1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0025398: Modeling Algorithms - Provide shape proximity detector

Correction of test case for issue CR25398
This commit is contained in:
dbp 2014-12-05 12:16:11 +03:00 committed by bugmaster
parent 06696fd835
commit 558e68ea11
8 changed files with 1333 additions and 0 deletions

View File

@ -0,0 +1,645 @@
// Created on: 2014-10-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepExtrema_ShapeProximity.hxx>
#include <Precision.hxx>
#include <TopExp_Explorer.hxx>
//=======================================================================
//function : BRepExtrema_ShapeProximity
//purpose : Creates empty proximity tool
//=======================================================================
BRepExtrema_ShapeProximity::BRepExtrema_ShapeProximity (const Standard_Real theTolerance)
: myTolerance (theTolerance),
myPrimitiveSet1 (new BRepExtrema_TriangleSet),
myPrimitiveSet2 (new BRepExtrema_TriangleSet)
{
// Should be initialized later
myIsDone = myIsInitS1 = myIsInitS2 = Standard_False;
}
//=======================================================================
//function : BRepExtrema_ShapeProximity
//purpose : Creates proximity tool for the given two shapes
//=======================================================================
BRepExtrema_ShapeProximity::BRepExtrema_ShapeProximity (const TopoDS_Shape& theShape1,
const TopoDS_Shape& theShape2,
const Standard_Real theTolerance)
: myTolerance (theTolerance),
myPrimitiveSet1 (new BRepExtrema_TriangleSet),
myPrimitiveSet2 (new BRepExtrema_TriangleSet)
{
LoadShape1 (theShape1);
LoadShape2 (theShape2);
}
//=======================================================================
//function : LoadShape1
//purpose : Loads 1st shape into proximity tool
//=======================================================================
Standard_Boolean BRepExtrema_ShapeProximity::LoadShape1 (const TopoDS_Shape& theShape1)
{
myFaceList1.Clear();
for (TopExp_Explorer anIter (theShape1, TopAbs_FACE); anIter.More(); anIter.Next())
{
myFaceList1.Append (static_cast<const TopoDS_Face&> (anIter.Current()));
}
myIsDone = Standard_False;
return myIsInitS1 = myPrimitiveSet1->Init (myFaceList1);
}
//=======================================================================
//function : LoadShape2
//purpose : Loads 2nd shape into proximity tool
//=======================================================================
Standard_Boolean BRepExtrema_ShapeProximity::LoadShape2 (const TopoDS_Shape& theShape2)
{
myFaceList2.Clear();
for (TopExp_Explorer anIter (theShape2, TopAbs_FACE); anIter.More(); anIter.Next())
{
myFaceList2.Append (static_cast<const TopoDS_Face&> (anIter.Current()));
}
myIsDone = Standard_False;
return myIsInitS2 = myPrimitiveSet2->Init (myFaceList2);
}
namespace
{
//! Tool class to describe stack item in traverse function.
struct BRepExtrema_StackItem
{
Standard_Integer Node1;
Standard_Integer Node2;
BRepExtrema_StackItem (const Standard_Integer theNode1 = 0,
const Standard_Integer theNode2 = 0)
: Node1 (theNode1),
Node2 (theNode2)
{
//
}
};
//! Bounding triangular prism for specified triangle.
class BRepExtrema_BoundingPrism
{
public:
//! Vertices of the prism.
BVH_Vec3d Vertices[6];
//! Edges of the prism.
BVH_Vec3d Edges[3];
//! Normal to prism caps.
BVH_Vec3d Normal;
//! Normals to prism edges.
BVH_Vec3d EdgeNormals[3];
//! Is prism initialized?
Standard_Boolean IsInited;
public:
//! Creates uninitialized bounding prism.
BRepExtrema_BoundingPrism() : IsInited (Standard_False)
{
//
}
//! Creates new bounding prism for the given triangle.
BRepExtrema_BoundingPrism (const BVH_Vec3d& theVertex0,
const BVH_Vec3d& theVertex1,
const BVH_Vec3d& theVertex2,
const Standard_Real theDeflect)
{
Init (theVertex0,
theVertex1,
theVertex2,
theDeflect);
}
//! Calculates bounding prism for the given triangle.
void Init (const BVH_Vec3d& theVertex0,
const BVH_Vec3d& theVertex1,
const BVH_Vec3d& theVertex2,
const Standard_Real theDeflect)
{
Edges[0] = theVertex1 - theVertex0;
Edges[1] = theVertex2 - theVertex0;
Edges[2] = theVertex2 - theVertex1;
Normal = BVH_Vec3d::Cross (Edges[0], Edges[1]);
EdgeNormals[0] = BVH_Vec3d::Cross (Edges[0], Normal);
EdgeNormals[1] = BVH_Vec3d::Cross (Edges[1], Normal);
EdgeNormals[2] = BVH_Vec3d::Cross (Edges[2], Normal);
EdgeNormals[0] *= 1.0 / Max (EdgeNormals[0].Modulus(), Precision::Confusion());
EdgeNormals[1] *= 1.0 / Max (EdgeNormals[1].Modulus(), Precision::Confusion());
