1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0032783: Documentation - Doxygen 1.9.3 generates corrupted HTML for dox/samples/ocaf.md

Fix incorrect/fragile Markdown syntax in samples/ocaf and user_guides/modeling_data.
This commit is contained in:
kgv 2022-01-18 15:28:02 +03:00 committed by smoskvin
parent 33a4d46b28
commit 5614b1369a
2 changed files with 1177 additions and 1050 deletions

View File

@ -1,82 +1,76 @@
OCAF: Usage Tutorial {#samples__ocaf} OCAF: Usage Tutorial {#samples__ocaf}
======== ========
## Getting Started ## Getting Started
At the beginning of your development, you first define an application class by inheriting from the Application abstract class.
You only have to create and determine the resources of the application for specifying the format of your documents (you generally use the standard one) and their file extension.
Then, you design the application data model by organizing attributes you choose among those provided with OCAF.
You can specialize these attributes using the User attribute. For example, if you need a reflection coefficient,
you aggregate a User attribute identified as a reflection coefficient
with a Real attribute containing the value of the coefficient (as such, you don't define a new class).
If you need application specific data not provided with OCAF, for example, to incorporate a finite element model in the data structure,
you define a new attribute class containing the mesh, and you include its persistent homologue in a new file format.
Once you have implemented the commands which create and modify the data structure according to your specification, OCAF provides you, without any additional programming:
* Persistent reference to any data, including geometric elements - several documents can be linked with such reference;
* Document-View association;
* Ready-to-use functions such as:
* Undo-redo;
* Save and open application data.
Finally, you develop the application's graphical user interface using the toolkit of your choice, for example:
* KDE Qt or GNOME GTK+ on Linux;
* Microsoft Foundation Classes (MFC) on Windows Motif on Sun;
* Other commercial products such as Ilog Views.
You can also implement the user interface in the Java language using the Swing-based Java Application Desktop component (JAD) provided with OCAF.
At the beginning of your development, you first define an application class by inheriting from the Application abstract class.
You only have to create and determine the resources of the application
for specifying the format of your documents (you generally use the standard one) and their file extension.
Then, you design the application data model by organizing attributes you choose among those provided with OCAF.
You can specialize these attributes using the User attribute. For example, if you need a reflection coefficient,
you aggregate a User attribute identified as a reflection coefficient
with a Real attribute containing the value of the coefficient (as such, you don't define a new class).
If you need application specific data not provided with OCAF, for example,
to incorporate a finite element model in the data structure,
you define a new attribute class containing the mesh,
and you include its persistent homologue in a new file format.
Once you have implemented the commands which create and modify the data structure
according to your specification, OCAF provides you, without any additional programming:
* Persistent reference to any data, including geometric elements â€" several documents can be linked with such reference;
* Document-View association;
* Ready-to-use functions such as :
* Undo-redo;
* Save and open application data.
Finally, you develop the application's graphical user interface using the toolkit of your choice, for example:
* KDE Qt or GNOME GTK+ on Linux;
* Microsoft Foundation Classes (MFC) on Windows Motif on Sun;
* Other commercial products such as Ilog Views.
You can also implement the user interface in the Java language using
the Swing-based Java Application Desktop component (JAD) provided with OCAF.
## An example of OCAF usage ## An example of OCAF usage
To create a useful OCAF-based application, it is necessary to redefine two deferred methods: <i> Formats</i> and <i> ResourcesName</i> To create a useful OCAF-based application, it is necessary to redefine two deferred methods: <i>Formats</i> and <i>ResourcesName</i>
In the <i> Formats </i> method, add the format of the documents, which need to be read by the application and may have been built in other applications. In the <i>Formats</i> method, add the format of the documents, which need to be read by the application and may have been built in other applications.
For example: For example:
~~~~ ~~~~{.cpp}
void myApplication::Formats(TColStd_SequenceOfExtendedString& Formats) void myApplication::Formats(TColStd_SequenceOfExtendedString& Formats)
{ {
Formats.Append(TCollection_ExtendedString ("OCAF-myApplication")); Formats.Append(TCollection_ExtendedString ("OCAF-myApplication"));
} }
~~~~ ~~~~
In the <i> ResourcesName</i> method, you only define the name of the resource file. This In the <i>ResourcesName</i> method, you only define the name of the resource file.
file contains several definitions for the saving and opening mechanisms associated This file contains several definitions for the saving and opening mechanisms associated with each format and calling of the plug-in file.
with each format and calling of the plug-in file.
