs, les derivees secondes de S, les derivees de F1
|
|
||||||
et F2 sont egales a:
|
|
||||||
{ Duf1(u,v) = Dus(u,v).Dus(u,v) + (S(u,v)-P).Duus(u,v)
|
|
||||||
= ||Dus(u,v)|| ** 2 + (S(u,v)-P).Duus(u,v)
|
|
||||||
{ Dvf1(u,v) = Dvs(u,v).Dus(u,v) + (S(u,v)-P).Duvs(u,v)
|
|
||||||
{ Duf2(u,v) = Dus(u,v).Dvs(u,v) + (S(u,v)-P).Duvs(u,v) = dF1v(u,v)
|
|
||||||
{ Dvf2(u,v) = Dvs(u,v).Dvs(u,v) + (S(u,v)-P).Dvvs(u,v)
|
|
||||||
= ||Dvs(u,v)|| ** 2 + (S(u,v)-P).Dvvs(u,v)
|
|
||||||
|
|
||||||
----------------------------------------------------------------------------*/
|
|
||||||
// modified by NIZHNY-EAP Wed Nov 21 17:33:05 2001
|
|
||||||
// -- Dus and Dvs normalized, Df modified accordingly (BUC61043)
|
|
||||||
//=============================================================================
|
|
||||||
//------------------------------------------------------------------------------
|
|
||||||
// This method checks if isocurve is punctual (for details see Geom_OffsetSurface
|
|
||||||
// and Geom_OsculatingSurface
|
|
||||||
//-------------------------------------------------------------------------------
|
|
||||||
|
|
||||||
static Standard_Boolean IsoIsDeg (const Adaptor3d_Surface& S,
|
|
||||||
const Standard_Real Param,
|
|
||||||
const GeomAbs_IsoType IT,
|
|
||||||
const Standard_Real TolMin,
|
|
||||||
const Standard_Real TolMax)
|
|
||||||
{
|
|
||||||
Standard_Real U1=0.,U2=0.,V1=0.,V2=0.,T;
|
|
||||||
Standard_Boolean Along = Standard_True;
|
|
||||||
U1 = S.FirstUParameter();
|
|
||||||
U2 = S.LastUParameter();
|
|
||||||
V1 = S.FirstVParameter();
|
|
||||||
V2 = S.LastVParameter();
|
|
||||||
gp_Vec D1U,D1V;
|
|
||||||
gp_Pnt P;
|
|
||||||
Standard_Real Step,D1NormMax;
|
|
||||||
if (IT == GeomAbs_IsoV)
|
|
||||||
{
|
|
||||||
Step = (U2 - U1)/10;
|
|
||||||
D1NormMax=0.;
|
|
||||||
for (T=U1;T<=U2;T=T+Step)
|
|
||||||
{
|
|
||||||
S.D1(T,Param,P,D1U,D1V);
|
|
||||||
D1NormMax=Max(D1NormMax,D1U.Magnitude());
|
|
||||||
}
|
|
||||||
|
|
||||||
if (D1NormMax >TolMax || D1NormMax < TolMin )
|
|
||||||
Along = Standard_False;
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
Step = (V2 - V1)/10;
|
|
||||||
D1NormMax=0.;
|
|
||||||
for (T=V1;T<=V2;T=T+Step)
|
|
||||||
{
|
|
||||||
S.D1(Param,T,P,D1U,D1V);
|
|
||||||
D1NormMax=Max(D1NormMax,D1V.Magnitude());
|
|
||||||
}
|
|
||||||
|
|
||||||
if (D1NormMax >TolMax || D1NormMax < TolMin )
|
|
||||||
Along = Standard_False;
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
return Along;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
Extrema_FuncExtPS::Extrema_FuncExtPS ()
|
Extrema_FuncExtPS::Extrema_FuncExtPS ()
|
||||||
{
|
{
|
||||||
myPinit = Standard_False;
|
myPinit = Standard_False;
|
||||||
mySinit = Standard_False;
|
mySinit = Standard_False;
|
||||||
myUIsoIsDeg = Standard_False;
|
|
||||||
myVIsoIsDeg = Standard_False;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//=============================================================================