EdgeNormals[2] *= 1.0 / Max (EdgeNormals[2].Modulus(), Precision::Confusion());
const BVH_Vec3d aDirect01 = EdgeNormals[0] - EdgeNormals[1];
const BVH_Vec3d aDirect02 = EdgeNormals[0] + EdgeNormals[2];
const BVH_Vec3d aDirect12 = EdgeNormals[2] - EdgeNormals[1];
Vertices[0] = Vertices[3] = theVertex0 + aDirect01 * (theDeflect / aDirect01.Dot (EdgeNormals[0]));
Vertices[1] = Vertices[4] = theVertex1 + aDirect02 * (theDeflect / aDirect02.Dot (EdgeNormals[2]));
Vertices[2] = Vertices[5] = theVertex2 + aDirect12 * (theDeflect / aDirect12.Dot (EdgeNormals[2]));
const BVH_Vec3d aNormOffset = Normal * (theDeflect / Max (Normal.Modulus(), Precision::Confusion()));
for (Standard_Integer aVertIdx = 0; aVertIdx < 3; ++aVertIdx)
{
Vertices[aVertIdx + 0] += aNormOffset;
Vertices[aVertIdx + 3] -= aNormOffset;
}
IsInited = Standard_True;
}
//! Checks if two prisms are separated along the given axis.
Standard_Boolean Separated (const BRepExtrema_BoundingPrism& thePrism, const BVH_Vec3d& theAxis) const
{
Standard_Real aMin1 = DBL_MAX;
Standard_Real aMax1 = -DBL_MAX;
Standard_Real aMin2 = DBL_MAX;
Standard_Real aMax2 = -DBL_MAX;
for (Standard_Integer aVertIdx = 0; aVertIdx < 6; ++aVertIdx)
{
const Standard_Real aProj1 = Vertices[aVertIdx].Dot (theAxis);
aMin1 = Min (aMin1, aProj1);
aMax1 = Max (aMax1, aProj1);
const Standard_Real aProj2 = thePrism.Vertices[aVertIdx].Dot (theAxis);
aMin2 = Min (aMin2, aProj2);
aMax2 = Max (aMax2, aProj2);
if (aMin1 <= aMax2 && aMax1 >= aMin2)
{
return Standard_False;
}
}
return aMin1 > aMax2 || aMax1 < aMin2;
}
};
// =======================================================================
// function : Separated
// purpose : Checks if triangles can be separated along the given axis
// (projects vertices on this axis and performs interval test)
// =======================================================================
inline Standard_Boolean SeparateTriangles (const BVH_Vec3d& theTrg1Vert0,
const BVH_Vec3d& theTrg1Vert1,
const BVH_Vec3d& theTrg1Vert2,
const BVH_Vec3d& theTrg2Vert0,
const BVH_Vec3d& theTrg2Vert1,
const BVH_Vec3d& theTrg2Vert2,
const BVH_Vec3d& theSplitAxis)
{
const Standard_Real aA1 = theTrg1Vert0.Dot (theSplitAxis);
const Standard_Real aB1 = theTrg1Vert1.Dot (theSplitAxis);
const Standard_Real aC1 = theTrg1Vert2.Dot (theSplitAxis);
const Standard_Real aA2 = theTrg2Vert0.Dot (theSplitAxis);
const Standard_Real aB2 = theTrg2Vert1.Dot (theSplitAxis);
const Standard_Real aC2 = theTrg2Vert2.Dot (theSplitAxis);
const Standard_Real aMin1 = Min (aA1, Min (aB1, aC1));
const Standard_Real aMax1 = Max (aA1, Max (aB1, aC1));
if (aMax1 < Min (aA2, Min (aB2, aC2)))
{
return Standard_True;
}
return aMin1 > Max (aA2, Max (aB2, aC2));
}
// =======================================================================
// function : TrianglesIntersected
// purpose : Checks if two triangles are intersected
// (test uses SAT - Separating Axis Theorem)
// =======================================================================
Standard_Boolean TrianglesIntersected (const BVH_Vec3d& theTrg1Vert0,
const BVH_Vec3d& theTrg1Vert1,
const BVH_Vec3d& theTrg1Vert2,
const BVH_Vec3d& theTrg2Vert0,
const BVH_Vec3d& theTrg2Vert1,
const BVH_Vec3d& theTrg2Vert2)
{
const BVH_Vec3d aEdges1[3] = { theTrg1Vert1 - theTrg1Vert0,
theTrg1Vert2 - theTrg1Vert0,
theTrg1Vert2 - theTrg1Vert1 };
const BVH_Vec3d aTrg1Normal = BVH_Vec3d::Cross (aEdges1[0], aEdges1[1]);
if (SeparateTriangles (theTrg1Vert0,
theTrg1Vert1,
theTrg1Vert2,
theTrg2Vert0,
theTrg2Vert1,
theTrg2Vert2,
aTrg1Normal))
{
return Standard_False;
}
const BVH_Vec3d aEdges2[3] = { theTrg2Vert1 - theTrg2Vert0,
theTrg2Vert2 - theTrg2Vert0,
theTrg2Vert2 - theTrg2Vert1 };
const BVH_Vec3d aTrg2Normal = BVH_Vec3d::Cross (aEdges2[0], aEdges2[1]);
if (SeparateTriangles (theTrg1Vert0,
theTrg1Vert1,
theTrg1Vert2,
theTrg2Vert0,
theTrg2Vert1,
theTrg2Vert2,
aTrg2Normal))
{
return Standard_False;
}
for (Standard_Integer anIdx1 = 0; anIdx1 < 3; ++anIdx1)
{
for (Standard_Integer anIdx2 = 0; anIdx2 < 3; ++anIdx2)
{
const BVH_Vec3d aSplitAxis = BVH_Vec3d::Cross (aEdges1[anIdx1], aEdges2[anIdx2]);
if (SeparateTriangles (theTrg1Vert0,
theTrg1Vert1,
theTrg1Vert2,
theTrg2Vert0,
theTrg2Vert1,
theTrg2Vert2,
aSplitAxis))
{
return Standard_False;
}
}
}
return Standard_True;
}
// =======================================================================
// function : PrismsIntersected
// purpose : Checks if two triangular prisms are intersected
// (test uses SAT - Separating Axis Theorem)