~~~~ ~~~~{.cpp}
Standard_CString myApplication::ResourcesName() Standard_CString myApplication::ResourcesName()
{ {
return Standard_CString ("Resources"); return Standard_CString ("Resources");
} }
~~~~ ~~~~
To obtain the saving and opening mechanisms, it is necessary to set two environment variables: <i> CSF_PluginDefaults</i>, which defines the path of the plug-in file, and <i> CSF_ResourcesDefault</i>, which defines the resource file: To obtain the saving and opening mechanisms, it is necessary to set two environment variables: <i>CSF_PluginDefaults</i>, which defines the path of the plug-in file,
and <i>CSF_ResourcesDefault</i>, which defines the resource file:
~~~~ ~~~~{.cpp}
SetEnvironmentVariable ( "CSF_ResourcesDefaults",myDirectory); SetEnvironmentVariable ("CSF_ResourcesDefaults", myDirectory);
SetEnvironmentVariable ( "CSF_PluginDefaults",myDirectory); SetEnvironmentVariable ("CSF_PluginDefaults", myDirectory);
~~~~ ~~~~
The plugin and the resource files of the application will be located in <i> myDirector</i>. The plugin and the resource files of the application will be located in <i>myDirector</i>.
The name of the plugin file must be <i>Plugin</i>. The name of the plugin file must be <i>Plugin</i>.
### Resource File ### Resource File
The resource file describes the documents (type and extension) and The resource file describes the documents (type and extension) and the type of data that the application can manipulate
the type of data that the application can manipulate
by identifying the storage and retrieval drivers appropriate for this data. by identifying the storage and retrieval drivers appropriate for this data.
Each driver is unique and identified by a GUID generated, for example, with the <i> uuidgen </i> tool in Windows. Each driver is unique and identified by a GUID generated, for example, with the <i>uuidgen</i> tool in Windows.
Five drivers are required to use all standard attributes provided within OCAF: Five drivers are required to use all standard attributes provided within OCAF:
@ -86,8 +80,7 @@ Five drivers are required to use all standard attributes provided within OCAF:
* the attribute storage driver (47b0b826-d931-11d1-b5da-00a0c9064368) * the attribute storage driver (47b0b826-d931-11d1-b5da-00a0c9064368)
* the attribute retrieval driver (47b0b827-d931-11d1-b5da-00a0c9064368) * the attribute retrieval driver (47b0b827-d931-11d1-b5da-00a0c9064368)
These drivers are provided as plug-ins and are located in the <i> PappStdPlugin</i> library. These drivers are provided as plug-ins and are located in the <i>PappStdPlugin</i> library.
For example, this is a resource file, which declares a new model document OCAF-MyApplication: For example, this is a resource file, which declares a new model document OCAF-MyApplication:
@ -104,12 +97,11 @@ OCAF-MyApplication.AttributeRetrievalPlugin: 47b0b827-d931-11d1-b5da-00a0c906436
### Plugin File ### Plugin File
The plugin file describes the list of required plug-ins to run the application and the The plugin file describes the list of required plug-ins to run the application and the libraries in which plug-ins are located.
libraries in which plug-ins are located.
You need at least the <i> FWOSPlugin</i> and the plug-in drivers to run an OCAF application. You need at least the <i>FWOSPlugin</i> and the plug-in drivers to run an OCAF application.
The syntax of each item is <i> Identification.Location Library_Name, </i> where: The syntax of each item is <i>Identification.Location Library_Name</i>, where:
* Identification is GUID. * Identification is GUID.
* Location defines the location of the Identification (where its definition is found). * Location defines the location of the Identification (where its definition is found).
* Library_Name is the name (and path to) the library, where the plug-in is located. * Library_Name is the name (and path to) the library, where the plug-in is located.