|
//=============================================================================
|
||||||
Extrema_FuncExtPS::Extrema_FuncExtPS (const gp_Pnt& P,
|
Extrema_FuncExtPS::Extrema_FuncExtPS (const gp_Pnt& P,
|
||||||
const Adaptor3d_Surface& S)
|
const Adaptor3d_Surface& S)
|
||||||
{
|
{
|
||||||
myP = P;
|
myP = P;
|
||||||
myS = (Adaptor3d_SurfacePtr)&S;
|
myS = (Adaptor3d_SurfacePtr)&S;
|
||||||
myUIsoIsDeg = Standard_False;
|
|
||||||
myVIsoIsDeg = Standard_False;
|
|
||||||
GeomAbs_SurfaceType aSType = S.GetType();
|
GeomAbs_SurfaceType aSType = S.GetType();
|
||||||
if(aSType == GeomAbs_BezierSurface ||
|
|
||||||
aSType == GeomAbs_BSplineSurface) {
|
|
||||||
Standard_Real u1, u2, v1, v2;
|
|
||||||
Standard_Real tol = Precision::Confusion();
|
|
||||||
u1 = S.FirstUParameter();
|
|
||||||
u2 = S.LastUParameter();
|
|
||||||
v1 = S.FirstVParameter();
|
|
||||||
v2 = S.LastVParameter();
|
|
||||||
myUIsoIsDeg = IsoIsDeg(S, u1, GeomAbs_IsoU, 0., tol) ||
|
|
||||||
IsoIsDeg(S, u2, GeomAbs_IsoU, 0., tol);
|
|
||||||
myVIsoIsDeg = IsoIsDeg(S, v1, GeomAbs_IsoV, 0., tol) ||
|
|
||||||
IsoIsDeg(S, v2, GeomAbs_IsoV, 0., tol);
|
|
||||||
}
|
|
||||||
myPinit = Standard_True;
|
myPinit = Standard_True;
|
||||||
mySinit = Standard_True;
|
mySinit = Standard_True;
|
||||||
}
|
}
|
||||||
@ -123,22 +34,7 @@ Extrema_FuncExtPS::Extrema_FuncExtPS (const gp_Pnt& P,
|
|||||||
void Extrema_FuncExtPS::Initialize(const Adaptor3d_Surface& S)
|
void Extrema_FuncExtPS::Initialize(const Adaptor3d_Surface& S)
|
||||||
{
|
{
|
||||||
myS = (Adaptor3d_SurfacePtr)&S;
|
myS = (Adaptor3d_SurfacePtr)&S;
|
||||||
myUIsoIsDeg = Standard_False;
|
|
||||||
myVIsoIsDeg = Standard_False;
|
|
||||||
GeomAbs_SurfaceType aSType = S.GetType();
|
GeomAbs_SurfaceType aSType = S.GetType();
|
||||||
if(aSType == GeomAbs_BezierSurface ||
|
|
||||||
aSType == GeomAbs_BSplineSurface) {
|
|
||||||
Standard_Real u1, u2, v1, v2;
|
|
||||||
Standard_Real tol = Precision::Confusion();
|
|
||||||
u1 = S.FirstUParameter();
|
|
||||||
u2 = S.LastUParameter();
|
|
||||||
v1 = S.FirstVParameter();
|
|
||||||
v2 = S.LastVParameter();
|
|
||||||
myUIsoIsDeg = IsoIsDeg(S, u1, GeomAbs_IsoU, 0., tol) ||
|
|
||||||
IsoIsDeg(S, u2, GeomAbs_IsoU, 0., tol);
|
|
||||||
myVIsoIsDeg = IsoIsDeg(S, v1, GeomAbs_IsoV, 0., tol) ||
|
|
||||||
IsoIsDeg(S, v2, GeomAbs_IsoV, 0., tol);
|
|
||||||
}
|
|
||||||
mySinit = Standard_True;
|
mySinit = Standard_True;
|
||||||
myPoint.Clear();
|
myPoint.Clear();
|
||||||
mySqDist.Clear();
|
mySqDist.Clear();
|
||||||
@ -174,19 +70,7 @@ Standard_Boolean Extrema_FuncExtPS::Value (const math_Vector& UV,
|
|||||||
myS->D1(myU,myV,myPs,Dus,Dvs);
|
myS->D1(myU,myV,myPs,Dus,Dvs);
|
||||||
|
|
||||||
gp_Vec PPs (myP,myPs);
|
gp_Vec PPs (myP,myPs);
|
||||||
// EAP
|
|
||||||
if(myVIsoIsDeg)
|
|
||||||
{
|
|
||||||
Standard_Real DusMod = Dus.Magnitude();
|
|
||||||
if (DusMod>gp::Resolution() && DusMod<1.)
