mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-06 18:26:22 +03:00
0025004: Extrema curve/curve incorrect result
Fixed bug in extrema clustering algorithm. Tolerances changing is available now. Testcase with Branin function added. Test cases for issue CR25004
This commit is contained in:
parent
5b14f80036
commit
5493d33411
@ -163,6 +163,7 @@ void Extrema_ExtCC::Perform()
|
||||
Standard_NullObject_Raise_if (!myC[0] || !myC[1], "Extrema_ExtCC::Perform()")
|
||||
myECC.SetParams(*((Adaptor3d_Curve*)myC[0]),
|
||||
*((Adaptor3d_Curve*)myC[1]), myInf[0], mySup[0], myInf[1], mySup[1]);
|
||||
myECC.SetTolerance(Min(myTol[0], myTol[1]));
|
||||
myDone = Standard_False;
|
||||
mypoints.Clear();
|
||||
mySqDist.Clear();
|
||||
|
@ -44,18 +44,21 @@ is
|
||||
---Purpose: It calculates all the distances.
|
||||
-- The function F(u,v)=distance(C1(u),C2(v)) has an
|
||||
-- extremum when gradient(f)=0. The algorithm uses
|
||||
-- Evtushenko's global optimization solver..
|
||||
-- Evtushenko's global optimization solver.
|
||||
|
||||
Create (C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real) returns GenExtCC;
|
||||
---Purpose: Calculates all the distances as above
|
||||
-- between Uinf and Usup for C1 and between Vinf and Vsup
|
||||
-- for C2.
|
||||
|
||||
SetParams(me: in out; C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real)
|
||||
SetParams (me: in out; C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real)
|
||||
---Purpose: Set params in case of empty constructor is usage.
|
||||
is static;
|
||||
|
||||
Perform(me: in out) is static;
|
||||
SetTolerance (me: in out; Tol: Real);
|
||||
---Purpose:
|
||||
|
||||
Perform (me: in out) is static;
|
||||
---Purpose: Performs calculations.
|
||||
|
||||
|
||||
@ -93,12 +96,13 @@ is
|
||||
is static;
|
||||
|
||||
fields
|
||||
myLowBorder : Vector from math;
|
||||
myUppBorder : Vector from math;
|
||||
mySolCount : Integer from Standard;
|
||||
myPoints1 : SequenceOfReal from TColStd;
|
||||
myPoints2 : SequenceOfReal from TColStd;
|
||||
myC : Address from Standard [2];
|
||||
myDone : Boolean;
|
||||
myCurveMinTol : Real from Standard;
|
||||
myLowBorder : Vector from math;
|
||||
myUppBorder : Vector from math;
|
||||
mySolCount : Integer from Standard;
|
||||
myPoints1 : SequenceOfReal from TColStd;
|
||||
myPoints2 : SequenceOfReal from TColStd;
|
||||
myC : Address from Standard [2];
|
||||
myDone : Boolean;
|
||||
|
||||
end GenExtCC;
|
||||
|
@ -22,6 +22,10 @@
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GenExtCC
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Extrema_GenExtCC::Extrema_GenExtCC()
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
@ -29,8 +33,12 @@ Extrema_GenExtCC::Extrema_GenExtCC()
|
||||
{
|
||||
}
|
||||
|
||||
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
const Curve2& C2)
|
||||
//=======================================================================
|
||||
//function : Extrema_GenExtCC
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Extrema_GenExtCC::Extrema_GenExtCC(const Curve1& C1,
|
||||
const Curve2& C2)
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
myDone(Standard_False)
|
||||
@ -41,15 +49,19 @@ Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
myLowBorder(2) = C2.FirstParameter();
|
||||
myUppBorder(1) = C1.LastParameter();
|
||||
myUppBorder(2) = C2.LastParameter();
|
||||
myCurveMinTol = 1.0e-9;
|
||||
}
|
||||
|
||||
|
||||
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
//=======================================================================
|
||||
//function : Extrema_GenExtCC
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Extrema_GenExtCC::Extrema_GenExtCC(const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