@ -125,412 +117,414 @@ ad696002-5b34-11d1-b5ba-00a0c9064368.Location: PAppStdPlugin
47b0b826-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin 47b0b826-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin
47b0b827-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin 47b0b827-d931-11d1-b5da-00a0c9064368.Location: PAppStdPlugin
~~~~ ~~~~
## Implementation of Attribute Transformation in a HXX file ## Implementation of Attribute Transformation in a HXX file
~~~~ ~~~~{.cpp}
\#include <TDF_Attribute.hxx> #include <TDF_Attribute.hxx>
\#include <gp_Ax3.hxx> #include <gp_Ax3.hxx>
\#include <gp_Pnt.hxx> #include <gp_Pnt.hxx>
\#include <gp_Vec.hxx> #include <gp_Vec.hxx>
\#include <gp_Trsf.hxx> #include <gp_Trsf.hxx>
//! This attribute implements a transformation data container //! This attribute implements a transformation data container
class MyPackage_Transformation : public TDF_Attribute class MyPackage_Transformation : public TDF_Attribute
{ {
public: public: //!@ name Static methods
//!@ name Static methods
//! The method returns a unique GUID of this attribute. //! The method returns a unique GUID of this attribute.
//! By means of this GUID this attribute may be identified //! By means of this GUID this attribute may be identified
//! among other attributes attached to the same label. //! among other attributes attached to the same label.
Standard_EXPORT static const Standard_GUID& GetID (); Standard_EXPORT static const Standard_GUID& GetID ();
//! Finds or creates the attribute attached to <theLabel>. //! Finds or creates the attribute attached to <theLabel>.
//! The found or created attribute is returned. //! The found or created attribute is returned.
Standard_EXPORT static Handle(MyPackage_Transformation) Set (const TDF_Label theLabel); Standard_EXPORT static Handle(MyPackage_Transformation) Set (const TDF_Label theLabel);
//!@ name Methods for access to the attribute data public: //!@ name Methods for access to the attribute data
//! The method returns the transformation.
Standard_EXPORT gp_Trsf Get () const;
//!@ name Methods for setting the data of transformation //! The method returns the transformation.
Standard_EXPORT gp_Trsf Get () const;
//! The method defines a rotation type of transformation. public: //!@ name Methods for setting the data of transformation
Standard_EXPORT void SetRotation (const gp_Ax1& theAxis, Standard_Real theAngle);
//! The method defines a translation type of transformation. //! The method defines a rotation type of transformation.
Standard_EXPORT void SetTranslation (const gp_Vec& theVector); Standard_EXPORT void SetRotation (const gp_Ax1& theAxis, Standard_Real theAngle);
//! The method defines a point mirror type of transformation (point symmetry). //! The method defines a translation type of transformation.
Standard_EXPORT void SetMirror (const gp_Pnt& thePoint); Standard_EXPORT void SetTranslation (const gp_Vec& theVector);
//! The method defines an axis mirror type of transformation (axial symmetry). //! The method defines a point mirror type of transformation (point symmetry).
Standard_EXPORT void SetMirror (const gp_Ax1& theAxis); Standard_EXPORT void SetMirror (const gp_Pnt& thePoint);
//! The method defines a point mirror type of transformation (planar symmetry). //! The method defines an axis mirror type of transformation (axial symmetry).
Standard_EXPORT void SetMirror (const gp_Ax2& thePlane); Standard_EXPORT void SetMirror (const gp_Ax1& theAxis);
//! The method defines a scale type of transformation. //! The method defines a point mirror type of transformation (planar symmetry).
Standard_EXPORT void SetScale (const gp_Pnt& thePoint, Standard_Real theScale); Standard_EXPORT void SetMirror (const gp_Ax2& thePlane);
//! The method defines a scale type of transformation.
Standard_EXPORT void SetScale (const gp_Pnt& thePoint, Standard_Real theScale);
//! The method defines a complex type of transformation from one coordinate system to another. //! The method defines a complex type of transformation from one coordinate system to another.
Standard_EXPORT void SetTransformation (const gp_Ax3& theCoordinateSystem1, const gp_Ax3& theCoordinateSystem2); Standard_EXPORT void SetTransformation (const gp_Ax3& theCoordinateSystem1, const gp_Ax3& theCoordinateSystem2);
//!@ name Overridden methods from TDF_Attribute public: //!@ name Overridden methods from TDF_Attribute
//! The method returns a unique GUID of the attribute.
//! By means of this GUID this attribute may be identified among other attributes attached to the same label.