// =======================================================================
Standard_Boolean PrismsIntersected (const BRepExtrema_BoundingPrism& thePrism1,
const BRepExtrema_BoundingPrism& thePrism2)
{
if (thePrism1.Separated (thePrism2, thePrism1.Normal))
{
return Standard_False;
}
if (thePrism1.Separated (thePrism2, thePrism2.Normal))
{
return Standard_False;
}
for (Standard_Integer anIdx = 0; anIdx < 3; ++anIdx)
{
if (thePrism1.Separated (thePrism2, thePrism1.EdgeNormals[anIdx]))
{
return Standard_False;
}
}
for (Standard_Integer anIdx = 0; anIdx < 3; ++anIdx)
{
if (thePrism1.Separated (thePrism2, thePrism2.EdgeNormals[anIdx]))
{
return Standard_False;
}
}
for (Standard_Integer anIdx1 = 0; anIdx1 < 4; ++anIdx1)
{
const BVH_Vec3d& aEdge1 = (anIdx1 == 3) ? thePrism1.Normal : thePrism1.Edges[anIdx1];
for (Standard_Integer anIdx2 = 0; anIdx2 < 4; ++anIdx2)
{
const BVH_Vec3d& aEdge2 = (anIdx2 == 3) ? thePrism2.Normal : thePrism2.Edges[anIdx2];
if (thePrism1.Separated (thePrism2, BVH_Vec3d::Cross (aEdge1, aEdge2)))
{
return Standard_False;
}
}
}
return Standard_True;
}
// =======================================================================
// function : OverlapBoxes
// purpose : Checks if two boxes (AABBs) are overlapped
// =======================================================================
inline Standard_Boolean OverlapBoxes (const BVH_Vec3d& theBoxMin1,
const BVH_Vec3d& theBoxMax1,
const BVH_Vec3d& theBoxMin2,
const BVH_Vec3d& theBoxMax2,
const Standard_Real theTolerance)
{
// Check for overlap
return !(theBoxMin1.x() > theBoxMax2.x() + theTolerance ||
theBoxMax1.x() < theBoxMin2.x() - theTolerance ||
theBoxMin1.y() > theBoxMax2.y() + theTolerance ||
theBoxMax1.y() < theBoxMin2.y() - theTolerance ||
theBoxMin1.z() > theBoxMax2.z() + theTolerance ||
theBoxMax1.z() < theBoxMin2.z() - theTolerance);
}
//=======================================================================
//function : getSetOfFaces
//purpose :
//=======================================================================
TColStd_PackedMapOfInteger& getSetOfFaces (BRepExtrema_OverlappedSubShapes& theShapes,
const Standard_Integer theFaceIdx)
{
if (!theShapes.IsBound (theFaceIdx))
{
theShapes.Bind (theFaceIdx, TColStd_PackedMapOfInteger());
}
return theShapes.ChangeFind (theFaceIdx);
}
}
//=======================================================================
//function : IntersectLeavesExact
//purpose : Narrow-phase of overlap test (exact intersection)
//=======================================================================
void BRepExtrema_ShapeProximity::IntersectLeavesExact (const BVH_Vec4i& theLeaf1,
const BVH_Vec4i& theLeaf2)
{
for (Standard_Integer aTrgIdx1 = theLeaf1.y(); aTrgIdx1 <= theLeaf1.z(); ++aTrgIdx1)
{
const Standard_Integer aFaceIdx1 = myPrimitiveSet1->GetFaceID (aTrgIdx1);
BVH_Vec3d aTrg1Vert1;
BVH_Vec3d aTrg1Vert2;
BVH_Vec3d aTrg1Vert3;
myPrimitiveSet1->GetVertices (aTrgIdx1,
aTrg1Vert1,
aTrg1Vert2,
aTrg1Vert3);
const Standard_Boolean aIsInSet = myOverlapSubShapes1.IsBound (aFaceIdx1);
for (Standard_Integer aTrgIdx2 = theLeaf2.y(); aTrgIdx2 <= theLeaf2.z(); ++aTrgIdx2)
{
const Standard_Integer aFaceIdx2 = myPrimitiveSet2->GetFaceID (aTrgIdx2);
if (!aIsInSet || !myOverlapSubShapes1.Find (aFaceIdx1).Contains (aFaceIdx2))
{
BVH_Vec3d aTrg2Vert1;
BVH_Vec3d aTrg2Vert2;
BVH_Vec3d aTrg2Vert3;
myPrimitiveSet2->GetVertices (aTrgIdx2, aTrg2Vert1, aTrg2Vert2, aTrg2Vert3);
if (TrianglesIntersected (aTrg1Vert1,
aTrg1Vert2,
aTrg1Vert3,
aTrg2Vert1,
aTrg2Vert2,
aTrg2Vert3))
{
getSetOfFaces (myOverlapSubShapes1, aFaceIdx1).Add (aFaceIdx2);
getSetOfFaces (myOverlapSubShapes2, aFaceIdx2).Add (aFaceIdx1);
}
}
}
}
}
//=======================================================================
//function : IntersectLeavesToler
//purpose : Narrow-phase of overlap test (with non-zero tolerance)
//=======================================================================
void BRepExtrema_ShapeProximity::IntersectLeavesToler (const BVH_Vec4i& theLeaf1,
const BVH_Vec4i& theLeaf2)
{
for (Standard_Integer aTrgIdx1 = theLeaf1.y(); aTrgIdx1 <= theLeaf1.z(); ++aTrgIdx1)
{
const Standard_Integer aFaceIdx1 = myPrimitiveSet1->GetFaceID (aTrgIdx1);
BVH_Vec3d aTrg1Vert1;
BVH_Vec3d aTrg1Vert2;
BVH_Vec3d aTrg1Vert3;
myPrimitiveSet1->GetVertices (aTrgIdx1,
aTrg1Vert1,
aTrg1Vert2,
aTrg1Vert3);
BRepExtrema_BoundingPrism aPrism1; // not initialized
const Standard_Boolean aIsInSet = myOverlapSubShapes1.IsBound (aFaceIdx1);
