1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00

0026506: Change class BRepLib_CheckCurveOnSurface

1. Inline methods have been moved to hxx-file.
2. Geometric part of BRepLib_CheckCurveOnSurface has been moved to GeomLib_CheckCurveOnSurface.

Move try/catch treatment to low level (from BRepLib_CheckCurveOnSurface to GeomLib_CheckCurveOnSurface).
This commit is contained in:
nbv 2015-08-06 12:13:41 +03:00 committed by bugmaster
parent 7e17e8f08d
commit 5adae760bf
8 changed files with 860 additions and 850 deletions

View File

@ -12,320 +12,14 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <BRep_Tool.hxx>
#include <BRepLib_CheckCurveOnSurface.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dAdaptor.hxx>
#include <Geom2dAdaptor_GHCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Plane.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomProjLib.hxx>
#include <math_Matrix.hxx>
#include <math_MultipleVarFunctionWithHessian.hxx>
#include <math_NewtonMinimum.hxx>
#include <math_PSO.hxx>
#include <math_PSOParticlesPool.hxx>
#include <NCollection_Array1.hxx>
#include <OSD_Parallel.hxx>
#include <ProjLib_ProjectedCurve.hxx>
#include <Standard_ErrorHandler.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Face.hxx>
class BRepLib_CheckCurveOnSurface_TargetFunc;
static
Standard_Boolean MinComputing(
BRepLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter);
static Standard_Integer FillSubIntervals( const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals = 0);
//=======================================================================
//class : BRepLib_CheckCurveOnSurface_TargetFunc
//purpose : Target function (to be minimized)
//=======================================================================
class BRepLib_CheckCurveOnSurface_TargetFunc :
public math_MultipleVarFunctionWithHessian
{
public:
BRepLib_CheckCurveOnSurface_TargetFunc( const Adaptor3d_Curve& theC3D,
const Adaptor3d_Curve& theAdCS,
const Standard_Real theFirst,
const Standard_Real theLast):
myCurve1(theC3D),
myCurve2(theAdCS),
myFirst(theFirst),
myLast(theLast)
{
}
//returns the number of parameters of the function
//(the function is one-dimension).
virtual Standard_Integer NbVariables() const {
return 1;
}
//returns value of the function when parameters are equal to theX
virtual Standard_Boolean Value(const math_Vector& theX,
Standard_Real& theFVal)
{
return Value(theX(1), theFVal);
}
//returns value of the one-dimension-function when parameter
//is equal to theX
Standard_Boolean Value( const Standard_Real theX,
Standard_Real& theFVal) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
return Standard_False;
const gp_Pnt aP1(myCurve1.Value(theX)),
aP2(myCurve2.Value(theX));
theFVal = -1.0*aP1.SquareDistance(aP2);
}
catch(Standard_Failure) {
return Standard_False;
}
//
return Standard_True;
}
//see analogical method for abstract owner class math_MultipleVarFunction
virtual Standard_Integer GetStateNumber()
{
return 0;
}
//returns the gradient of the function when parameters are
//equal to theX
virtual Standard_Boolean Gradient(const math_Vector& theX,
math_Vector& theGrad)
{
return Derive(theX(1), theGrad(1));
}
//returns 1st derivative of the the one-dimension-function when
//parameter is equal to theX
Standard_Boolean Derive(const Standard_Real theX, Standard_Real& theDeriv) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
{
return Standard_False;
}
//
gp_Pnt aP1, aP2;
gp_Vec aDC1, aDC2;
//
myCurve1.D1(theX, aP1, aDC1);
myCurve2.D1(theX, aP2, aDC2);
const gp_Vec aVec1(aP1, aP2), aVec2(aDC2-aDC1);
//
theDeriv = -2.0*aVec1.Dot(aVec2);
}
catch(Standard_Failure)
{
return Standard_False;
}
return Standard_True;
}
//returns value and gradient
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Gradient(theX, theGrad)) {
return Standard_False;
}
//
return Standard_True;
}
//returns value, gradient and hessian
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad,
math_Matrix& theHessian)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Gradient(theX, theGrad))
{
return Standard_False;
}
//
theHessian(1,1) = theGrad(1);
//
return Standard_True;
}
//
Standard_Real FirstParameter() const
{
return myFirst;
}
//
Standard_Real LastParameter() const
{
return myLast;
}
private:
BRepLib_CheckCurveOnSurface_TargetFunc operator=(BRepLib_CheckCurveOnSurface_TargetFunc&);
//checks if the function can be computed when its parameter is
//equal to theParam
Standard_Boolean CheckParameter(const Standard_Real theParam) const
{
return ((myFirst <= theParam) && (theParam <= myLast));
}
const Adaptor3d_Curve& myCurve1;
const Adaptor3d_Curve& myCurve2;
const Standard_Real myFirst;
const Standard_Real myLast;
};
//=======================================================================
//class : BRepLib_CheckCurveOnSurface_Local
//purpose : Created for parallelization possibility only
//=======================================================================
class BRepLib_CheckCurveOnSurface_Local
{
public:
BRepLib_CheckCurveOnSurface_Local(
const Handle(Geom_Curve)& theCurve3D,
const Handle(Geom2d_Curve)& theCurve2D,
const Handle(Geom_Surface)& theSurface,
const TColStd_Array1OfReal& theIntervalsArr,
const Standard_Real theEpsilonRange,
const Standard_Integer theNbParticles):
myCurve3D(theCurve3D),
myCurve2D(theCurve2D),
mySurface(theSurface),
mySubIntervals(theIntervalsArr),
myEpsilonRange(theEpsilonRange),
myNbParticles(theNbParticles),
myArrOfDist(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1),
myArrOfParam(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1)
{
}
void operator()(const Standard_Integer& theIndex) const
{
//For every sub-interval (which is set by mySubIntervals array) this method
//computes optimal value of BRepLib_CheckCurveOnSurface_TargetFunc function.
//This optimal value will be put in corresponding (depending on theIndex - the
//identificator of the current interval in mySubIntervals array) cell of
//myArrOfDist and myArrOfParam arrays.
const GeomAdaptor_Curve anAC(myCurve3D);
const Handle(Adaptor2d_HCurve2d) anAd2dC = new Geom2dAdaptor_GHCurve(myCurve2D);
const Handle(Adaptor3d_HSurface) anAdS = new GeomAdaptor_HSurface(mySurface);