myDone(Standard_False)
|
||||
@ -60,14 +72,19 @@ Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
myLowBorder(2) = Vinf;
|
||||
myUppBorder(1) = Usup;
|
||||
myUppBorder(2) = Vsup;
|
||||
myCurveMinTol = 1.0e-9;
|
||||
}
|
||||
|
||||
void Extrema_GenExtCC::SetParams (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
//=======================================================================
|
||||
//function : SetParams
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void Extrema_GenExtCC::SetParams(const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
{
|
||||
myC[0] = (Standard_Address)&C1;
|
||||
myC[1] = (Standard_Address)&C2;
|
||||
@ -77,8 +94,20 @@ void Extrema_GenExtCC::SetParams (const Curve1& C1,
|
||||
myUppBorder(2) = Vsup;
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
void Extrema_GenExtCC::Perform ()
|
||||
//=======================================================================
|
||||
//function : SetTolerance
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void Extrema_GenExtCC::SetTolerance(Standard_Real theTol)
|
||||
{
|
||||
myCurveMinTol = theTol;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Perform
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void Extrema_GenExtCC::Perform()
|
||||
{
|
||||
myDone = Standard_False;
|
||||
|
||||
@ -95,6 +124,10 @@ void Extrema_GenExtCC::Perform ()
|
||||
|
||||
math_MultipleVarFunction *aFunc = new Extrema_GlobOptFuncCCC2(C1, C2);
|
||||
math_GlobOptMin aFinder(aFunc, myLowBorder, myUppBorder);
|
||||
Standard_Real aDiscTol = 1.0e-2;
|
||||
Standard_Real aValueTol = 1.0e-2;
|
||||
Standard_Real aSameTol = myCurveMinTol / (aDiscTol);
|
||||
aFinder.SetTol(aDiscTol, aSameTol);
|
||||
|
||||
Standard_Integer i,j,k;
|
||||
math_Vector aFirstBorderInterval(1,2);
|
||||
@ -114,12 +147,15 @@ void Extrema_GenExtCC::Perform ()
|
||||
aFinder.Perform();
|
||||
|
||||
aCurrF = aFinder.GetF();
|
||||
if (aCurrF < aF + Precision::Confusion())
|
||||
if (aCurrF < aF + aSameTol * aValueTol)
|
||||
{
|
||||
if (aCurrF > Abs(aF - Precision::Confusion()) || (aCurrF < 1.0e-15 && aF < 1.0e-15))
|
||||
if (aCurrF > aF - aSameTol * aValueTol)
|
||||
{
|
||||
Standard_Integer myTmpSolCount = aFinder.NbExtrema();
|
||||
if (aCurrF < aF)
|
||||
aF = aCurrF;
|
||||
|
||||
math_Vector sol(1,2);
|
||||
Standard_Integer myTmpSolCount = aFinder.NbExtrema();
|
||||
for(k = 1; k <= myTmpSolCount; k++)
|
||||
{
|
||||
aFinder.Points(k, sol);
|
||||
@ -127,7 +163,7 @@ void Extrema_GenExtCC::Perform ()
|
||||
myPoints2.Append(sol(2));
|
||||
}
|
||||
mySolCount += myTmpSolCount;
|
||||
} // if (aCurrF > aF - Precision::Confusion())
|
||||
} // if (aCurrF > aF - aSameTol * aValueTol)
|
||||
else
|
||||
{
|
||||
aF = aCurrF;
|
||||
@ -142,7 +178,7 @@ void Extrema_GenExtCC::Perform ()
|
||||
myPoints2.Append(sol(2));
|
||||
}
|
||||
} // else
|
||||
} //if (aCurrF < aF + Precision::Confusion())
|
||||
} //if (aCurrF < aF + aSameTol * aValueTol)
|
||||
}
|
||||
}
|
||||
|
||||
@ -151,10 +187,10 @@ void Extrema_GenExtCC::Perform ()
|
||||
{
|
||||
for(j = i + 1; j <= mySolCount; j++)
|
||||
{
|
||||
if ((myPoints1(i) - myPoints1(j)) < (myUppBorder(1) - myLowBorder(1)) * Precision::Confusion() &&
|
||||
(myPoints2(i) - myPoints2(j)) < (myUppBorder(2) - myLowBorder(2)) * Precision::Confusion())
|
||||
if (Abs(myPoints1(i) - myPoints1(j)) < (myUppBorder(1) - myLowBorder(1)) * Precision::Confusion() &&
|
||||
Abs(myPoints2(i) - myPoints2(j)) < (myUppBorder(2) - myLowBorder(2)) * Precision::Confusion())
|
||||
{
|
||||
// Points with indexes i and j is in same cluster, delete j point from it.