for (Standard_Integer aTrgIdx2 = theLeaf2.y(); aTrgIdx2 <= theLeaf2.z(); ++aTrgIdx2)
{
const Standard_Integer aFaceIdx2 = myPrimitiveSet2->GetFaceID (aTrgIdx2);
if (!aIsInSet || !myOverlapSubShapes1.Find (aFaceIdx1).Contains (aFaceIdx2))
{
if (!aPrism1.IsInited)
{
aPrism1.Init (aTrg1Vert1, aTrg1Vert2, aTrg1Vert3, myTolerance);
}
BVH_Vec3d aTrg2Vert1;
BVH_Vec3d aTrg2Vert2;
BVH_Vec3d aTrg2Vert3;
myPrimitiveSet2->GetVertices (aTrgIdx2,
aTrg2Vert1,
aTrg2Vert2,
aTrg2Vert3);
BRepExtrema_BoundingPrism aPrism2 (aTrg2Vert1,
aTrg2Vert2,
aTrg2Vert3,
myTolerance);
if (PrismsIntersected (aPrism1, aPrism2))
{
getSetOfFaces (myOverlapSubShapes1, aFaceIdx1).Add (aFaceIdx2);
getSetOfFaces (myOverlapSubShapes2, aFaceIdx2).Add (aFaceIdx1);
}
}
}
}
}
//=======================================================================
//function : Perform
//purpose : Performs search for overlapped faces
//=======================================================================
void BRepExtrema_ShapeProximity::Perform()
{
if (myIsDone || !myIsInitS1 || !myIsInitS2)
{
return;
}
BRepExtrema_StackItem aStack[96];
const NCollection_Handle<BVH_Tree<Standard_Real, 3> >& aBVH1 = myPrimitiveSet1->BVH();
const NCollection_Handle<BVH_Tree<Standard_Real, 3> >& aBVH2 = myPrimitiveSet2->BVH();
if (aBVH1.IsNull() || aBVH2.IsNull())
{
return;
}
BRepExtrema_StackItem aNodes; // current pair of nodes
Standard_Integer aHead = -1; // stack head position
for (;;)
{
BVH_Vec4i aNodeData1 = aBVH1->NodeInfoBuffer()[aNodes.Node1];
BVH_Vec4i aNodeData2 = aBVH2->NodeInfoBuffer()[aNodes.Node2];
if (aNodeData1.x() != 0 && aNodeData2.x() != 0) // leaves
{
if (myTolerance == 0.0)
{
IntersectLeavesExact (aNodeData1, aNodeData2);
}
else
{
IntersectLeavesToler (aNodeData1, aNodeData2);
}
if (aHead < 0)
break;
aNodes = aStack[aHead--];
}
else
{
BRepExtrema_StackItem aPairsToProcess[4];
Standard_Integer aNbPairs = 0;
if (aNodeData1.x() == 0) // inner node
{
const BVH_Vec3d& aMinPntLft1 = aBVH1->MinPoint (aNodeData1.y());
const BVH_Vec3d& aMaxPntLft1 = aBVH1->MaxPoint (aNodeData1.y());
const BVH_Vec3d& aMinPntRgh1 = aBVH1->MinPoint (aNodeData1.z());
const BVH_Vec3d& aMaxPntRgh1 = aBVH1->MaxPoint (aNodeData1.z());
if (aNodeData2.x() == 0) // inner node
{
const BVH_Vec3d& aMinPntLft2 = aBVH2->MinPoint (aNodeData2.y());
const BVH_Vec3d& aMaxPntLft2 = aBVH2->MaxPoint (aNodeData2.y());
const BVH_Vec3d& aMinPntRgh2 = aBVH2->MinPoint (aNodeData2.z());
const BVH_Vec3d& aMaxPntRgh2 = aBVH2->MaxPoint (aNodeData2.z());
if (OverlapBoxes (aMinPntLft1, aMaxPntLft1, aMinPntLft2, aMaxPntLft2, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.y(), aNodeData2.y());
}
if (OverlapBoxes (aMinPntLft1, aMaxPntLft1, aMinPntRgh2, aMaxPntRgh2, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.y(), aNodeData2.z());
}
if (OverlapBoxes (aMinPntRgh1, aMaxPntRgh1, aMinPntLft2, aMaxPntLft2, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.z(), aNodeData2.y());
}
if (OverlapBoxes (aMinPntRgh1, aMaxPntRgh1, aMinPntRgh2, aMaxPntRgh2, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.z(), aNodeData2.z());
}
}
else
{
const BVH_Vec3d& aMinPntLeaf = aBVH2->MinPoint (aNodes.Node2);
const BVH_Vec3d& aMaxPntLeaf = aBVH2->MaxPoint (aNodes.Node2);
if (OverlapBoxes (aMinPntLft1, aMaxPntLft1, aMinPntLeaf, aMaxPntLeaf, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.y(), aNodes.Node2);
}
if (OverlapBoxes (aMinPntRgh1, aMaxPntRgh1, aMinPntLeaf, aMaxPntLeaf, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodeData1.z(), aNodes.Node2);
}
}
}
else
{
const BVH_Vec3d& aMinPntLeaf = aBVH1->MinPoint (aNodes.Node1);
const BVH_Vec3d& aMaxPntLeaf = aBVH1->MaxPoint (aNodes.Node1);
const BVH_Vec3d& aMinPntLft2 = aBVH2->MinPoint (aNodeData2.y());
const BVH_Vec3d& aMaxPntLft2 = aBVH2->MaxPoint (aNodeData2.y());
const BVH_Vec3d& aMinPntRgh2 = aBVH2->MinPoint (aNodeData2.z());
const BVH_Vec3d& aMaxPntRgh2 = aBVH2->MaxPoint (aNodeData2.z());
if (OverlapBoxes (aMinPntLft2, aMaxPntLft2, aMinPntLeaf, aMaxPntLeaf, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodes.Node1, aNodeData2.y());
}
if (OverlapBoxes (aMinPntRgh2, aMaxPntRgh2, aMinPntLeaf, aMaxPntLeaf, myTolerance))
{
aPairsToProcess[aNbPairs++] = BRepExtrema_StackItem (aNodes.Node1, aNodeData2.z());
}
}
if (aNbPairs > 0)
{
aNodes = aPairsToProcess[0];
for (Standard_Integer anIdx = 1; anIdx < aNbPairs; ++anIdx)
{
aStack[++aHead] = aPairsToProcess[anIdx];
}
}
else
{
if (aHead < 0)
break;
aNodes = aStack[aHead--];
}
}
}
myIsDone = Standard_True;
}