const Adaptor3d_CurveOnSurface anACS(anAd2dC, anAdS);
BRepLib_CheckCurveOnSurface_TargetFunc aFunc( anAC, anACS,
mySubIntervals.Value(theIndex),
mySubIntervals.Value(theIndex+1));
Standard_Real aMinDist = RealLast(), aPar = 0.0;
if(!MinComputing(aFunc, myEpsilonRange, myNbParticles, aMinDist, aPar))
{
myArrOfDist(theIndex) = RealLast();
myArrOfParam(theIndex) = aFunc.FirstParameter();
return;
}
myArrOfDist(theIndex) = aMinDist;
myArrOfParam(theIndex) = aPar;
}
//Returns optimal value (inverse of square of maximal distance)
void OptimalValues(Standard_Real& theMinimalValue, Standard_Real& theParameter) const
{
//This method looks for the minimal value of myArrOfDist.
const Standard_Integer aStartInd = myArrOfDist.Lower();
theMinimalValue = myArrOfDist(aStartInd);
theParameter = myArrOfParam(aStartInd);
for(Standard_Integer i = aStartInd + 1; i <= myArrOfDist.Upper(); i++)
{
if(myArrOfDist(i) < theMinimalValue)
{
theMinimalValue = myArrOfDist(i);
theParameter = myArrOfParam(i);
}
}
}
private:
BRepLib_CheckCurveOnSurface_Local operator=(BRepLib_CheckCurveOnSurface_Local&);
const Handle(Geom_Curve)& myCurve3D;
const Handle(Geom2d_Curve)& myCurve2D;
const Handle(Geom_Surface)& mySurface;
const TColStd_Array1OfReal& mySubIntervals;
const Standard_Real myEpsilonRange;
const Standard_Integer myNbParticles;
mutable NCollection_Array1<Standard_Real> myArrOfDist;
mutable NCollection_Array1<Standard_Real> myArrOfParam;
};
//=======================================================================
//function : BRepLib_CheckCurveOnSurface
//purpose :
//=======================================================================
BRepLib_CheckCurveOnSurface::BRepLib_CheckCurveOnSurface()
:
myFirst(0.),
myLast(0.),
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.)
{
}
//=======================================================================
//function : BRepLib_CheckCurveOnSurface
//purpose :
@ -333,32 +27,10 @@ BRepLib_CheckCurveOnSurface::BRepLib_CheckCurveOnSurface()
BRepLib_CheckCurveOnSurface::BRepLib_CheckCurveOnSurface
( const TopoDS_Edge& theEdge,
const TopoDS_Face& theFace)
:
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.)
{
Init(theEdge, theFace);
}
//=======================================================================
//function : BRepLib_CheckCurveOnSurface
//purpose :
//=======================================================================
BRepLib_CheckCurveOnSurface::BRepLib_CheckCurveOnSurface
(const Handle(Geom_Curve)& the3DCurve,
const Handle(Geom2d_Curve)& the2DCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast)
:
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.)
{
Init(the3DCurve, the2DCurve, theSurface, theFirst, theLast);
}
//=======================================================================
//function : Init
//purpose :
@ -367,102 +39,61 @@ void BRepLib_CheckCurveOnSurface::Init
(const TopoDS_Edge& theEdge,
const TopoDS_Face& theFace)
{
myCurve.Nullify();
myPCurve.Nullify();
myPCurve2.Nullify();
mySurface.Nullify();
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
myFirst = 0.0;
myLast = 0.0;
myCOnSurfGeom.Init();
if (theEdge.IsNull() || theFace.IsNull()) {
if (theEdge.IsNull() || theFace.IsNull())
{
return;
}
//
if (BRep_Tool::Degenerated(theEdge) ||
!BRep_Tool::IsGeometric(theEdge)) {
!BRep_Tool::IsGeometric(theEdge))
{
return;
}
//
TopLoc_Location aLocE, aLocF, aLocC2D;
Standard_Real aFirst = 0.0, aLast = 0.0;
//
// 3D curve initialization
const Handle(Geom_Curve)& aC = BRep_Tool::Curve(theEdge, aLocE, myFirst, myLast);
myCurve = Handle(Geom_Curve)::DownCast(aC->Transformed(aLocE.Transformation()));
const Handle(Geom_Curve)& aC3dTmp = BRep_Tool::Curve(theEdge, aLocE, aFirst, aLast);
const Handle(Geom_Curve) aC3d(Handle(Geom_Curve)::DownCast(aC3dTmp->Transformed(aLocE.Transformation())));
// Surface initialization
const Handle(Geom_Surface)& aS = BRep_Tool::Surface(theFace, aLocF);
mySurface = Handle(Geom_Surface)::DownCast(aS->Transformed(aLocF.Transformation()));
const Handle(Geom_Surface)& aSTmp = BRep_Tool::Surface(theFace, aLocF);
const Handle(Geom_Surface) aS(Handle(Geom_Surface)::DownCast(aSTmp->Transformed(aLocF.Transformation())));
//
// 2D curves initialization
myPCurve = BRep_Tool::CurveOnSurface(theEdge, theFace, myFirst, myLast);
myPCurve = BRep_Tool::CurveOnSurface(theEdge, theFace, aFirst, aLast);
if(BRep_Tool::IsClosed(theEdge, theFace))
myPCurve2 = BRep_Tool::CurveOnSurface(TopoDS::Edge(theEdge.Reversed()),
theFace, myFirst, myLast);
}
theFace, aFirst, aLast);
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void BRepLib_CheckCurveOnSurface::Init
(const Handle(Geom_Curve)& the3DCurve,
const Handle(Geom2d_Curve)& the2DCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast)
{
myCurve = the3DCurve;
myPCurve = the2DCurve;
myPCurve2.Nullify();
mySurface = theSurface;
myFirst = theFirst;
myLast = theLast;
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
myCOnSurfGeom.Init(aC3d, aS, aFirst, aLast);
}
//=======================================================================
//function : Perform
//purpose : if isTheMTDisabled == TRUE parallelization is not used
//=======================================================================
#ifndef HAVE_TBB
//After fixing bug # 26365, this fragment should be deleted
//(together the text "#ifdef HAVE_TBB")
void BRepLib_CheckCurveOnSurface::Perform(const Standard_Boolean)
{
const Standard_Boolean isTheMTDisabled = Standard_True;
#else
void BRepLib_CheckCurveOnSurface::Perform(const Standard_Boolean isTheMTDisabled)
{
#endif
try {
OCC_CATCH_SIGNALS
//
// 1. Check data
CheckData();
if (myErrorStatus) {
// Compute the max distance
Compute(myPCurve, isTheMTDisabled);
if (ErrorStatus())
{
return;
}
// 2. Compute the max distance
Compute(myPCurve, isTheMTDisabled);
//
if (!myPCurve2.IsNull()) {
if (!myPCurve2.IsNull())
{
// compute max distance for myPCurve2
// (for the second curve on closed surface)
Compute(myPCurve2, isTheMTDisabled);
}
}
catch (Standard_Failure) {
myErrorStatus = 3;
}
}
//=======================================================================
//function : Compute
@ -471,247 +102,5 @@ void BRepLib_CheckCurveOnSurface::Perform(const Standard_Boolean isTheMTDisabled