|
||||
// Points with indexes i and j is in same cluster, delete j point from extrema array.
|
||||
myPoints1.Remove(j);
|
||||
myPoints2.Remove(j);
|
||||
j--;
|
||||
@ -166,34 +202,46 @@ void Extrema_GenExtCC::Perform ()
|
||||
delete aFunc;
|
||||
myDone = Standard_True;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Boolean Extrema_GenExtCC::IsDone () const
|
||||
//=======================================================================
|
||||
//function : IsDone
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GenExtCC::IsDone() const
|
||||
{
|
||||
return myDone;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Integer Extrema_GenExtCC::NbExt () const
|
||||
//=======================================================================
|
||||
//function : NbExt
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer Extrema_GenExtCC::NbExt() const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::NbExt()")
|
||||
|
||||
return mySolCount;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Real Extrema_GenExtCC::SquareDistance (const Standard_Integer N) const
|
||||
//=======================================================================
|
||||
//function : SquareDistance
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Real Extrema_GenExtCC::SquareDistance(const Standard_Integer N) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::SquareDistance()")
|
||||
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::SquareDistance()")
|
||||
|
||||
return Tool1::Value(*((Curve1*)myC[0]), myPoints1(N)).SquareDistance(Tool2::Value(*((Curve2*)myC[1]), myPoints2(N)));
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
void Extrema_GenExtCC::Points (const Standard_Integer N,
|
||||
POnC& P1,
|
||||
POnC& P2) const
|
||||
//=======================================================================
|
||||
//function : Points
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void Extrema_GenExtCC::Points(const Standard_Integer N,
|
||||
POnC& P1,
|
||||
POnC& P2) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::Points()")
|
||||
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::Points()")
|
||||
|
@ -2393,6 +2393,154 @@ static Standard_Integer OCC24889 (Draw_Interpretor& theDI,
|
||||
return 0;
|
||||
}
|
||||
|
||||
#include <math_GlobOptMin.hxx>
|
||||
#include <math_MultipleVarFunctionWithHessian.hxx>
|
||||
//=======================================================================
|
||||
//function : OCC25004
|
||||
//purpose : Check extremaCC on Branin function.
|
||||
//=======================================================================
|
||||
// Function is:
|
||||
// f(u,v) = a*(v - b*u^2 + c*u-r)^2+s(1-t)*cos(u)+s
|
||||
// Standard borders are:
|
||||
// -5 <= u <= 10
|
||||
// 0 <= v <= 15
|
||||
class BraninFunction : public math_MultipleVarFunctionWithHessian
|
||||
{
|
||||
public:
|
||||
BraninFunction()
|
||||
{
|
||||
a = 1.0;
|
||||
b = 5.1 / (4.0 * M_PI * M_PI);
|
||||
c = 5.0 / M_PI;
|
||||
r = 6.0;
|
||||
s = 10.0;
|
||||
t = 1.0 / (8.0 * M_PI);
|
||||
}
|
||||
virtual Standard_Integer NbVariables() const
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
virtual Standard_Boolean Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
Standard_Real u = X(1);
|
||||
Standard_Real v = X(2);
|
||||
|
||||
Standard_Real aSqPt = (v - b * u * u + c * u - r); // Square Part of function.
|
||||
Standard_Real aLnPt = s * (1 - t) * cos(u); // Linear part of funcrtion.
|
||||
F = a * aSqPt * aSqPt + aLnPt + s;
|
||||
return Standard_True;
|
||||
}
|
||||
virtual Standard_Boolean Gradient(const math_Vector& X,math_Vector& G)
|
||||
{
|
||||
Standard_Real u = X(1);
|
||||
Standard_Real v = X(2);
|
||||
|
||||
Standard_Real aSqPt = (v - b * u * u + c * u - r); // Square Part of function.