View File

@ -0,0 +1,154 @@
// Created on: 2014-10-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BRepExtrema_ShapeProximity_HeaderFile
#define _BRepExtrema_ShapeProximity_HeaderFile
#include <BVH_Geometry.hxx>
#include <BRepExtrema_TriangleSet.hxx>
#include <TColStd_PackedMapOfInteger.hxx>
#include <NCollection_DataMap.hxx>
//! Set of overlapped sub-shapes.
typedef NCollection_DataMap<Standard_Integer, TColStd_PackedMapOfInteger > BRepExtrema_OverlappedSubShapes;
//! Tool class for shape proximity detection.
//! For two given shapes and given tolerance (offset from the mesh) the algorithm allows
//! to determine whether or not they are overlapped. The algorithm input consists of any
//! shapes which can be decomposed into individual faces (used as basic shape elements).
//! High performance is achieved through the use of existing triangulation of faces. So
//! poly triangulation (with the desired deflection) should already be built. Note that
//! solution is approximate (and corresponds to the deflection used for triangulation).
//!
//! The algorithm can be run in two modes. If tolerance is set to zero, the algorithm
//! will detect only intersecting faces (containing triangles with common points). If
//! tolerance is set to positive value, the algorithm will also detect faces located
//! on distance less than the given tolerance from each other.
class BRepExtrema_ShapeProximity
{
public:
//! Creates empty proximity tool.
Standard_EXPORT BRepExtrema_ShapeProximity (const Standard_Real theTolerance = 0.0);
//! Creates proximity tool for the given two shapes.
Standard_EXPORT BRepExtrema_ShapeProximity (const TopoDS_Shape& theShape1,
const TopoDS_Shape& theShape2,
const Standard_Real theTolerance = 0.0);
public:
//! Returns tolerance value for overlap test (distance between shapes).
Standard_Real Tolerance() const
{
return myTolerance;
}
//! Sets tolerance value for overlap test (distance between shapes).
void SetTolerance (const Standard_Real theTolerance)
{
myTolerance = theTolerance;
}
//! Loads 1st shape into proximity tool.
Standard_EXPORT Standard_Boolean LoadShape1 (const TopoDS_Shape& theShape1);
//! Loads 2nd shape into proximity tool.
Standard_EXPORT Standard_Boolean LoadShape2 (const TopoDS_Shape& theShape2);
//! Performs search for overlapped faces.
Standard_EXPORT void Perform();
//! True if the search is completed.
Standard_Boolean IsDone() const
{
return myIsDone;
}
//! Returns set of all the face triangles of the 1st shape.
const NCollection_Handle<BRepExtrema_TriangleSet>& PrimitiveSet1() const
{
return myPrimitiveSet1;
}
//! Returns set of all the face triangles of the 2nd shape.
const NCollection_Handle<BRepExtrema_TriangleSet>& PrimitiveSet2() const
{
return myPrimitiveSet2;
}
//! Returns set of IDs of overlapped faces of 1st shape.
const BRepExtrema_OverlappedSubShapes& OverlapSubShapes1() const
{
return myOverlapSubShapes1;
}
//! Returns set of IDs of overlapped faces of 2nd shape.
const BRepExtrema_OverlappedSubShapes& OverlapSubShapes2() const
{
return myOverlapSubShapes2;
}
//! Returns sub-shape from 1st shape with the given index.
const TopoDS_Face& GetSubShape1 (const Standard_Integer theID) const
{
return myFaceList1.Value (theID);
}
//! Returns sub-shape from 1st shape with the given index.
const TopoDS_Face& GetSubShape2 (const Standard_Integer theID) const
{
return myFaceList2.Value (theID);
}
protected:
//! Performs narrow-phase of overlap test (exact intersection).
void IntersectLeavesExact (const BVH_Vec4i& theLeaf1, const BVH_Vec4i& theLeaf2);
//! Performs narrow-phase of overlap test (intersection with non-zero tolerance).
void IntersectLeavesToler (const BVH_Vec4i& theLeaf1, const BVH_Vec4i& theLeaf2);
private:
//! Maximum overlapping distance.
Standard_Real myTolerance;
//! Is the 1st shape initialized?
Standard_Boolean myIsInitS1;
//! Is the 2nd shape initialized?
Standard_Boolean myIsInitS2;
//! List of faces of the 1st shape.
BRepExtrema_ShapeList myFaceList1;
//! List of faces of the 2nd shape.
BRepExtrema_ShapeList myFaceList2;
//! Set of all the face triangles of the 1st shape.
NCollection_Handle<BRepExtrema_TriangleSet> myPrimitiveSet1;
//! Set of all the face triangles of the 2nd shape.
NCollection_Handle<BRepExtrema_TriangleSet> myPrimitiveSet2;
//! Set of overlapped faces of 1st shape.
BRepExtrema_OverlappedSubShapes myOverlapSubShapes1;
//! Set of overlapped faces of 2nd shape.
BRepExtrema_OverlappedSubShapes myOverlapSubShapes2;
//! Is overlap test completed?
Standard_Boolean myIsDone;
};
#endif // _BRepExtrema_ShapeProximity_HeaderFile