void BRepLib_CheckCurveOnSurface::Compute(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean isTheMTDisabled)
{
const Standard_Real anEpsilonRange = 1.e-3;
Standard_Integer aNbParticles = 3;
//Polynomial function with degree n has not more than n-1 maxima and
//minima (degree of 1st derivative is equal to n-1 => 1st derivative has
//no greater than n-1 roots). Consequently, this function has
//maximum n monotonicity intervals. That is a good idea to try to put
//at least one particle in every monotonicity interval. Therefore,
//number of particles should be equal to n.
const Standard_Integer aNbSubIntervals =
FillSubIntervals( myCurve, thePCurve,
myFirst, myLast, aNbParticles);
if(!aNbSubIntervals)
{
myErrorStatus = 3;
return;
}
TColStd_Array1OfReal anIntervals(1, aNbSubIntervals+1);
FillSubIntervals(myCurve, thePCurve, myFirst, myLast, aNbParticles, &anIntervals);
BRepLib_CheckCurveOnSurface_Local aComp(myCurve, thePCurve,
mySurface, anIntervals, anEpsilonRange, aNbParticles);
OSD_Parallel::For(anIntervals.Lower(), anIntervals.Upper(), aComp, isTheMTDisabled);
aComp.OptimalValues(myMaxDistance, myMaxParameter);
myMaxDistance = sqrt(Abs(myMaxDistance));
}
//=======================================================================
// Function : FillSubIntervals
// purpose : Divides [theFirst, theLast] interval on parts
// in order to make searching-algorithm more precisely
// (fills theSubIntervals array).
// Returns number of subintervals.
//=======================================================================
Standard_Integer FillSubIntervals(const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals)
{
const Standard_Real anArrTempC[2] = {theFirst, theLast};
const TColStd_Array1OfReal anArrTemp(anArrTempC[0], 1, 2);
theNbParticles = 3;
Handle(Geom2d_BSplineCurve) aBS2DCurv;
Handle(Geom_BSplineCurve) aBS3DCurv;
//
if (theCurve3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
aBS3DCurv = Handle(Geom_BSplineCurve)::
DownCast(Handle(Geom_TrimmedCurve)::
DownCast(theCurve3d)->BasisCurve());
}
else
{
aBS3DCurv = Handle(Geom_BSplineCurve)::DownCast(theCurve3d);
}
if (theCurve2d->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::
DownCast(Handle(Geom2d_TrimmedCurve)::
DownCast(theCurve2d)->BasisCurve());
}
else
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::DownCast(theCurve2d);
}
const TColStd_Array1OfReal &anArrKnots3D = !aBS3DCurv.IsNull() ?
aBS3DCurv->Knots() :
anArrTemp;
const TColStd_Array1OfReal &anArrKnots2D = !aBS2DCurv.IsNull() ?
aBS2DCurv->Knots() :
anArrTemp;
Standard_Integer aNbSubIntervals = 1;
try
{
OCC_CATCH_SIGNALS
const Standard_Integer anIndMax3D = anArrKnots3D.Upper(),
anIndMax2D = anArrKnots2D.Upper();
Standard_Integer anIndex3D = anArrKnots3D.Lower(),
anIndex2D = anArrKnots2D.Lower();
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = theFirst;
while((anIndex3D <= anIndMax3D) && (anIndex2D <= anIndMax2D))
{
const Standard_Real aVal3D = anArrKnots3D.Value(anIndex3D),
aVal2D = anArrKnots2D.Value(anIndex2D);
const Standard_Real aDelta = aVal3D - aVal2D;
if(aDelta < Precision::PConfusion())
{//aVal3D <= aVal2D
if((aVal3D > theFirst) && (aVal3D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal3D;
}
anIndex3D++;
if(-aDelta < Precision::PConfusion())
{//aVal3D == aVal2D
anIndex2D++;
}
}
else
{//aVal2D < aVal3D
if((aVal2D > theFirst) && (aVal2D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal2D;
}
anIndex2D++;
}
}
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals+1) = theLast;
if(!aBS3DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS3DCurv->Degree());
}
if(!aBS2DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS2DCurv->Degree());
}
}
catch(Standard_Failure)
{
#ifdef OCCT_DEBUG
cout << "ERROR! BRepLib_CheckCurveOnSurface.cxx, "
"FillSubIntervals(): Incorrect filling!" << endl;
#endif
aNbSubIntervals = 0;
}
return aNbSubIntervals;
}
//=======================================================================
//class : MinComputing
//purpose : Performs computing minimal value
//=======================================================================
Standard_Boolean MinComputing (
BRepLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter)
{
try
{
OCC_CATCH_SIGNALS
//They are used for finding a position of theNbParticles worst places
const Standard_Integer aNbControlPoints = 3*theNbParticles;
//
math_Vector aParInf(1, 1), aParSup(1, 1), anOutputParam(1, 1), aStepPar(1,1);
aParInf(1) = theFunction.FirstParameter();
aParSup(1) = theFunction.LastParameter();
theBestParameter = aParInf(1);
theBestValue = RealLast();
const Standard_Real aDeltaParam = aParSup(1) - aParInf(1);
if(aDeltaParam < Precision::PConfusion())
return Standard_False;
aStepPar(1) = theEpsilon*aDeltaParam;
math_PSOParticlesPool aParticles(theNbParticles, 1);
const Standard_Real aStep = aDeltaParam/(aNbControlPoints-1);
Standard_Integer aCount = 1;
for(Standard_Real aPrm = aParInf(1); aCount <= aNbControlPoints; aCount++,
aPrm = (aCount == aNbControlPoints)? aParSup(1) : aPrm+aStep)
{
Standard_Real aVal = RealLast();
theFunction.Value(aPrm, aVal);
PSO_Particle* aParticle = aParticles.GetWorstParticle();
if(aVal > aParticle->BestDistance)
continue;
aParticle->Position[0] = aPrm;
aParticle->BestPosition[0] = aPrm;
aParticle->Distance = aVal;
aParticle->BestDistance = aVal;
}
math_PSO aPSO(&theFunction, aParInf, aParSup, aStepPar);
aPSO.Perform(aParticles, theNbParticles, theBestValue, anOutputParam);
//Here, anOutputParam contains parameter, which is near to optimal.
//It needs to be more precise. Precision is made by math_NewtonMinimum.
math_NewtonMinimum anA(theFunction);
anA.Perform(theFunction, anOutputParam);
if(!anA.IsDone())
{
#ifdef OCCT_DEBUG
cout << "BRepLib_CheckCurveOnSurface::Compute(): No solution found!" << endl;
#endif
return Standard_False;
}
anA.Location(anOutputParam);
theBestParameter = anOutputParam(1);
theBestValue = anA.Minimum();
}
catch(Standard_Failure)
{
#ifdef OCCT_DEBUG
cout << "BRepLib_CheckCurveOnSurface.cxx: Exception in MinComputing()!" << endl;
#endif
return Standard_False;
}
return Standard_True;
myCOnSurfGeom.Perform(thePCurve, isTheMTDisabled);
}