|
||||
G(1) = 2 * a * aSqPt * (c - 2 * b * u) - s * (1 - t) * sin(u);
|
||||
G(2) = 2 * a * aSqPt;
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
virtual Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G)
|
||||
{
|
||||
Value(X,F);
|
||||
Gradient(X,G);
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
virtual Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G,math_Matrix& H)
|
||||
{
|
||||
Value(X,F);
|
||||
Gradient(X,G);
|
||||
|
||||
Standard_Real u = X(1);
|
||||
Standard_Real v = X(2);
|
||||
|
||||
Standard_Real aSqPt = (v - b * u * u + c * u - r); // Square Part of function.
|
||||
Standard_Real aTmpPt = c - 2 * b *u; // Tmp part.
|
||||
H(1,1) = 2 * a * aTmpPt * aTmpPt - 4 * a * b * aSqPt - s * (1 - t) * cos(u);
|
||||
H(1,2) = 2 * a * aTmpPt;
|
||||
H(2,1) = H(1,2);
|
||||
H(2,2) = 2 * a;
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
private:
|
||||
// Standard parameters.
|
||||
Standard_Real a, b, c, r, s, t;
|
||||
};
|
||||
|
||||
static Standard_Integer OCC25004 (Draw_Interpretor& theDI,
|
||||
Standard_Integer /*theNArg*/,
|
||||
const char** /*theArgs*/)
|
||||
{
|
||||
math_MultipleVarFunction* aFunc = new BraninFunction();
|
||||
|
||||
math_Vector aLower(1,2), aUpper(1,2);
|
||||
aLower(1) = -5;
|
||||
aLower(2) = 0;
|
||||
aUpper(1) = 10;
|
||||
aUpper(2) = 15;
|
||||
|
||||
Standard_Integer aGridOrder = 16;
|
||||
math_Vector aFuncValues(1, aGridOrder * aGridOrder);
|
||||
|
||||
Standard_Real aLipConst = 0;
|
||||
math_Vector aCurrPnt1(1, 2), aCurrPnt2(1, 2);
|
||||
|
||||
// Get Lipshitz constant estimation on regular grid.
|
||||
Standard_Integer i, j, idx = 1;
|
||||
for(i = 1; i <= aGridOrder; i++)
|
||||
{
|
||||
for(j = 1; j <= aGridOrder; j++)
|
||||
{
|
||||
aCurrPnt1(1) = aLower(1) + (aUpper(1) - aLower(1)) * (i - 1) / (aGridOrder - 1.0);
|
||||
aCurrPnt1(2) = aLower(2) + (aUpper(2) - aLower(2)) * (j - 1) / (aGridOrder - 1.0);
|
||||
|
||||
aFunc->Value(aCurrPnt1, aFuncValues(idx));
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
Standard_Integer k, l;
|
||||
Standard_Integer idx1, idx2;
|
||||
for(i = 1; i <= aGridOrder; i++)
|
||||
for(j = 1; j <= aGridOrder; j++)
|
||||
for(k = 1; k <= aGridOrder; k++)
|
||||
for(l = 1; l <= aGridOrder; l++)
|
||||
{
|
||||
if (i == k && j == l)
|
||||
continue;
|
||||
|
||||
aCurrPnt1(1) = aLower(1) + (aUpper(1) - aLower(1)) * (i - 1) / (aGridOrder - 1.0);
|
||||
aCurrPnt1(2) = aLower(2) + (aUpper(2) - aLower(2)) * (j - 1) / (aGridOrder - 1.0);
|
||||
idx1 = (i - 1) * aGridOrder + j;
|
||||
|
||||
aCurrPnt2(1) = aLower(1) + (aUpper(1) - aLower(1)) * (k - 1) / (aGridOrder - 1.0);
|
||||
aCurrPnt2(2) = aLower(2) + (aUpper(2) - aLower(2)) * (l - 1) / (aGridOrder - 1.0);
|
||||
idx2 = (k - 1) * aGridOrder + l;
|
||||
|
||||
aCurrPnt1.Add(-aCurrPnt2);
|
||||
Standard_Real dist = aCurrPnt1.Norm();
|
||||
|
||||
Standard_Real C = Abs(aFuncValues(idx1) - aFuncValues(idx2)) / dist;
|
||||
if (C > aLipConst)
|
||||
aLipConst = C;
|
||||
}
|
||||
|
||||
math_GlobOptMin aFinder(aFunc, aLower, aUpper, aLipConst);
|
||||
aFinder.Perform();
|
||||
//(-pi , 12.275), (pi , 2.275), (9.42478, 2.475)
|
||||
|
||||
Standard_Real anExtValue = aFinder.GetF();
|
||||
theDI << "F = " << anExtValue << "\n";
|
||||
|
||||
Standard_Integer aNbExt = aFinder.NbExtrema();
|
||||
theDI << "NbExtrema = " << aNbExt << "\n";
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void QABugs::Commands_19(Draw_Interpretor& theCommands) {