Standard_EXPORT const Standard_GUID& ID () const;
//! The method is called on Undo / Redo. //! The method returns a unique GUID of the attribute.
//! It copies the content of theAttribute into this attribute (copies the fields). //! By means of this GUID this attribute may be identified among other attributes attached to the same label.
Standard_EXPORT void Restore (const Handle(TDF_Attribute)& theAttribute); Standard_EXPORT const Standard_GUID& ID () const;
//! It creates a new instance of this attribute. //! The method is called on Undo / Redo.
//! It is called on Copy / Paste, Undo / Redo. //! It copies the content of theAttribute into this attribute (copies the fields).
Standard_EXPORT void Restore (const Handle(TDF_Attribute)& theAttribute);
//! It creates a new instance of this attribute.
//! It is called on Copy / Paste, Undo / Redo.
Standard_EXPORT Handle(TDF_Attribute) NewEmpty () const; Standard_EXPORT Handle(TDF_Attribute) NewEmpty () const;
//! The method is called on Copy / Paste. //! The method is called on Copy / Paste.
//! It copies the content of this attribute into theAttribute (copies the fields). //! It copies the content of this attribute into theAttribute (copies the fields).
Standard_EXPORT void Paste (const Handle(TDF_Attribute)& theAttribute, const Handle(TDF_RelocationTable)& theRelocationTable); Standard_EXPORT void Paste (const Handle(TDF_Attribute)& theAttribute, const Handle(TDF_RelocationTable)& theRelocationTable);
//! Prints the content of this attribute into the stream. //! Prints the content of this attribute into the stream.
Standard_EXPORT Standard_OStream& Dump(Standard_OStream& theOS); Standard_EXPORT Standard_OStream& Dump(Standard_OStream& theOS);
//!@ name Constructor public: //!@ name Constructor
//! The C++ constructor of this attribute class. //! The C++ constructor of this attribute class.
//! Usually it is never called outside this class. //! Usually it is never called outside this class.
Standard_EXPORT MyPackage_Transformation(); Standard_EXPORT MyPackage_Transformation();
private: private:
gp_TrsfForm myType; gp_TrsfForm myType;
// Axes (Ax1, Ax2, Ax3) // Axes (Ax1, Ax2, Ax3)
gp_Ax1 myAx1; gp_Ax1 myAx1;
gp_Ax2 myAx2; gp_Ax2 myAx2;
gp_Ax3 myFirstAx3; gp_Ax3 myFirstAx3;
gp_Ax3 mySecondAx3; gp_Ax3 mySecondAx3;
// Scalar values // Scalar values
Standard_Real myAngle; Standard_Real myAngle;
Standard_Real myScale; Standard_Real myScale;
// Points // Points
gp_Pnt myFirstPoint; gp_Pnt myFirstPoint;
gp_Pnt mySecondPoint; gp_Pnt mySecondPoint;
}; };
~~~~ ~~~~
## Implementation of Attribute Transformation in a CPP file ## Implementation of Attribute Transformation in a CPP file
~~~~{.cpp} ~~~~{.cpp}
\#include <MyPackage_Transformation.hxx> #include <MyPackage_Transformation.hxx>
//=======================================================================
//function : GetID
//purpose : The method returns a unique GUID of this attribute.
// By means of this GUID this attribute may be identified
// among other attributes attached to the same label.
//=======================================================================
const Standard_GUID& MyPackage_Transformation::GetID()
{
static Standard_GUID ID("4443368E-C808-4468-984D-B26906BA8573");
return ID;
}
//=======================================================================
//function : Set
//purpose : Finds or creates the attribute attached to <theLabel>.
// The found or created attribute is returned.
//=======================================================================
Handle(MyPackage_Transformation) MyPackage_Transformation::Set(const TDF_Label& theLabel)
{
Handle(MyPackage_Transformation) T;
if (!theLabel.FindAttribute(MyPackage_Transformation::GetID(), T))
{
T = new MyPackage_Transformation();
theLabel.AddAttribute(T);
}
return T;
}
//=======================================================================
//function : Get
//purpose : The method returns the transformation.