View File

@ -0,0 +1,226 @@
// Created on: 2014-10-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRepExtrema_TriangleSet.hxx>
#include <BRep_Tool.hxx>
#include <BRepAdaptor_Surface.hxx>
#include <BVH_LinearBuilder.hxx>
#include <Poly_Triangulation.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
//=======================================================================
//function : BRepExtrema_TriangleSet
//purpose : Creates empty triangle set
//=======================================================================
BRepExtrema_TriangleSet::BRepExtrema_TriangleSet()
: BVH_PrimitiveSet<Standard_Real, 3>()
{
// Set default builder - linear BVH (LBVH)
myBuilder = new BVH_LinearBuilder<Standard_Real, 3> (5, 32);
}
//=======================================================================
//function : BRepExtrema_TriangleSet
//purpose : Creates triangle set from the given face
//=======================================================================
BRepExtrema_TriangleSet::BRepExtrema_TriangleSet (const BRepExtrema_ShapeList& theFaces)
: BVH_PrimitiveSet<Standard_Real, 3>()
{
// Set default builder - linear BVH (LBVH)
myBuilder = new BVH_LinearBuilder<Standard_Real, 3> (5, 32);
Init (theFaces);
}
//=======================================================================
//function : ~BRepExtrema_TriangleSet
//purpose : Releases resources of triangle set
//=======================================================================
BRepExtrema_TriangleSet::~BRepExtrema_TriangleSet()
{
//
}
//=======================================================================
//function : Size
//purpose : Returns total number of triangles
//=======================================================================
Standard_Integer BRepExtrema_TriangleSet::Size() const
{
return static_cast<Standard_Integer> (myTriangles.size());
}
//=======================================================================
//function : Box
//purpose : Returns AABB of the given triangle
//=======================================================================
BVH_Box<Standard_Real, 3> BRepExtrema_TriangleSet::Box (const Standard_Integer theIndex) const
{
const BVH_Vec4i& aTriangle = myTriangles[theIndex];
BVH_Vec3d aMinPnt = myVertexArray[aTriangle.x()].cwiseMin (
myVertexArray[aTriangle.y()].cwiseMin (myVertexArray[aTriangle.z()]));
BVH_Vec3d aMaxPnt = myVertexArray[aTriangle.x()].cwiseMax (
myVertexArray[aTriangle.y()].cwiseMax (myVertexArray[aTriangle.z()]));
return BVH_Box<Standard_Real, 3> (aMinPnt, aMaxPnt);
}
//=======================================================================
//function : Center
//purpose : Returns centroid position along specified axis
//=======================================================================
Standard_Real BRepExtrema_TriangleSet::Center (const Standard_Integer theIndex, const Standard_Integer theAxis) const
{
const BVH_Vec4i& aTriangle = myTriangles[theIndex];
if (theAxis == 0)
{
return (1.0 / 3.0) * (myVertexArray[aTriangle.x()].x() +
myVertexArray[aTriangle.y()].x() +
myVertexArray[aTriangle.z()].x());
}
else if (theAxis == 1)
{
return (1.0 / 3.0) * (myVertexArray[aTriangle.x()].y() +
myVertexArray[aTriangle.y()].y() +
myVertexArray[aTriangle.z()].y());
}
else
{
return (1.0 / 3.0) * (myVertexArray[aTriangle.x()].z() +
myVertexArray[aTriangle.y()].z() +
myVertexArray[aTriangle.z()].z());
}
}
//=======================================================================
//function : Swap
//purpose : Swaps indices of two specified triangles
//=======================================================================
void BRepExtrema_TriangleSet::Swap (const Standard_Integer theIndex1, const Standard_Integer theIndex2)
{
std::swap (myTriangles[theIndex1],
myTriangles[theIndex2]);
}
//=======================================================================
//function : GetFaceID
//purpose : Returns face ID of the given triangle
//=======================================================================
Standard_Integer BRepExtrema_TriangleSet::GetFaceID (const Standard_Integer theIndex) const
{
return myTriangles[theIndex].w();
}
//=======================================================================
//function : GetVertices
//purpose : Returns vertices of the given triangle
//=======================================================================
void BRepExtrema_TriangleSet::GetVertices (const Standard_Integer theIndex,
BVH_Vec3d& theVertex1,
BVH_Vec3d& theVertex2,
BVH_Vec3d& theVertex3) const
{
BVH_Vec4i aTriangle = myTriangles[theIndex];
theVertex1 = myVertexArray[aTriangle.x()];
theVertex2 = myVertexArray[aTriangle.y()];
theVertex3 = myVertexArray[aTriangle.z()];
}
//=======================================================================
//function : Clear
//purpose : Clears triangle set data
//=======================================================================
void BRepExtrema_TriangleSet::Clear()
{
BVH_Array4i anEmptyTriangles;
myTriangles.swap (anEmptyTriangles);
BVH_Array2d anEmptyVertUVArray;
myVertUVArray.swap (anEmptyVertUVArray);
BVH_Array3d anEmptyVertexArray;
myVertexArray.swap (anEmptyVertexArray);
}
//=======================================================================
//function : Init
//purpose : Initializes triangle set
//=======================================================================
Standard_Boolean BRepExtrema_TriangleSet::Init (const BRepExtrema_ShapeList& theFaces)
{
Clear();
for (Standard_Integer aFaceIdx = 0; aFaceIdx < theFaces.Size(); ++aFaceIdx)
{
TopLoc_Location aLocation;
Handle(Poly_Triangulation) aTriangulation =
BRep_Tool::Triangulation (theFaces (aFaceIdx), aLocation);
if (aTriangulation.IsNull())
{
return Standard_False;
}
BRepAdaptor_Surface aFaceAdaptor (theFaces (aFaceIdx), Standard_False);
const Standard_Integer aVertOffset =
static_cast<Standard_Integer> (myVertexArray.size()) - 1;
for (Standard_Integer aVertIdx = 1; aVertIdx <= aTriangulation->NbNodes(); ++aVertIdx)
{
gp_Pnt aVertex = aTriangulation->Nodes().Value (aVertIdx);
aVertex.Transform (aLocation.Transformation());
myVertexArray.push_back (BVH_Vec3d (aVertex.X(),
aVertex.Y(),
aVertex.Z()));
const Standard_Real aU = aTriangulation->UVNodes().Value (aVertIdx).X();
const Standard_Real aV = aTriangulation->UVNodes().Value (aVertIdx).Y();
myVertUVArray.push_back (BVH_Vec2d (aU, aV));
}
for (Standard_Integer aTriIdx = 1; aTriIdx <= aTriangulation->NbTriangles(); ++aTriIdx)
{
Standard_Integer aVertex1;
Standard_Integer aVertex2;
Standard_Integer aVertex3;
aTriangulation->Triangles().Value (aTriIdx).Get (aVertex1,
aVertex2,
aVertex3);
myTriangles.push_back (BVH_Vec4i (aVertex1 + aVertOffset,
aVertex2 + aVertOffset,
aVertex3 + aVertOffset,
aFaceIdx));
}
}
MarkDirty(); // needs BVH rebuilding
Standard_ASSERT_RETURN (!BVH().IsNull(),
"Error: Failed to build BVH for primitive set", Standard_False);
return Standard_True;
}