|
||||
@ -2441,5 +2589,6 @@ void QABugs::Commands_19(Draw_Interpretor& theCommands) {
|
||||
theCommands.Add ("OCC24931", "OCC24931", __FILE__, OCC24931, group);
|
||||
theCommands.Add ("OCC24945", "OCC24945", __FILE__, OCC24945, group);
|
||||
theCommands.Add ("OCC23950", "OCC23950", __FILE__, OCC23950, group);
|
||||
theCommands.Add ("OCC25004", "OCC25004", __FILE__, OCC25004, group);
|
||||
return;
|
||||
}
|
||||
|
@ -21,7 +21,6 @@
|
||||
#include <math_MultipleVarFunctionWithHessian.hxx>
|
||||
#include <math_NewtonMinimum.hxx>
|
||||
#include <math_Powell.hxx>
|
||||
#include <Precision.hxx>
|
||||
#include <Standard_Integer.hxx>
|
||||
#include <Standard_Real.hxx>
|
||||
|
||||
@ -38,7 +37,9 @@ const Handle(Standard_Type)& STANDARD_TYPE(math_GlobOptMin)
|
||||
math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC)
|
||||
const Standard_Real theC,
|
||||
const Standard_Real theDiscretizationTol,
|
||||
const Standard_Real theSameTol)
|
||||
: myN(theFunc->NbVariables()),
|
||||
myA(1, myN),
|
||||
myB(1, myN),
|
||||
@ -46,7 +47,8 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
myGlobB(1, myN),
|
||||
myX(1, myN),
|
||||
myTmp(1, myN),
|
||||
myV(1, myN)
|
||||
myV(1, myN),
|
||||
myMaxV(1, myN)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
@ -64,6 +66,14 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
myB(i) = theB(i);
|
||||
}
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
||||
}
|
||||
|
||||
myTol = theDiscretizationTol;
|
||||
mySameTol = theSameTol;
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
@ -74,7 +84,9 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC)
|
||||
const Standard_Real theC,
|
||||
const Standard_Real theDiscretizationTol,
|
||||
const Standard_Real theSameTol)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
@ -92,6 +104,9 @@ void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
myB(i) = theB(i);
|
||||
}
|
||||
|
||||
myTol = theDiscretizationTol;
|
||||
mySameTol = theSameTol;
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
@ -113,9 +128,36 @@ void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
||||
myB(i) = theLocalB(i);
|
||||
}
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
||||
}
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetTol
|
||||
//purpose : Set algorithm tolerances.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetTol(const Standard_Real theDiscretizationTol,
|
||||
const Standard_Real theSameTol)
|
||||
{
|
||||
myTol = theDiscretizationTol;
|
||||
mySameTol = theSameTol;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetTol
|
||||
//purpose : Get algorithm tolerances.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::GetTol(Standard_Real& theDiscretizationTol,
|
||||
Standard_Real& theSameTol)
|
||||
{
|
||||
theDiscretizationTol = myTol;
|
||||
theSameTol = mySameTol;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ~math_GlobOptMin
|
||||
//purpose :
|
||||
@ -145,13 +187,11 @@ void math_GlobOptMin::Perform()
|
||||
maxLength = currentLength;
|
||||
}
|
||||
|
||||
Standard_Real myTol = 1e-2;
|
||||
myE1 = minLength * myTol / myC;
|
||||
myE2 = maxLength * myTol * 2.0 / myC;
|
||||
myE3 = - maxLength * myTol / 4.0;
|
||||
|
||||
myE1 = minLength * myTol / myC;
|
||||
myE2 = 2.0 * myTol / myC * maxLength;
|
||||
myE3 = - maxLength * myTol / 4;
|
||||
|
||||
// Compure start point.