View File

@ -15,85 +15,68 @@
#ifndef _BRepLib_CheckCurveOnSurface_HeaderFile
#define _BRepLib_CheckCurveOnSurface_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
class Geom_Curve;
class Geom2d_Curve;
class Geom_Surface;
class TopoDS_Edge;
class TopoDS_Face;
#include <GeomLib_CheckCurveOnSurface.hxx>
//! Computes the max distance between edge and its
//! 2d representation on the face.
//!
//! The algorithm can be initialized in the following ways:
//! 1. Input args are Edge and Face;
//! 2. Input args are 3D curve, 2d curve, Surface and
//! parametric range of the curve (first and last values).
class BRepLib_CheckCurveOnSurface
{
public:
DEFINE_STANDARD_ALLOC
//! Empty contructor
Standard_EXPORT BRepLib_CheckCurveOnSurface();
//! Default contructor
BRepLib_CheckCurveOnSurface() {}
//! Contructor
Standard_EXPORT BRepLib_CheckCurveOnSurface(const TopoDS_Edge& theEdge, const TopoDS_Face& theFace);
//! Contructor
Standard_EXPORT BRepLib_CheckCurveOnSurface(const Handle(Geom_Curve)& theCurve, const Handle(Geom2d_Curve)& thePCurve, const Handle(Geom_Surface)& theSurface, const Standard_Real theFirst, const Standard_Real theLast);
Standard_EXPORT BRepLib_CheckCurveOnSurface(const TopoDS_Edge& theEdge,
const TopoDS_Face& theFace);
//! Sets the data for the algorithm
Standard_EXPORT void Init (const TopoDS_Edge& theEdge, const TopoDS_Face& theFace);
//! Sets the data for the algorithm
Standard_EXPORT void Init (const Handle(Geom_Curve)& theCurve, const Handle(Geom2d_Curve)& thePCurve, const Handle(Geom_Surface)& theSurface, const Standard_Real theFirst, const Standard_Real theLast);
//! Returns my3DCurve
const Handle(Geom_Curve)& Curve() const;
//! Returns my2DCurve
const Handle(Geom2d_Curve)& PCurve() const;
//! Returns my2DCurve
const Handle(Geom2d_Curve)& PCurve2() const;
//! Returns mySurface
const Handle(Geom_Surface)& Surface() const;
//! Returns the range
void Range (Standard_Real& theFirst, Standard_Real& theLast);
//! Performs the calculation
//! If isTheMultyTheadDisabled == TRUE then computation will be made
//! without any parallelization.
Standard_EXPORT void Perform (const Standard_Boolean isTheMultyTheradDisabled = Standard_False);
//! Returns source 3D-Curve
const Handle(Geom_Curve)& Curve() const
{
return myCOnSurfGeom.Curve();
}
//! Returns mine 2D-Curve
const Handle(Geom2d_Curve)& PCurve() const
{
return myPCurve;
}
//! Returns 2nd 2D-Curve (if it exists, e.g. for seam-edge)
const Handle(Geom2d_Curve)& PCurve2() const
{
return myPCurve2;
}
//! Returns source surface
const Handle(Geom_Surface)& Surface() const
{
return myCOnSurfGeom.Surface();
}
//! Returns first and last parameter of the curves
//! (2D- and 3D-curves are considered to have same range)
void Range (Standard_Real& theFirst, Standard_Real& theLast)
{
myCOnSurfGeom.Range(theFirst, theLast);
}
//! Returns true if the max distance has been found
Standard_Boolean IsDone() const;
Standard_Boolean IsDone() const
{
return myCOnSurfGeom.ErrorStatus() == 0;
}
//! Returns error status
//! The possible values are:
@ -101,58 +84,37 @@ public:
//! 1 - null curve or surface or 2d curve;
//! 2 - invalid parametric range;
//! 3 - error in calculations.
Standard_Integer ErrorStatus() const;
Standard_Integer ErrorStatus() const
{
return myCOnSurfGeom.ErrorStatus();
}
//! Returns max distance
Standard_Real MaxDistance() const;
Standard_Real MaxDistance() const
{
return myCOnSurfGeom.MaxDistance();
}
//! Returns parameter in which the distance is maximal
Standard_Real MaxParameter() const;
Standard_Real MaxParameter() const
{
return myCOnSurfGeom.MaxParameter();
}
protected:
//! Checks the data
Standard_EXPORT void CheckData();
//! Computes the max distance for the 3d curve <myCurve>
//! Computes the max distance for the 3d curve of <myCOnSurfGeom>
//! and 2d curve <thePCurve>
//! If isTheMultyTheadDisabled == TRUE then computation will be made
//! without any parallelization.
Standard_EXPORT void Compute (const Handle(Geom2d_Curve)& thePCurve, const Standard_Boolean isTheMultyTheradDisabled);
Standard_EXPORT void Compute (const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean isTheMultyTheradDisabled);
private:
Handle(Geom_Curve) myCurve;
GeomLib_CheckCurveOnSurface myCOnSurfGeom;
Handle(Geom2d_Curve) myPCurve;
Handle(Geom2d_Curve) myPCurve2;
Handle(Geom_Surface) mySurface;
Standard_Real myFirst;
Standard_Real myLast;
Standard_Integer myErrorStatus;
Standard_Real myMaxDistance;
Standard_Real myMaxParameter;
};
#include <BRepLib_CheckCurveOnSurface.lxx>
#endif // _BRepLib_CheckCurveOnSurface_HeaderFile