|
|
||||||
Dus.Multiply(1/DusMod);
|
|
||||||
}
|
|
||||||
if (myUIsoIsDeg) {
|
|
||||||
Standard_Real DvsMod = Dvs.Magnitude();
|
|
||||||
if (DvsMod>gp::Resolution() && DvsMod<1.)
|
|
||||||
Dvs.Multiply(1/DvsMod);
|
|
||||||
}
|
|
||||||
|
|
||||||
F(1) = PPs.Dot(Dus);
|
F(1) = PPs.Dot(Dus);
|
||||||
F(2) = PPs.Dot(Dvs);
|
F(2) = PPs.Dot(Dvs);
|
||||||
|
|
||||||
@ -213,57 +97,13 @@ Standard_Boolean Extrema_FuncExtPS::Values (const math_Vector& UV,
|
|||||||
myS->D2(myU,myV,myPs,Dus,Dvs,Duus,Dvvs,Duvs);
|
myS->D2(myU,myV,myPs,Dus,Dvs,Duus,Dvvs,Duvs);
|
||||||
|
|
||||||
gp_Vec PPs (myP,myPs);
|
gp_Vec PPs (myP,myPs);
|
||||||
// EAP
|
|
||||||
// Df(1,1) = Dus.SquareMagnitude() + PPs.Dot(Duus);
|
|
||||||
// Df(1,2) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
|
||||||
// Df(2,1) = Df(1,2);
|
|
||||||
// Df(2,2) = Dvs.SquareMagnitude() + PPs.Dot(Dvvs);
|
|
||||||
|
|
||||||
// 25/03/02 akm : (OCC231) Further normalization of derivatives for surfaces
|
Df(1,1) = Dus.SquareMagnitude() + PPs.Dot(Duus);
|
||||||
// with singularities will hence be performed only when modulus
|
Df(1,2) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
||||||
// becomes less than 1.0. Thus the continuity will be kept,
|
Df(2,1) = Df(1,2);
|
||||||
// and normalization will be switched off 'far' from singularities.
|
Df(2,2) = Dvs.SquareMagnitude() + PPs.Dot(Dvvs);
|
||||||
// 1. V iso
|
|
||||||
Standard_Real DusMod2 = Dus.SquareMagnitude();
|
|
||||||
if (myVIsoIsDeg)
|
|
||||||
{
|
|
||||||
Standard_Real DusMod = Sqrt(DusMod2);
|
|
||||||
if (DusMod2>gp::Resolution() && DusMod2<1.)
|
|
||||||
{
|
|
||||||
Dus.Multiply(1/DusMod);
|
|
||||||
Df(1,1) = DusMod2 + PPs.Dot( (Duus*DusMod - Dus*(Dus.Dot(Duus)/DusMod)) / DusMod2 );
|
|
||||||
Df(1,2) = Dvs.Dot(Dus) + PPs.Dot( (Duvs*DusMod-Dus*(Dus.Dot(Duvs)/DusMod)) / DusMod2 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
Df(1,1) = DusMod2 + PPs.Dot(Duus);
|
|
||||||
Df(1,2) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
Df(1,1) = DusMod2 + PPs.Dot(Duus);
|
|
||||||
Df(1,2) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
|
||||||
}
|
|
||||||
// 2. U iso
|
|
||||||
Standard_Real DvsMod2 = Dvs.SquareMagnitude();
|
|
||||||
if (myUIsoIsDeg)
|
|
||||||
{
|
|
||||||
Standard_Real DvsMod = Sqrt(DvsMod2);
|
|
||||||
if (DvsMod2>gp::Resolution() && DvsMod2<1.)