|
||||
// Compute start point.
|
||||
math_Vector aPnt(1,myN);
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
@ -255,10 +295,12 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
Standard_Real d; // Functional in moved point.
|
||||
Standard_Real val = RealLast(); // Local extrema computed in moved point.
|
||||
Standard_Real stepBestValue = RealLast();
|
||||
math_Vector stepBestPoint(1,2);
|
||||
Standard_Real realStep = RealLast();
|
||||
math_Vector stepBestPoint(1, myN);
|
||||
Standard_Boolean isInside = Standard_False;
|
||||
Standard_Real r;
|
||||
|
||||
|
||||
for(myX(j) = myA(j) + myE1; myX(j) < myB(j) + myE1; myX(j) += myV(j))
|
||||
{
|
||||
if (myX(j) > myB(j))
|
||||
@ -277,7 +319,7 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
stepBestPoint = (isInside && (val < d))? myTmp : myX;
|
||||
|
||||
// Solutions are close to each other.
|
||||
if (Abs(stepBestValue - myF) < Precision::Confusion() * 0.01)
|
||||
if (Abs(stepBestValue - myF) < mySameTol * 0.01)
|
||||
{
|
||||
if (!isStored(stepBestPoint))
|
||||
{
|
||||
@ -290,7 +332,7 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
}
|
||||
|
||||
// New best solution.
|
||||
if ((stepBestValue - myF) * myZ > Precision::Confusion() * 0.01)
|
||||
if ((stepBestValue - myF) * myZ > mySameTol * 0.01)
|
||||
{
|
||||
mySolCount = 0;
|
||||
myF = stepBestValue;
|
||||
@ -300,19 +342,20 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
mySolCount++;
|
||||
}
|
||||
|
||||
myV(1) = myE2 + Abs(myF - d) / myC;
|
||||
realStep = myE2 + Abs(myF - d) / myC;
|
||||
myV(1) = Min(realStep, myMaxV(1));
|
||||
}
|
||||
else
|
||||
{
|
||||
myV(j) = RealLast() / 2.0;
|
||||
computeGlobalExtremum(j - 1);
|
||||
}
|
||||
if ((j < myN) && (myV(j + 1) > myV(j)))
|
||||
if ((j < myN) && (myV(j + 1) > realStep))
|
||||
{
|
||||
if (myV(j) > (myB(j + 1) - myA(j + 1)) / 3.0) // Case of too big step.
|
||||
myV(j + 1) = (myB(j + 1) - myA(j + 1)) / 3.0;
|
||||
if (realStep > myMaxV(j + 1)) // Case of too big step.
|
||||
myV(j + 1) = myMaxV(j + 1);
|
||||
else
|
||||
myV(j + 1) = myV(j);
|
||||
myV(j + 1) = realStep;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -347,7 +390,7 @@ Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt)
|
||||
isSame = Standard_True;
|
||||
for(j = 1; j <= myN; j++)
|
||||
{
|
||||
if ((Abs(thePnt(j) - myY(i * myN + j))) > (myB(j) - myA(j)) * Precision::Confusion())
|
||||
if ((Abs(thePnt(j) - myY(i * myN + j))) > (myB(j) - myA(j)) * mySameTol)
|
||||
{
|
||||
isSame = Standard_False;
|
||||
break;
|
||||
|
@ -31,16 +31,26 @@ public:
|
||||
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC = 9);
|
||||
const Standard_Real theC = 9,
|
||||
const Standard_Real theDiscretizationTol = 1.0e-2,
|
||||
const Standard_Real theSameTol = 1.0e-7);
|
||||
|
||||
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC = 9);
|
||||
const Standard_Real theC = 9,
|
||||
const Standard_Real theDiscretizationTol = 1.0e-2,
|
||||
const Standard_Real theSameTol = 1.0e-7);
|
||||
|
||||
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
|
||||
const math_Vector& theLocalB);
|
||||
|
||||
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
|
||||
const Standard_Real theSameTol);
|
||||
|
||||
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
|
||||
Standard_Real& theSameTol);
|
||||
|
||||
Standard_EXPORT ~math_GlobOptMin();
|
||||
|
||||
Standard_EXPORT void Perform();
|
||||
@ -54,6 +64,8 @@ public:
|
||||
//! Return solution i, 1 <= i <= NbExtrema.