View File

@ -1,112 +0,0 @@
// Created by: Eugeny MALTCHIKOV
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom_Curve.hxx>
#include <Geom2d_Curve.hxx>
//=======================================================================
//function : Curve
//purpose :
//=======================================================================
inline const Handle(Geom_Curve)& BRepLib_CheckCurveOnSurface::Curve() const
{
return myCurve;
}
//=======================================================================
//function : PCurve
//purpose :
//=======================================================================
inline const Handle(Geom2d_Curve)& BRepLib_CheckCurveOnSurface::PCurve() const
{
return myPCurve;
}
//=======================================================================
//function : PCurve2
//purpose :
//=======================================================================
inline const Handle(Geom2d_Curve)& BRepLib_CheckCurveOnSurface::PCurve2() const
{
return myPCurve2;
}
//=======================================================================
//function : Surface
//purpose :
//=======================================================================
inline const Handle(Geom_Surface)& BRepLib_CheckCurveOnSurface::Surface() const
{
return mySurface;
}
//=======================================================================
//function : Range
//purpose :
//=======================================================================
inline void BRepLib_CheckCurveOnSurface::Range
(Standard_Real& theFirst,
Standard_Real& theLast)
{
theFirst = myFirst;
theLast = myLast;
}
//=======================================================================
//function : CheckData
//purpose :
//=======================================================================
inline void BRepLib_CheckCurveOnSurface::CheckData()
{
if (myCurve.IsNull() ||
myPCurve.IsNull() ||
mySurface.IsNull()) {
myErrorStatus = 1;
return;
}
//
if ((myCurve->FirstParameter() > myFirst) ||
(myCurve->LastParameter() < myLast) ||
(myPCurve->FirstParameter() > myFirst) ||
(myPCurve->LastParameter() < myLast)) {
myErrorStatus = 2;
}
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
inline Standard_Boolean BRepLib_CheckCurveOnSurface::IsDone() const
{
return (myErrorStatus == 0);
}
//=======================================================================
//function : MaxDistance
//purpose :
//=======================================================================
inline Standard_Real BRepLib_CheckCurveOnSurface::MaxDistance() const
{
return myMaxDistance;
}
//=======================================================================
//function : MaxParameter
//purpose :
//=======================================================================
inline Standard_Real BRepLib_CheckCurveOnSurface::MaxParameter() const
{
return myMaxParameter;
}

View File

@ -2,7 +2,6 @@ BRepLib.cxx
BRepLib.hxx
BRepLib_CheckCurveOnSurface.cxx
BRepLib_CheckCurveOnSurface.hxx
BRepLib_CheckCurveOnSurface.lxx
BRepLib_Command.cxx
BRepLib_Command.hxx
BRepLib_EdgeError.hxx

View File

@ -4,6 +4,8 @@ GeomLib_Array1OfMat.hxx
GeomLib_Check2dBSplineCurve.cxx
GeomLib_Check2dBSplineCurve.hxx
GeomLib_Check2dBSplineCurve.lxx
GeomLib_CheckCurveOnSurface.cxx
GeomLib_CheckCurveOnSurface.hxx
GeomLib_CheckBSplineCurve.cxx
GeomLib_CheckBSplineCurve.hxx
GeomLib_CheckBSplineCurve.lxx