//=======================================================================
gp_Trsf MyPackage_Transformation::Get() const
{
gp_Trsf transformation;
switch (myType)
{
case gp_Identity:
{
break;
}
case gp_Rotation:
{
transformation.SetRotation(myAx1, myAngle);
break;
}
case gp_Translation:
{
transformation.SetTranslation(myFirstPoint, mySecondPoint);
break;
}
case gp_PntMirror:
{
transformation.SetMirror(myFirstPoint);
break;
}
case gp_Ax1Mirror:
{
transformation.SetMirror(myAx1);
break;
}
case gp_Ax2Mirror:
{
transformation.SetMirror(myAx2);
break;
}
case gp_Scale:
{
transformation.SetScale(myFirstPoint, myScale);
break;
}
case gp_CompoundTrsf:
{
transformation.SetTransformation(myFirstAx3, mySecondAx3);
break;
}
case gp_Other:
{
break;
}
}
return transformation;
}
//=======================================================================
//function : SetRotation
//purpose : The method defines a rotation type of transformation.
//=======================================================================
void MyPackage_Transformation::SetRotation(const gp_Ax1& theAxis, const Standard_Real theAngle)
{
Backup();
myType = gp_Rotation;
myAx1 = theAxis;
myAngle = theAngle;
}
//=======================================================================
//function : SetTranslation
//purpose : The method defines a translation type of transformation.
//=======================================================================
void MyPackage_Transformation::SetTranslation(const gp_Vec& theVector)
{
Backup();
myType = gp_Translation;
myFirstPoint.SetCoord(0, 0, 0);
mySecondPoint.SetCoord(theVector.X(), theVector.Y(), theVector.Z());
}
//=======================================================================
//function : SetMirror
//purpose : The method defines a point mirror type of transformation
// (point symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Pnt& thePoint)
{
Backup();
myType = gp_PntMirror;
myFirstPoint = thePoint;
}
//=======================================================================
//function : SetMirror
//purpose : The method defines an axis mirror type of transformation
// (axial symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Ax1& theAxis)
{
Backup();
myType = gp_Ax1Mirror;
myAx1 = theAxis;
}
//=======================================================================
//function : SetMirror
//purpose : The method defines a point mirror type of transformation
// (planar symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Ax2& thePlane)
{
Backup();
myType = gp_Ax2Mirror;
myAx2 = thePlane;
}
//=======================================================================
//function : SetScale
//purpose : The method defines a scale type of transformation.
//=======================================================================
void MyPackage_Transformation::SetScale(const gp_Pnt& thePoint, const Standard_Real theScale)
{
Backup();
myType = gp_Scale;
myFirstPoint = thePoint;
myScale = theScale;
}
//=======================================================================
//function : SetTransformation
//purpose : The method defines a complex type of transformation
// from one coordinate system to another.
//=======================================================================
void MyPackage_Transformation::SetTransformation(const gp_Ax3& theCoordinateSystem1,
const gp_Ax3& theCoordinateSystem2)
{
Backup();
myFirstAx3 = theCoordinateSystem1;
mySecondAx3 = theCoordinateSystem2;
}
//=======================================================================
//function : ID
//purpose : The method returns a unique GUID of the attribute.
// By means of this GUID this attribute may be identified
// among other attributes attached to the same label.
//=======================================================================
const Standard_GUID& MyPackage_Transformation::ID() const
{
return GetID();
}
//=======================================================================
//function : Restore
//purpose : The method is called on Undo / Redo.
// It copies the content of <theAttribute>
// into this attribute (copies the fields).
//=======================================================================
void MyPackage_Transformation::Restore(const Handle(TDF_Attribute)& theAttribute)
{
Handle(MyPackage_Transformation) theTransformation = Handle(MyPackage_Transformation)::DownCast(theAttribute);
myType = theTransformation->myType;
myAx1 = theTransformation->myAx1;
myAx2 = theTransformation->myAx2;
myFirstAx3 = theTransformation->myFirstAx3;
mySecondAx3 = theTransformation->mySecondAx3;
myAngle = theTransformation->myAngle;
myScale = theTransformation->myScale;
myFirstPoint = theTransformation->myFirstPoint;
mySecondPoint = theTransformation->mySecondPoint;
}
//=======================================================================
//function : NewEmpty
//purpose : It creates a new instance of this attribute.