|
||||
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
|
||||
|
||||
Standard_Boolean isDone();
|
||||
|
||||
private:
|
||||
|
||||
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
|
||||
@ -66,8 +78,6 @@ private:
|
||||
Standard_Boolean isInside(const math_Vector& thePnt);
|
||||
|
||||
Standard_Boolean isStored(const math_Vector &thePnt);
|
||||
|
||||
Standard_Boolean isDone();
|
||||
|
||||
// Input.
|
||||
math_MultipleVarFunction* myFunc;
|
||||
@ -76,6 +86,11 @@ private:
|
||||
math_Vector myB; // Right border on current C2 interval.
|
||||
math_Vector myGlobA; // Global left border.
|
||||
math_Vector myGlobB; // Global right border.
|
||||
Standard_Real myTol; // Discretization tolerance, default 1.0e-2.
|
||||
Standard_Real mySameTol; // points with ||p1 - p2|| < mySameTol is equal,
|
||||
// function values |val1 - val2| * 0.01 < mySameTol is equal,
|
||||
// default value is 1.0e-7.
|
||||
Standard_Real myC; //Lipschitz constant, default 9
|
||||
|
||||
// Output.
|
||||
Standard_Boolean myDone;
|
||||
@ -84,14 +99,14 @@ private:
|
||||
|
||||
// Algorithm data.
|
||||
Standard_Real myZ;
|
||||
Standard_Real myC; //Lipschitz constant
|
||||
Standard_Real myE1; // Border coeff.
|
||||
Standard_Real myE2; // Minimum step size.
|
||||
Standard_Real myE3; // Local extrema starting parameter.
|
||||
|
||||
math_Vector myX; // Current modified solution
|
||||
math_Vector myTmp; // Current modified solution
|
||||
math_Vector myX; // Current modified solution.
|
||||
math_Vector myTmp; // Current modified solution.
|
||||
math_Vector myV; // Steps array.
|
||||
math_Vector myMaxV; // Max Steps array.
|
||||
|
||||
Standard_Real myF; // Current value of Global optimum.
|
||||
};
|
||||
|
@ -10,19 +10,12 @@ cpulimit 1500
|
||||
|
||||
bsplinecurve r3 2 6 1 3 2 1 3 1 4 1 5 1 6 3 2 5 3 1 3 7 3 1 4 8 3 1 4 8 3 1 4 8 3 1 5 9 3 1 9 7 3 1
|
||||
bsplinecurve r4 2 6 2 3 2.5 1 3 1 3.5 1 4 1 4.5 3 -1 2 3 1 1 11 3 1 3 9 3 1 3 9 3 1 3 9 3 1 5 7 3 1 7 4 3 1
|
||||
extrema r3 r4
|
||||
|
||||
cvalue ext_1 0 x y z
|
||||
set info [dump x]
|
||||
regexp "(\[-0-9.+eE\])" $info full xx
|
||||
set info [dump y]
|
||||
regexp "(\[-0-9.+eE\])" $info full yy
|
||||
set info [dump z]
|
||||
regexp "(\[-0-9.+eE\])" $info full zz
|
||||
set info [extrema r3 r4]
|
||||
|
||||
if { sqrt(($xx - 4.0) * ($xx - 4.0) +
|
||||
($yy - 8.0) * ($yy - 8.0) +
|
||||
($zz - 3.0) * ($zz - 3.0)) > 1.0e-7} {
|
||||
regexp {Extrema 1 is point : } $info full pp
|
||||
|
||||
if { $pp == "4 8 3"} {
|
||||
puts "Error : Point of extrema is wrong"
|
||||
} else {
|
||||
puts "OK: Point of extrema is valid"
|
||||
|
@ -10,7 +10,7 @@ bsplinecurve r1 2 5 1 3 2 1 3 1 4 1 5 3 2 5 3 1 3 7 3 1 4 8 3 1 4 8 3 1 5 9 3 1
|
||||
bsplinecurve r2 2 5 2 3 2.5 1 3 1 3.5 1 4 3 -1 2 3 1 1 11 3 1 3 9 3 1 3 9 3 1 3 9 3 1 5 7 3 1 7 4 3 1