View File

@ -0,0 +1,84 @@
// Created on: 2014-10-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _BRepExtrema_TriangleSet_HeaderFile
#define _BRepExtrema_TriangleSet_HeaderFile
#include <TopoDS_Face.hxx>
#include <BVH_PrimitiveSet.hxx>
//! List of shapes and their IDs for collision detection.
typedef NCollection_Vector<TopoDS_Face> BRepExtrema_ShapeList;
//! Triangle set corresponding to specific face.
class BRepExtrema_TriangleSet : public BVH_PrimitiveSet<Standard_Real, 3>
{
public:
//! Creates empty triangle set.
Standard_EXPORT BRepExtrema_TriangleSet();
//! Creates triangle set from the given face.
Standard_EXPORT BRepExtrema_TriangleSet (const BRepExtrema_ShapeList& theFaces);
//! Releases resources of triangle set.
Standard_EXPORT ~BRepExtrema_TriangleSet();
public: //! @name methods implementing BVH set interface
//! Returns total number of triangles.
Standard_Integer Size() const;
//! Returns AABB of the given triangle.
BVH_Box<Standard_Real, 3> Box (const Standard_Integer theIndex) const;
//! Returns centroid position along specified axis.
Standard_Real Center (const Standard_Integer theIndex, const Standard_Integer theAxis) const;
//! Swaps indices of two specified triangles.
void Swap (const Standard_Integer theIndex1, const Standard_Integer theIndex2);
public:
//! Clears triangle set data.
Standard_EXPORT void Clear();
//! Initializes triangle set.
Standard_EXPORT Standard_Boolean Init (const BRepExtrema_ShapeList& theFaces);
//! Returns vertices of the given triangle.
Standard_EXPORT void GetVertices (const Standard_Integer theIndex,
BVH_Vec3d& theVertex1,
BVH_Vec3d& theVertex2,
BVH_Vec3d& theVertex3) const;
//! Returns face ID of the given triangle.
Standard_EXPORT Standard_Integer GetFaceID (const Standard_Integer theIndex) const;
protected:
//! Array of vertex indices.
BVH_Array4i myTriangles;
//! Array of vertex UV params.
BVH_Array2d myVertUVArray;
//! Array of vertex coordinates.
BVH_Array3d myVertexArray;
};
#endif // _BRepExtrema_TriangleSet_HeaderFile

View File

@ -17,3 +17,7 @@ BRepExtrema_Poly.cxx
BRepExtrema_SeqOfSolution.hxx
BRepExtrema_SolutionElem.hxx
BRepExtrema_SupportType.hxx
BRepExtrema_TriangleSet.hxx
BRepExtrema_TriangleSet.cxx
BRepExtrema_ShapeProximity.hxx
BRepExtrema_ShapeProximity.cxx