|
|
||||||
{
|
|
||||||
Dvs.Multiply(1/DvsMod);
|
|
||||||
Df(2,1) = Dvs.Dot(Dus) + PPs.Dot( (Duvs*DvsMod-Dvs*(Dvs.Dot(Duvs)/DvsMod)) / DvsMod2 );
|
|
||||||
Df(2,2) = DvsMod2 + PPs.Dot( (Duus*DvsMod - Dus*(Dus.Dot(Duus)/DvsMod)) / DvsMod2 );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
Df(2,1) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
|
||||||
Df(2,2) = DvsMod2 + PPs.Dot(Dvvs);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
Df(2,1) = Dvs.Dot(Dus) + PPs.Dot(Duvs);
|
|
||||||
Df(2,2) = DvsMod2 + PPs.Dot(Dvvs);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
// 3. Value
|
||||||
F(1) = PPs.Dot(Dus);
|
F(1) = PPs.Dot(Dus);
|
||||||
F(2) = PPs.Dot(Dvs);
|
F(2) = PPs.Dot(Dvs);
|
||||||
|
|
||||||
@ -298,11 +138,3 @@ Extrema_POnSurf Extrema_FuncExtPS::Point (const Standard_Integer N) const
|
|||||||
if (!myPinit || !mySinit) Standard_TypeMismatch::Raise();
|
if (!myPinit || !mySinit) Standard_TypeMismatch::Raise();
|
||||||
return myPoint.Value(N);
|
return myPoint.Value(N);
|
||||||
}
|
}
|
||||||
//=============================================================================
|
|
||||||
|
|
||||||
// Modified by skv - Thu Sep 30 15:21:07 2004 OCC593 Begin
|
|
||||||
Standard_Boolean Extrema_FuncExtPS::HasDegIso() const
|
|
||||||
{
|
|
||||||
return myUIsoIsDeg || myVIsoIsDeg;
|
|
||||||
}
|
|
||||||
// Modified by skv - Thu Sep 30 15:21:07 2004 OCC593 End
|
|
||||||
|
@ -416,9 +416,6 @@ void Extrema_GenExtPS::FindSolution(const gp_Pnt& P, const math_Vector& UV, cons
|
|||||||
|
|
||||||
Standard_Integer aNbMaxIter = 100;
|
Standard_Integer aNbMaxIter = 100;
|
||||||
|
|
||||||
if (myF.HasDegIso())
|
|
||||||
aNbMaxIter = 150;
|
|
||||||
|
|
||||||
gp_Pnt PStart = myS->Value(UV(1), UV(2));
|
gp_Pnt PStart = myS->Value(UV(1), UV(2));
|
||||||
Standard_Real DistStart = P.SquareDistance(PStart);
|
Standard_Real DistStart = P.SquareDistance(PStart);
|
||||||
Standard_Real DistSol = DistStart;
|
Standard_Real DistSol = DistStart;
|
||||||
|
@ -985,6 +985,7 @@ gp_Pnt2d ShapeAnalysis_Surface::ValueOfUV(const gp_Pnt& P3D,const Standard_Real
|
|||||||
dv = Min (myVDelt, SurfAdapt.VResolution (preci));
|
dv = Min (myVDelt, SurfAdapt.VResolution (preci));
|
||||||
myExtSrf = mySurf;
|
myExtSrf = mySurf;
|
||||||
Standard_Real Tol = Precision::PConfusion();
|
Standard_Real Tol = Precision::PConfusion();
|
||||||
|
myExtPS.SetFlag (Extrema_ExtFlag_MIN);
|
||||||
myExtPS.Initialize ( myExtSrf, uf-du, ul+du, vf-dv, vl+dv, Tol, Tol );
|
myExtPS.Initialize ( myExtSrf, uf-du, ul+du, vf-dv, vl+dv, Tol, Tol );
|
||||||
myExtOK = Standard_True;
|
myExtOK = Standard_True;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user