View File

@ -0,0 +1,653 @@
// Created by: Nikolai BUKHALOV
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_Curve.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dAdaptor_GHCurve.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomLib_CheckCurveOnSurface.hxx>
#include <gp_Pnt.hxx>
#include <math_Matrix.hxx>
#include <math_MultipleVarFunctionWithHessian.hxx>
#include <math_NewtonMinimum.hxx>
#include <math_PSO.hxx>
#include <math_PSOParticlesPool.hxx>
#include <OSD_Parallel.hxx>
#include <Standard_ErrorHandler.hxx>
#include <TColStd_Array1OfReal.hxx>
class GeomLib_CheckCurveOnSurface_TargetFunc;
static
Standard_Boolean MinComputing(
GeomLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter);
static Standard_Integer FillSubIntervals( const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals = 0);
//=======================================================================
//class : GeomLib_CheckCurveOnSurface_TargetFunc
//purpose : Target function (to be minimized)
//=======================================================================
class GeomLib_CheckCurveOnSurface_TargetFunc :
public math_MultipleVarFunctionWithHessian
{
public:
GeomLib_CheckCurveOnSurface_TargetFunc( const Adaptor3d_Curve& theC3D,
const Adaptor3d_Curve& theAdCS,
const Standard_Real theFirst,
const Standard_Real theLast):
myCurve1(theC3D),
myCurve2(theAdCS),
myFirst(theFirst),
myLast(theLast)
{
}
//returns the number of parameters of the function
//(the function is one-dimension).
virtual Standard_Integer NbVariables() const {
return 1;
}
//returns value of the function when parameters are equal to theX
virtual Standard_Boolean Value(const math_Vector& theX,
Standard_Real& theFVal)
{
return Value(theX(1), theFVal);
}
//returns value of the one-dimension-function when parameter
//is equal to theX
Standard_Boolean Value( const Standard_Real theX,
Standard_Real& theFVal) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
return Standard_False;
const gp_Pnt aP1(myCurve1.Value(theX)),
aP2(myCurve2.Value(theX));
theFVal = -1.0*aP1.SquareDistance(aP2);
}
catch(Standard_Failure) {
return Standard_False;
}
//
return Standard_True;
}
//see analogical method for abstract owner class math_MultipleVarFunction
virtual Standard_Integer GetStateNumber()
{
return 0;
}
//returns the gradient of the function when parameters are
//equal to theX
virtual Standard_Boolean Gradient(const math_Vector& theX,
math_Vector& theGrad)
{
return Derive(theX(1), theGrad(1));
}
//returns 1st derivative of the the one-dimension-function when
//parameter is equal to theX
Standard_Boolean Derive(const Standard_Real theX, Standard_Real& theDeriv) const
{
try
{
OCC_CATCH_SIGNALS
if (!CheckParameter(theX))
{
return Standard_False;
}
//
gp_Pnt aP1, aP2;
gp_Vec aDC1, aDC2;
//
myCurve1.D1(theX, aP1, aDC1);
myCurve2.D1(theX, aP2, aDC2);
const gp_Vec aVec1(aP1, aP2), aVec2(aDC2-aDC1);
//
theDeriv = -2.0*aVec1.Dot(aVec2);
}
catch(Standard_Failure)
{
return Standard_False;
}
return Standard_True;
}
//returns value and gradient
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Gradient(theX, theGrad)) {
return Standard_False;
}
//
return Standard_True;
}
//returns value, gradient and hessian
virtual Standard_Boolean Values(const math_Vector& theX,
Standard_Real& theVal,
math_Vector& theGrad,
math_Matrix& theHessian)
{
if (!Value(theX, theVal))
{
return Standard_False;
}
//
if (!Gradient(theX, theGrad))
{
return Standard_False;
}
//
theHessian(1,1) = theGrad(1);
//
return Standard_True;
}
//
Standard_Real FirstParameter() const
{
return myFirst;
}
//
Standard_Real LastParameter() const
{
return myLast;
}
private:
GeomLib_CheckCurveOnSurface_TargetFunc operator=(GeomLib_CheckCurveOnSurface_TargetFunc&);
//checks if the function can be computed when its parameter is
//equal to theParam
Standard_Boolean CheckParameter(const Standard_Real theParam) const
{
return ((myFirst <= theParam) && (theParam <= myLast));
}
const Adaptor3d_Curve& myCurve1;
const Adaptor3d_Curve& myCurve2;
const Standard_Real myFirst;
const Standard_Real myLast;
};
//=======================================================================
//class : GeomLib_CheckCurveOnSurface_Local
//purpose : Created for parallelization possibility only
//=======================================================================
class GeomLib_CheckCurveOnSurface_Local
{
public:
GeomLib_CheckCurveOnSurface_Local(
const Handle(Geom_Curve)& theCurve3D,
const Handle(Geom2d_Curve)& theCurve2D,
const Handle(Geom_Surface)& theSurface,
const TColStd_Array1OfReal& theIntervalsArr,
const Standard_Real theEpsilonRange,
const Standard_Integer theNbParticles):
myCurve3D(theCurve3D),
myCurve2D(theCurve2D),
mySurface(theSurface),
mySubIntervals(theIntervalsArr),
myEpsilonRange(theEpsilonRange),
myNbParticles(theNbParticles),
myArrOfDist(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1),
myArrOfParam(theIntervalsArr.Lower(), theIntervalsArr.Upper()-1)
{
}
void operator()(const Standard_Integer& theIndex) const
{
//For every sub-interval (which is set by mySubIntervals array) this method
//computes optimal value of GeomLib_CheckCurveOnSurface_TargetFunc function.
//This optimal value will be put in corresponding (depending on theIndex - the
//identificator of the current interval in mySubIntervals array) cell of
//myArrOfDist and myArrOfParam arrays.
const GeomAdaptor_Curve anAC(myCurve3D);
const Handle(Adaptor2d_HCurve2d) anAd2dC = new Geom2dAdaptor_GHCurve(myCurve2D);
const Handle(Adaptor3d_HSurface) anAdS = new GeomAdaptor_HSurface(mySurface);
const Adaptor3d_CurveOnSurface anACS(anAd2dC, anAdS);
GeomLib_CheckCurveOnSurface_TargetFunc aFunc( anAC, anACS,
mySubIntervals.Value(theIndex),
mySubIntervals.Value(theIndex+1));
Standard_Real aMinDist = RealLast(), aPar = 0.0;
if(!MinComputing(aFunc, myEpsilonRange, myNbParticles, aMinDist, aPar))
{
myArrOfDist(theIndex) = RealLast();
myArrOfParam(theIndex) = aFunc.FirstParameter();
return;
}
myArrOfDist(theIndex) = aMinDist;
myArrOfParam(theIndex) = aPar;
}
//Returns optimal value (inverse of square of maximal distance)
void OptimalValues(Standard_Real& theMinimalValue, Standard_Real& theParameter) const
{
//This method looks for the minimal value of myArrOfDist.
const Standard_Integer aStartInd = myArrOfDist.Lower();
theMinimalValue = myArrOfDist(aStartInd);
theParameter = myArrOfParam(aStartInd);
for(Standard_Integer i = aStartInd + 1; i <= myArrOfDist.Upper(); i++)
{
if(myArrOfDist(i) < theMinimalValue)
{
theMinimalValue = myArrOfDist(i);
theParameter = myArrOfParam(i);
}
}
}
private:
GeomLib_CheckCurveOnSurface_Local operator=(GeomLib_CheckCurveOnSurface_Local&);
const Handle(Geom_Curve)& myCurve3D;
const Handle(Geom2d_Curve)& myCurve2D;
const Handle(Geom_Surface)& mySurface;
const TColStd_Array1OfReal& mySubIntervals;
const Standard_Real myEpsilonRange;
const Standard_Integer myNbParticles;
mutable NCollection_Array1<Standard_Real> myArrOfDist;
mutable NCollection_Array1<Standard_Real> myArrOfParam;
};
//=======================================================================
//function : GeomLib_CheckCurveOnSurface
//purpose :
//=======================================================================
GeomLib_CheckCurveOnSurface::GeomLib_CheckCurveOnSurface()
:
myFirst(0.),
myLast(0.),
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.)
{
}
//=======================================================================
//function : GeomLib_CheckCurveOnSurface
//purpose :
//=======================================================================
GeomLib_CheckCurveOnSurface::
GeomLib_CheckCurveOnSurface(const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast):
myCurve(theCurve),
mySurface(theSurface),
myFirst(theFirst),