|
||||
set info [extrema r1 r2]
|
||||
|
||||
if { [llength $info] != 1 } {
|
||||
if { [llength $info] != 3 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
} else {
|
||||
puts "OK: Extrema is valid"
|
||||
|
22
tests/bugs/modalg_5/bug25004_1
Normal file
22
tests/bugs/modalg_5/bug25004_1
Normal file
@ -0,0 +1,22 @@
|
||||
puts "============"
|
||||
puts "OCC25004"
|
||||
puts "============"
|
||||
puts ""
|
||||
##########################################################################################################
|
||||
# Extrema_ExtCC::Extrema curve/curve incorrect result
|
||||
##########################################################################################################
|
||||
|
||||
pload QAcommands
|
||||
|
||||
set info [OCC25004]
|
||||
regexp {F += +([-0-9.+eE]+)} $info full aF
|
||||
regexp {NbExtrema += +([-0-9.+eE]+)} $info full aNb
|
||||
|
||||
set expected_F 0.39788735772
|
||||
set expected_aNb 3
|
||||
set tol_abs_dist 1.0e-12
|
||||
set tol_rel_dist 0.1
|
||||
|
||||
checkreal "value F" ${aF} ${expected_F} ${tol_abs_dist} ${tol_rel_dist}
|
||||
checkreal "Nbextrema" ${aNb} ${expected_aNb} ${tol_abs_dist} ${tol_rel_dist}
|
||||
|
22
tests/bugs/modalg_5/bug25004_2
Executable file
22
tests/bugs/modalg_5/bug25004_2
Executable file
@ -0,0 +1,22 @@
|
||||
puts "=========="
|
||||
puts "OCC25004 "
|
||||
puts "=========="
|
||||
puts ""
|
||||
##################################################
|
||||
## Extrema curve/curve incorrect result
|
||||
##################################################
|
||||
|
||||
restore [locate_data_file bug25004_c1.draw] c1
|
||||
restore [locate_data_file bug25004_c2.draw] c2
|
||||
|
||||
set list [extrema c1 c2]
|
||||
set nb [llength ${list}]
|
||||
if { ${nb} == 2} {
|
||||
puts "OK : command extrema works properly"
|
||||
} else {
|
||||
puts "Error : command extrema does NOT work properly"
|
||||
}
|
||||
|
||||
smallview
|
||||
fit
|
||||
set only_screen_axo 1
|
22
tests/bugs/modalg_5/bug25004_3
Executable file
22
tests/bugs/modalg_5/bug25004_3
Executable file
@ -0,0 +1,22 @@
|
||||
puts "=========="
|
||||
puts "OCC25004 "
|
||||
puts "=========="
|
||||
puts ""
|
||||
##################################################
|
||||
## Extrema curve/curve incorrect result
|
||||
##################################################
|
||||
|
||||
restore [locate_data_file bug25004_bc1.draw] c1
|
||||
restore [locate_data_file bug25004_bc2.draw] c2
|
||||
|
||||
set list [extrema c1 c2]
|
||||
set nb [llength ${list}]
|
||||
if { ${nb} == 2} {
|
||||
puts "OK : command extrema works properly"
|
||||
} else {
|
||||
puts "Error : command extrema does NOT work properly"
|
||||
}
|
||||
|
||||
smallview
|
||||
fit
|
||||
set only_screen_axo 1
|
Loading…
x
Reference in New Issue
Block a user