// It is called on Copy / Paste, Undo / Redo.
//=======================================================================
Handle(TDF_Attribute) MyPackage_Transformation::NewEmpty() const
{
return new MyPackage_Transformation();
}
//=======================================================================
//function : Paste
//purpose : The method is called on Copy / Paste.
// It copies the content of this attribute into
// <theAttribute> (copies the fields).
//=======================================================================
void MyPackage_Transformation::Paste(const Handle(TDF_Attribute)& theAttribute,
const Handle(TDF_RelocationTable)& ) const
{
Handle(MyPackage_Transformation) theTransformation = Handle(MyPackage_Transformation)::DownCast(theAttribute);
theTransformation->myType = myType;
theTransformation->myAx1 = myAx1;
theTransformation->myAx2 = myAx2;
theTransformation->myFirstAx3 = myFirstAx3;
theTransformation->mySecondAx3 = mySecondAx3;
theTransformation->myAngle = myAngle;
theTransformation->myScale = myScale;
theTransformation->myFirstPoint = myFirstPoint;
theTransformation->mySecondPoint = mySecondPoint;
}
//=======================================================================
//function : Dump
//purpose : Prints the content of this attribute into the stream.
//=======================================================================
Standard_OStream& MyPackage_Transformation::Dump(Standard_OStream& anOS) const
{
anOS = "Transformation: ";
switch (myType)
{
case gp_Identity:
{
anOS = "gp_Identity";
break;
}
case gp_Rotation:
{
anOS = "gp_Rotation";
break;
}
case gp_Translation:
{
anOS = "gp_Translation";
break;
}
case gp_PntMirror:
{
anOS = "gp_PntMirror";
break;
}
case gp_Ax1Mirror:
{
anOS = "gp_Ax1Mirror";
break;
}
case gp_Ax2Mirror:
{
anOS = "gp_Ax2Mirror";
break;
}
case gp_Scale:
{
anOS = "gp_Scale";
break;
}
case gp_CompoundTrsf:
{
anOS = "gp_CompoundTrsf";
break;
}
case gp_Other:
{
anOS = "gp_Other";
break;
}
}
return anOS;
}
//======================================================================= //=======================================================================
//function : MyPackage_Transformation //function : GetID
//purpose : A constructor. //purpose : The method returns a unique GUID of this attribute.
// By means of this GUID this attribute may be identified
// among other attributes attached to the same label.
//======================================================================= //=======================================================================
MyPackage_Transformation::MyPackage_Transformation():myType(gp_Identity){ const Standard_GUID& MyPackage_Transformation::GetID()
{
static Standard_GUID ID("4443368E-C808-4468-984D-B26906BA8573");
return ID;
}
//=======================================================================
//function : Set
//purpose : Finds or creates the attribute attached to <theLabel>.
// The found or created attribute is returned.
//=======================================================================
Handle(MyPackage_Transformation) MyPackage_Transformation::Set(const TDF_Label& theLabel)
{
Handle(MyPackage_Transformation) T;
if (!theLabel.FindAttribute(MyPackage_Transformation::GetID(), T))
{
T = new MyPackage_Transformation();
theLabel.AddAttribute(T);
}
return T;
}
//=======================================================================
//function : Get
//purpose : The method returns the transformation.
//=======================================================================
gp_Trsf MyPackage_Transformation::Get() const
{
gp_Trsf transformation;
switch (myType)
{
case gp_Identity:
{
break;
}
case gp_Rotation:
{
transformation.SetRotation(myAx1, myAngle);
break;
}
case gp_Translation:
{
transformation.SetTranslation(myFirstPoint, mySecondPoint);
break;
}
case gp_PntMirror:
{
transformation.SetMirror(myFirstPoint);
break;
}
case gp_Ax1Mirror:
{
transformation.SetMirror(myAx1);
break;
}
case gp_Ax2Mirror:
{
transformation.SetMirror(myAx2);
break;
}
case gp_Scale:
{
transformation.SetScale(myFirstPoint, myScale);
break;
}
case gp_CompoundTrsf:
{
transformation.SetTransformation(myFirstAx3, mySecondAx3);
break;
}
case gp_Other:
{
break;
}
}
return transformation;
}
//=======================================================================
//function : SetRotation
//purpose : The method defines a rotation type of transformation.