View File

@ -20,9 +20,16 @@
#include <BRepTest.hxx>
#include <BRepExtrema_Poly.hxx>
#include <BRepExtrema_DistShapeShape.hxx>
#include <BRepExtrema_ShapeProximity.hxx>
#include <BRepLib_MakeEdge.hxx>
#include <BRepLib_MakeVertex.hxx>
#include <TopoDS_Builder.hxx>
#include <TopoDS_Compound.hxx>
#include <Draw.hxx>
#include <OSD_Timer.hxx>
#include <TCollection_AsciiString.hxx>
#include <TColStd_MapIteratorOfPackedMapOfInteger.hxx>
//#ifdef WNT
#include <stdio.h>
@ -131,6 +138,143 @@ static Standard_Integer distmini(Draw_Interpretor& di, Standard_Integer n, const
return 0;
}
//==============================================================================
//function : ShapeProximity
//purpose :
//==============================================================================
static int ShapeProximity (Draw_Interpretor& theDI, Standard_Integer theNbArgs, const char** theArgs)
{
if (theNbArgs < 3 || theNbArgs > 6)
{
std::cout << "Usage: " << theArgs[0] <<
" Shape1 Shape2 [-tol <value>] [-profile]" << std::endl;
return 1;
}
TopoDS_Shape aShape1 = DBRep::Get (theArgs[1]);
TopoDS_Shape aShape2 = DBRep::Get (theArgs[2]);
if (aShape1.IsNull() || aShape2.IsNull())
{
std::cout << "Error: Failed to find specified shapes" << std::endl;
return 1;
}
BRepExtrema_ShapeProximity aTool;
Standard_Boolean aProfile = Standard_False;
for (Standard_Integer anArgIdx = 3; anArgIdx < theNbArgs; ++anArgIdx)
{
TCollection_AsciiString aFlag (theArgs[anArgIdx]);
aFlag.LowerCase();
if (aFlag == "-tol")
{
if (++anArgIdx >= theNbArgs)
{
std::cout << "Error: wrong syntax at argument '" << aFlag << std::endl;
return 1;
}
const Standard_Real aTolerance = Draw::Atof (theArgs[anArgIdx]);
if (aTolerance < 0.0)
{
std::cout << "Error: Tolerance value should be non-negative" << std::endl;
return 1;
}
else
{
aTool.SetTolerance (aTolerance);
}
}
if (aFlag == "-profile")
{
aProfile = Standard_True;
}
}
Standard_Real aInitTime = 0.0;
Standard_Real aWorkTime = 0.0;
OSD_Timer aTimer;
if (aProfile)
{
aTimer.Start();
}
aTool.LoadShape1 (aShape1);
aTool.LoadShape2 (aShape2);
if (aProfile)
{
aInitTime = aTimer.ElapsedTime();
aTimer.Reset();
aTimer.Start();
}
// Perform shape proximity test
aTool.Perform();
if (aProfile)
{
aWorkTime = aTimer.ElapsedTime();
aTimer.Stop();
}
if (!aTool.IsDone())
{
std::cout << "Error: Failed to perform proximity test" << std::endl;
return 1;
}
if (aProfile)
{
theDI << "Number of primitives in shape 1: " << aTool.PrimitiveSet1()->Size() << "\n";
theDI << "Number of primitives in shape 2: " << aTool.PrimitiveSet2()->Size() << "\n";
theDI << "Building data structures: " << aInitTime << "\n";
theDI << "Executing proximity test: " << aWorkTime << "\n";
}
TopoDS_Builder aCompBuilder;
TopoDS_Compound aFaceCompound1;
aCompBuilder.MakeCompound (aFaceCompound1);
for (BRepExtrema_OverlappedSubShapes::Iterator anIt1 (aTool.OverlapSubShapes1()); anIt1.More(); anIt1.Next())
{
TCollection_AsciiString aStr = TCollection_AsciiString (theArgs[1]) + "_" + (anIt1.Key() + 1);
const TopoDS_Face& aFace = aTool.GetSubShape1 (anIt1.Key());
aCompBuilder.Add (aFaceCompound1, aFace);
DBRep::Set (aStr.ToCString(), aFace);
theDI << aStr << " \n";
}
TopoDS_Compound aFaceCompound2;
aCompBuilder.MakeCompound (aFaceCompound2);
for (BRepExtrema_OverlappedSubShapes::Iterator anIt2 (aTool.OverlapSubShapes2()); anIt2.More(); anIt2.Next())
{
TCollection_AsciiString aStr = TCollection_AsciiString (theArgs[2]) + "_" + (anIt2.Key() + 1);
const TopoDS_Face& aFace = aTool.GetSubShape2 (anIt2.Key());
aCompBuilder.Add (aFaceCompound2, aFace);
DBRep::Set (aStr.ToCString(), aFace);
theDI << aStr << " \n";
}
DBRep::Set ((TCollection_AsciiString (theArgs[1]) + "_" + "overlapped").ToCString(), aFaceCompound1);
DBRep::Set ((TCollection_AsciiString (theArgs[2]) + "_" + "overlapped").ToCString(), aFaceCompound2);
return 0;
}
//=======================================================================
//function : ExtremaCommands
//purpose :
@ -157,4 +301,16 @@ void BRepTest::ExtremaCommands (Draw_Interpretor& theCommands)
__FILE__,
distmini,
aGroup);
theCommands.Add ("proximity",
"proximity Shape1 Shape2 [-tol <value>] [-profile]"
"\n\t\t: Searches for pairs of overlapping faces of the given shapes."
"\n\t\t: The options are:"
"\n\t\t: -tol : non-negative tolerance value used for overlapping"
"\n\t\t: test (for zero tolerance, the strict intersection"
"\n\t\t: test will be performed)"
"\n\t\t: -profile : outputs execution time for main algorithm stages",
__FILE__,
ShapeProximity,
aGroup);
}

View File

@ -277,3 +277,29 @@ proc checkList {List Tolerance D_good Limit_Tol} {
}
}
}
# Procedure to check result of nbshapes command
proc checknbshapes { res nbshapes_expected_s count_locations message} {
upvar $res shape
if { ${count_locations} == 0 } {
set nb_info [nbshapes shape]
} else {
set nb_info [nbshapes shape -t]
}
set EntityList {VERTEX EDGE WIRE FACE SHELL SOLID COMPSOLID COMPOUND SHAPE}
foreach Entity ${EntityList} {
set expr_string "${Entity} +: +(\[-0-9.+eE\]+)"
if { [regexp "${expr_string}" ${nbshapes_expected_s} full nb_entity1] > 0 } {
if { [regexp "${expr_string}" ${nb_info} full nb_entity2] > 0 } {
if { ${nb_entity2} != ${nb_entity1} } {
puts "Error : ${message} is WRONG because number of ${Entity} entities is ${nb_entity2} while ${nb_entity1} is expected"
} else {
puts "OK : ${message} is GOOD because number of ${Entity} entities is equal to number of expected ${Entity} entities"
}
}
}
}
}

View File

@ -0,0 +1,38 @@
puts "========"
puts "OCC25398"
puts "========"
puts ""
######################################################
# Provide shape proximity detector
######################################################
psphere s 10
tclean s
incmesh s 0.001
pcone c 5 20 30
tclean c
incmesh c 0.001
proximity s c -tol 0.01 -profile
set nbshapes_expected "
Number of shapes in shape
VERTEX : 2
EDGE : 3
WIRE : 1
FACE : 1
SHELL : 0
SOLID : 0
COMPSOLID : 0
COMPOUND : 1
SHAPE : 8
"
checknbshapes s_overlapped ${nbshapes_expected} 1 "Overlapped part of shere"
checknbshapes c_overlapped ${nbshapes_expected} 1 "Overlapped part of shere"
vinit
vdisplay s_overlapped
vdisplay c_overlapped
vfit
set only_screen 1