myLast(theLast),
myErrorStatus(0),
myMaxDistance(RealLast()),
myMaxParameter(0.)
{
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomLib_CheckCurveOnSurface::Init()
{
myCurve.Nullify();
mySurface.Nullify();
myFirst = 0.0;
myLast = 0.0;
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void GeomLib_CheckCurveOnSurface::Init( const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast)
{
myCurve = theCurve;
mySurface = theSurface;
myFirst = theFirst;
myLast = theLast;
myErrorStatus = 0;
myMaxDistance = RealLast();
myMaxParameter = 0.0;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
#ifndef HAVE_TBB
//After fixing bug # 26365, this fragment should be deleted
//(together the text "#ifdef HAVE_TBB")
void GeomLib_CheckCurveOnSurface::Perform(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean)
{
const Standard_Boolean isTheMTDisabled = Standard_True;
#else
void GeomLib_CheckCurveOnSurface::Perform(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean isTheMTDisabled)
{
#endif
if( myCurve.IsNull() ||
mySurface.IsNull() ||
thePCurve.IsNull())
{
myErrorStatus = 1;
return;
}
if( (myCurve->FirstParameter() > myFirst) ||
(myCurve->LastParameter() < myLast) ||
(thePCurve->FirstParameter() > myFirst) ||
(thePCurve->LastParameter() < myLast))
{
myErrorStatus = 2;
return;
}
const Standard_Real anEpsilonRange = 1.e-3;
Standard_Integer aNbParticles = 3;
//Polynomial function with degree n has not more than n-1 maxima and
//minima (degree of 1st derivative is equal to n-1 => 1st derivative has
//no greater than n-1 roots). Consequently, this function has
//maximum n monotonicity intervals. That is a good idea to try to put
//at least one particle in every monotonicity interval. Therefore,
//number of particles should be equal to n.
const Standard_Integer aNbSubIntervals =
FillSubIntervals( myCurve, thePCurve,
myFirst, myLast, aNbParticles);
if(!aNbSubIntervals)
{
myErrorStatus = 3;
return;
}
try {
OCC_CATCH_SIGNALS
TColStd_Array1OfReal anIntervals(1, aNbSubIntervals+1);
FillSubIntervals(myCurve, thePCurve, myFirst, myLast, aNbParticles, &anIntervals);
GeomLib_CheckCurveOnSurface_Local aComp(myCurve, thePCurve,
mySurface, anIntervals, anEpsilonRange, aNbParticles);
OSD_Parallel::For(anIntervals.Lower(), anIntervals.Upper(), aComp, isTheMTDisabled);
aComp.OptimalValues(myMaxDistance, myMaxParameter);
myMaxDistance = sqrt(Abs(myMaxDistance));
}
catch (Standard_Failure) {
myErrorStatus = 3;
}
}
//=======================================================================
// Function : FillSubIntervals
// purpose : Divides [theFirst, theLast] interval on parts
// in order to make searching-algorithm more precisely
// (fills theSubIntervals array).
// Returns number of subintervals.
//=======================================================================
Standard_Integer FillSubIntervals(const Handle(Geom_Curve)& theCurve3d,
const Handle(Geom2d_Curve)& theCurve2d,
const Standard_Real theFirst,
const Standard_Real theLast,
Standard_Integer &theNbParticles,
TColStd_Array1OfReal* const theSubIntervals)
{
const Standard_Real anArrTempC[2] = {theFirst, theLast};
const TColStd_Array1OfReal anArrTemp(anArrTempC[0], 1, 2);
theNbParticles = 3;
Handle(Geom2d_BSplineCurve) aBS2DCurv;
Handle(Geom_BSplineCurve) aBS3DCurv;
//
if (theCurve3d->IsKind(STANDARD_TYPE(Geom_TrimmedCurve)))
{
aBS3DCurv = Handle(Geom_BSplineCurve)::
DownCast(Handle(Geom_TrimmedCurve)::
DownCast(theCurve3d)->BasisCurve());
}
else
{
aBS3DCurv = Handle(Geom_BSplineCurve)::DownCast(theCurve3d);
}
if (theCurve2d->IsKind(STANDARD_TYPE(Geom2d_TrimmedCurve)))
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::
DownCast(Handle(Geom2d_TrimmedCurve)::
DownCast(theCurve2d)->BasisCurve());
}
else
{
aBS2DCurv = Handle(Geom2d_BSplineCurve)::DownCast(theCurve2d);
}
const TColStd_Array1OfReal &anArrKnots3D = !aBS3DCurv.IsNull() ?
aBS3DCurv->Knots() :
anArrTemp;
const TColStd_Array1OfReal &anArrKnots2D = !aBS2DCurv.IsNull() ?
aBS2DCurv->Knots() :
anArrTemp;
Standard_Integer aNbSubIntervals = 1;
try
{
OCC_CATCH_SIGNALS
const Standard_Integer anIndMax3D = anArrKnots3D.Upper(),
anIndMax2D = anArrKnots2D.Upper();
Standard_Integer anIndex3D = anArrKnots3D.Lower(),
anIndex2D = anArrKnots2D.Lower();
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = theFirst;
while((anIndex3D <= anIndMax3D) && (anIndex2D <= anIndMax2D))
{
const Standard_Real aVal3D = anArrKnots3D.Value(anIndex3D),
aVal2D = anArrKnots2D.Value(anIndex2D);
const Standard_Real aDelta = aVal3D - aVal2D;
if(aDelta < Precision::PConfusion())
{//aVal3D <= aVal2D
if((aVal3D > theFirst) && (aVal3D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal3D;
}
anIndex3D++;
if(-aDelta < Precision::PConfusion())
{//aVal3D == aVal2D
anIndex2D++;
}
}
else
{//aVal2D < aVal3D
if((aVal2D > theFirst) && (aVal2D < theLast))
{
aNbSubIntervals++;
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals) = aVal2D;
}
anIndex2D++;
}
}
if(theSubIntervals)
theSubIntervals->ChangeValue(aNbSubIntervals+1) = theLast;
if(!aBS3DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS3DCurv->Degree());
}
if(!aBS2DCurv.IsNull())
{
theNbParticles = Max(theNbParticles, aBS2DCurv->Degree());
}
}
catch(Standard_Failure)
{
#ifdef OCCT_DEBUG
cout << "ERROR! BRepLib_CheckCurveOnSurface.cxx, "
"FillSubIntervals(): Incorrect filling!" << endl;
#endif
aNbSubIntervals = 0;
}
return aNbSubIntervals;
}
//=======================================================================
//class : MinComputing
//purpose : Performs computing minimal value
//=======================================================================
Standard_Boolean MinComputing (
GeomLib_CheckCurveOnSurface_TargetFunc& theFunction,
const Standard_Real theEpsilon, //1.0e-3
const Standard_Integer theNbParticles,
Standard_Real& theBestValue,
Standard_Real& theBestParameter)
{
try
{
OCC_CATCH_SIGNALS
//They are used for finding a position of theNbParticles worst places
const Standard_Integer aNbControlPoints = 3*theNbParticles;
//
math_Vector aParInf(1, 1), aParSup(1, 1), anOutputParam(1, 1), aStepPar(1,1);
aParInf(1) = theFunction.FirstParameter();
aParSup(1) = theFunction.LastParameter();
theBestParameter = aParInf(1);
theBestValue = RealLast();
const Standard_Real aDeltaParam = aParSup(1) - aParInf(1);
if(aDeltaParam < Precision::PConfusion())
return Standard_False;
aStepPar(1) = theEpsilon*aDeltaParam;
math_PSOParticlesPool aParticles(theNbParticles, 1);
const Standard_Real aStep = aDeltaParam/(aNbControlPoints-1);
Standard_Integer aCount = 1;
for(Standard_Real aPrm = aParInf(1); aCount <= aNbControlPoints; aCount++,
aPrm = (aCount == aNbControlPoints)? aParSup(1) : aPrm+aStep)
{
Standard_Real aVal = RealLast();
theFunction.Value(aPrm, aVal);
PSO_Particle* aParticle = aParticles.GetWorstParticle();
if(aVal > aParticle->BestDistance)
continue;
aParticle->Position[0] = aPrm;
aParticle->BestPosition[0] = aPrm;
aParticle->Distance = aVal;
aParticle->BestDistance = aVal;
}
math_PSO aPSO(&theFunction, aParInf, aParSup, aStepPar);
aPSO.Perform(aParticles, theNbParticles, theBestValue, anOutputParam);
//Here, anOutputParam contains parameter, which is near to optimal.
//It needs to be more precise. Precision is made by math_NewtonMinimum.
math_NewtonMinimum anA(theFunction);
anA.Perform(theFunction, anOutputParam);
if(!anA.IsDone())
{
#ifdef OCCT_DEBUG
cout << "BRepLib_CheckCurveOnSurface::Compute(): No solution found!" << endl;
#endif
return Standard_False;
}
anA.Location(anOutputParam);
theBestParameter = anOutputParam(1);
theBestValue = anA.Minimum();
}
catch(Standard_Failure)
{
#ifdef OCCT_DEBUG
cout << "BRepLib_CheckCurveOnSurface.cxx: Exception in MinComputing()!" << endl;
#endif
return Standard_False;
}
return Standard_True;
}