//=======================================================================
void MyPackage_Transformation::SetRotation(const gp_Ax1& theAxis, const Standard_Real theAngle)
{
Backup();
myType = gp_Rotation;
myAx1 = theAxis;
myAngle = theAngle;
}
//=======================================================================
//function : SetTranslation
//purpose : The method defines a translation type of transformation.
//=======================================================================
void MyPackage_Transformation::SetTranslation(const gp_Vec& theVector)
{
Backup();
myType = gp_Translation;
myFirstPoint.SetCoord(0, 0, 0);
mySecondPoint.SetCoord(theVector.X(), theVector.Y(), theVector.Z());
}
//=======================================================================
//function : SetMirror
//purpose : The method defines a point mirror type of transformation
// (point symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Pnt& thePoint)
{
Backup();
myType = gp_PntMirror;
myFirstPoint = thePoint;
}
//=======================================================================
//function : SetMirror
//purpose : The method defines an axis mirror type of transformation
// (axial symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Ax1& theAxis)
{
Backup();
myType = gp_Ax1Mirror;
myAx1 = theAxis;
}
//=======================================================================
//function : SetMirror
//purpose : The method defines a point mirror type of transformation
// (planar symmetry).
//=======================================================================
void MyPackage_Transformation::SetMirror(const gp_Ax2& thePlane)
{
Backup();
myType = gp_Ax2Mirror;
myAx2 = thePlane;
}
//=======================================================================
//function : SetScale
//purpose : The method defines a scale type of transformation.
//=======================================================================
void MyPackage_Transformation::SetScale(const gp_Pnt& thePoint, const Standard_Real theScale)
{
Backup();
myType = gp_Scale;
myFirstPoint = thePoint;
myScale = theScale;
}
//=======================================================================
//function : SetTransformation
//purpose : The method defines a complex type of transformation
// from one coordinate system to another
//=======================================================================
void MyPackage_Transformation::SetTransformation (const gp_Ax3& theCoordinateSystem1,
const gp_Ax3& theCoordinateSystem2)
{
Backup();
myFirstAx3 = theCoordinateSystem1;
mySecondAx3 = theCoordinateSystem2;
}
//=======================================================================
//function : ID
//purpose : The method returns a unique GUID of the attribute.
// By means of this GUID this attribute may be identified
// among other attributes attached to the same label.
//=======================================================================
const Standard_GUID& MyPackage_Transformation::ID() const
{
return GetID();
}
//=======================================================================
//function : Restore
//purpose : The method is called on Undo / Redo.
// It copies the content of <theAttribute>
// into this attribute (copies the fields).
//=======================================================================
void MyPackage_Transformation::Restore(const Handle(TDF_Attribute)& theAttribute)
{
Handle(MyPackage_Transformation) theTransformation = Handle(MyPackage_Transformation)::DownCast(theAttribute);
myType = theTransformation->myType;
myAx1 = theTransformation->myAx1;
myAx2 = theTransformation->myAx2;
myFirstAx3 = theTransformation->myFirstAx3;
mySecondAx3 = theTransformation->mySecondAx3;
myAngle = theTransformation->myAngle;
myScale = theTransformation->myScale;
myFirstPoint = theTransformation->myFirstPoint;
mySecondPoint = theTransformation->mySecondPoint;
}
//=======================================================================
//function : NewEmpty
//purpose : It creates a new instance of this attribute.
// It is called on Copy / Paste, Undo / Redo.
//=======================================================================
Handle(TDF_Attribute) MyPackage_Transformation::NewEmpty() const
{
return new MyPackage_Transformation();
}
//=======================================================================
//function : Paste
//purpose : The method is called on Copy / Paste.
// It copies the content of this attribute into
// <theAttribute> (copies the fields).
//=======================================================================
void MyPackage_Transformation::Paste (const Handle(TDF_Attribute)& theAttribute,
const Handle(TDF_RelocationTable)& ) const
{
Handle(MyPackage_Transformation) theTransformation = Handle(MyPackage_Transformation)::DownCast(theAttribute);
theTransformation->myType = myType;
theTransformation->myAx1 = myAx1;
theTransformation->myAx2 = myAx2;
theTransformation->myFirstAx3 = myFirstAx3;
theTransformation->mySecondAx3 = mySecondAx3;
theTransformation->myAngle = myAngle;
theTransformation->myScale = myScale;
theTransformation->myFirstPoint = myFirstPoint;
theTransformation->mySecondPoint = mySecondPoint;
}
//=======================================================================
//function : Dump
//purpose : Prints the content of this attribute into the stream.
//=======================================================================
Standard_OStream& MyPackage_Transformation::Dump(Standard_OStream& theOS) const
{
anOS << "Transformation: ";
switch (myType)
{
case gp_Identity:
{
anOS << "gp_Identity";
break;
}
case gp_Rotation:
{
anOS << "gp_Rotation";
break;
}
case gp_Translation:
{
anOS << "gp_Translation";
break;
}
case gp_PntMirror:
{
anOS << "gp_PntMirror";
break;
}
case gp_Ax1Mirror:
{
anOS << "gp_Ax1Mirror";
break;
}
case gp_Ax2Mirror:
{
anOS << "gp_Ax2Mirror";
break;
}
case gp_Scale:
{
anOS << "gp_Scale";
break;
}
case gp_CompoundTrsf:
{
anOS << "gp_CompoundTrsf";
break;
}
case gp_Other:
{
anOS << "gp_Other";
break;
}
}
return anOS;
}
//=======================================================================
//function : MyPackage_Transformation
//purpose : A constructor.
//=======================================================================
MyPackage_Transformation::MyPackage_Transformation()
: myType (gp_Identity)
{
//
} }
~~~~ ~~~~
## Implementation of typical actions with standard OCAF attributes. ## Implementation of typical actions with standard OCAF attributes.
There are four sample files provided in the directory 'OpenCasCade/ros/samples/ocafsamples'. They present typical actions with OCAF services (mainly for newcomers). There are four sample files provided in the directory 'OpenCasCade/ros/samples/ocafsamples'.
They present typical actions with OCAF services (mainly for newcomers).
The method *Sample()* of each file is not dedicated for execution 'as is', it is rather a set of logical actions using some OCAF services. The method *Sample()* of each file is not dedicated for execution 'as is', it is rather a set of logical actions using some OCAF services.
### TDataStd_Sample.cxx ### TDataStd_Sample.cxx
@ -549,7 +543,7 @@ This sample contains templates for typical actions with the following standard O
- TDataXtd_Constraint attribute management; - TDataXtd_Constraint attribute management;
- TDataStd_Directory attribute management; - TDataStd_Directory attribute management;
- TDataStd_TreeNode attribute management. - TDataStd_TreeNode attribute management.
### TDocStd_Sample.cxx ### TDocStd_Sample.cxx
This sample contains template for the following typical actions: This sample contains template for the following typical actions:
- creating application; - creating application;
@ -560,7 +554,7 @@ This sample contains template for the following typical actions:
- closing a document; - closing a document;
- opening the document stored in the file; - opening the document stored in the file;
- copying content of a document to another document with possibility to update the copy in the future. - copying content of a document to another document with possibility to update the copy in the future.
### TPrsStd_Sample.cxx ### TPrsStd_Sample.cxx
This sample contains template for the following typical actions: This sample contains template for the following typical actions:
- starting with data framework; - starting with data framework;
@ -577,7 +571,7 @@ This sample contains template for the following typical actions:
- updating and displaying presentation of the attribute to be displayed; - updating and displaying presentation of the attribute to be displayed;
- setting a color to the displayed attribute; - setting a color to the displayed attribute;
- getting transparency of the displayed attribute; - getting transparency of the displayed attribute;
- modify attribute; - modify attribute;
- updating presentation of the attribute in viewer. - updating presentation of the attribute in viewer.
### TNaming_Sample.cxx ### TNaming_Sample.cxx
@ -591,4 +585,3 @@ The following scenario is used:
- creating a Fillet (using the selected edges) and pushing the result as a modification of Box1; - creating a Fillet (using the selected edges) and pushing the result as a modification of Box1;
- creating a Cut (Box1, Box2) as a modification of Box1 and push it in DF; - creating a Cut (Box1, Box2) as a modification of Box1 and push it in DF;
- recovering the result from DF. - recovering the result from DF.

File diff suppressed because it is too large Load Diff