View File

@ -0,0 +1,117 @@
// Created by: Nikolai BUKHALOV
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _GeomLib_CheckCurveOnSurface_HeaderFile
#define _GeomLib_CheckCurveOnSurface_HeaderFile
#include <Geom_Curve.hxx>
#include <Standard.hxx>
class Geom_Surface;
class Geom2d_Curve;
//! Computes the max distance between 3D-curve and 2D-curve
//! in some surface.
class GeomLib_CheckCurveOnSurface
{
public:
DEFINE_STANDARD_ALLOC
//! Default contructor
Standard_EXPORT GeomLib_CheckCurveOnSurface(void);
//! Contructor
Standard_EXPORT GeomLib_CheckCurveOnSurface(const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast);
//! Sets the data for the algorithm
Standard_EXPORT void Init (const Handle(Geom_Curve)& theCurve,
const Handle(Geom_Surface)& theSurface,
const Standard_Real theFirst,
const Standard_Real theLast);
//! Initializes all members by dafault values
Standard_EXPORT void Init();
//! Computes the max distance for the 3d curve <myCurve>
//! and 2d curve <thePCurve>
//! If isTheMultyTheadDisabled == TRUE then computation will be made
//! without any parallelization.
Standard_EXPORT void Perform(const Handle(Geom2d_Curve)& thePCurve,
const Standard_Boolean isTheMultyTheradDisabled = Standard_False);
//! Returns my3DCurve
const Handle(Geom_Curve)& Curve() const
{
return myCurve;
}
//! Returns mySurface
const Handle(Geom_Surface)& Surface() const
{
return mySurface;
}
//! Returns first and last parameter of the curves
//! (2D- and 3D-curves are considered to have same range)
void Range (Standard_Real& theFirst, Standard_Real& theLast)
{
theFirst = myFirst;
theLast = myLast;
}
//! Returns true if the max distance has been found
Standard_Boolean IsDone() const
{
return (myErrorStatus == 0);
}
//! Returns error status
//! The possible values are:
//! 0 - OK;
//! 1 - null curve or surface or 2d curve;
//! 2 - invalid parametric range;
//! 3 - error in calculations.
Standard_Integer ErrorStatus() const
{
return myErrorStatus;
}
//! Returns max distance
Standard_Real MaxDistance() const
{
return myMaxDistance;
}
//! Returns parameter in which the distance is maximal
Standard_Real MaxParameter() const
{
return myMaxParameter;
}
private:
Handle(Geom_Curve) myCurve;
Handle(Geom_Surface) mySurface;
Standard_Real myFirst;
Standard_Real myLast;
Standard_Integer myErrorStatus;
Standard_Real myMaxDistance;
Standard_Real myMaxParameter;
};
#endif // _BRepLib_CheckCurveOnSurface_HeaderFile

View File

@ -789,10 +789,10 @@ Standard_Boolean IntTools_Tools::ComputeTolerance
Standard_Real& theMaxDist,
Standard_Real& theMaxPar)
{
BRepLib_CheckCurveOnSurface aCS;
GeomLib_CheckCurveOnSurface aCS;
//
aCS.Init(theCurve3D, theCurve2D, theSurf, theFirst, theLast);
aCS.Perform();
aCS.Init(theCurve3D, theSurf, theFirst, theLast);
aCS.Perform(theCurve2D);
if (!aCS.IsDone()) {
return Standard_False;
}