1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0027015: Sewing returns invalid shape if some faces are nearly plane cones

Interpolation state check is fixed to mark as valid only ordered sequences of poles.
Refactoring of Approx_SameParameter.cxx.
Test case is added.
Test cases are updated to the new behavior.
Update of testing cases
This commit is contained in:
aml 2016-06-02 10:22:10 +03:00 committed by bugmaster
parent 93dc7934db
commit 52db475165
20 changed files with 324 additions and 367 deletions

View File

@ -42,92 +42,26 @@
#include <Standard_OutOfRange.hxx>
#include <TColStd_Array1OfReal.hxx>
#ifdef OCCT_DEBUG
#ifdef DRAW
#include <DrawTrSurf.hxx>
#endif
#include <Geom2d_BSplineCurve.hxx>
#include <stdio.h>
static Standard_Boolean Voir = Standard_False;
static Standard_Boolean AffichFw = Standard_False;
static Standard_Integer NbCurve = 0;
#endif
//
// allows testing if Extrema produces correct results/
static void ProjectPointOnCurve(const Standard_Real InitValue,
const gp_Pnt APoint,
const Standard_Real Tolerance,
const Standard_Integer NumIteration,
const Adaptor3d_Curve& Curve,
Standard_Boolean& Status,
Standard_Real& Result)
{
Standard_Integer num_iter = 0,
not_done = 1,
ii ;
gp_Pnt a_point ;
gp_Vec vector,
d1,
d2 ;
Standard_Real func,
func_derivative,
param = InitValue ;
Status = Standard_False ;
Standard_Real Toler = 1.0e-12;
do {
num_iter += 1 ;
Curve.D2(param,
a_point,
d1,
d2) ;
for (ii = 1 ; ii <= 3 ; ii++) {
vector.SetCoord(ii, APoint.Coord(ii) - a_point.Coord(ii)) ;
}
func = vector.Dot(d1) ;
func_derivative = vector.Dot(d2) ;
func_derivative -= d1.Dot(d1) ;
if ( Abs(func) < Tolerance * d1.Magnitude()) {
not_done = 0 ;
Status = Standard_True ;
}
else
{ // fixing a bug PRO18577 : avoid divizion by zero
if( Abs(func_derivative) > Toler ) {
param -= func / func_derivative ;
}
param = Max(param,Curve.FirstParameter()) ;
param = Min(param,Curve.LastParameter()) ;
//Status = Standard_True ;
}
}
while (not_done && num_iter <= NumIteration) ;
Result = param ;
}
//=======================================================================
//class : Approx_SameParameter_Evaluator
//purpose :
//class : Approx_SameParameter_Evaluator
//purpose : Used in same parameterization curve approximation.
//=======================================================================
class Approx_SameParameter_Evaluator : public AdvApprox_EvaluatorFunction
{
public:
Approx_SameParameter_Evaluator (const TColStd_Array1OfReal& theFlatKnots,
const TColStd_Array1OfReal& thePoles,
const Handle(Adaptor2d_HCurve2d)& theHCurve2d)
: FlatKnots(theFlatKnots), Poles(thePoles), HCurve2d(theHCurve2d) {}
Approx_SameParameter_Evaluator (const TColStd_Array1OfReal& theFlatKnots,
const TColStd_Array1OfReal& thePoles,
const Handle(Adaptor2d_HCurve2d)& theHCurve2d)
: FlatKnots(theFlatKnots),
Poles(thePoles),
HCurve2d(theHCurve2d) {}
virtual void Evaluate (Standard_Integer *Dimension,
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
Standard_Real StartEnd[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result, // [Dimension]
Standard_Integer *ErrorCode);
private:
const TColStd_Array1OfReal& FlatKnots;
@ -135,166 +69,183 @@ private:
Handle(Adaptor2d_HCurve2d) HCurve2d;
};
//=======================================================================
//function : Evaluate
//purpose :
//=======================================================================
void Approx_SameParameter_Evaluator::Evaluate (Standard_Integer *,/*Dimension*/
Standard_Real /*StartEnd*/[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result,
Standard_Integer *ReturnCode)
{
gp_Pnt2d Point ;
gp_Vec2d Vector ;
Standard_Integer extrap_mode[2] ;
extrap_mode[0] = extrap_mode[1] = 3;
Standard_Real eval_result[2] ;
Standard_Real *PolesArray =
(Standard_Real *) &Poles(Poles.Lower()) ;
//
// evaluate the 1D bspline that represents the change in parameterization
//
Standard_Real /*StartEnd*/[2],
Standard_Real *Parameter,
Standard_Integer *DerivativeRequest,
Standard_Real *Result,
Standard_Integer *ReturnCode)
{
const Standard_Integer aDegree = 3;
Standard_Integer extrap_mode[2] = {aDegree, aDegree};
Standard_Real eval_result[2];
Standard_Real *PolesArray = (Standard_Real *) &Poles(Poles.Lower()) ;
// Evaluate the 1D B-Spline that represents the change in parameterization.
BSplCLib::Eval(*Parameter,
Standard_False,
*DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
Standard_False,
*DerivativeRequest,
extrap_mode[0],
aDegree,
FlatKnots,
1,
PolesArray[0],
eval_result[0]);
gp_Pnt2d aPoint;
gp_Vec2d aVector;
if (*DerivativeRequest == 0)
{
HCurve2d->D0(eval_result[0], aPoint);
aPoint.Coord(Result[0],Result[1]);
}
else if (*DerivativeRequest == 1)
{
HCurve2d->D1(eval_result[0], aPoint, aVector);
aVector.Multiply(eval_result[1]);
aVector.Coord(Result[0],Result[1]);
}
if (*DerivativeRequest == 0){
HCurve2d->D0(eval_result[0],Point);
Point.Coord(Result[0],Result[1]);
}
else if (*DerivativeRequest == 1){
HCurve2d->D1(eval_result[0], Point, Vector);
Vector.Multiply(eval_result[1]);
Vector.Coord(Result[0],Result[1]);
}
ReturnCode[0] = 0 ;
ReturnCode[0] = 0;
}
static Standard_Real ComputeTolReached(const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
const Standard_Integer nbp)
//=======================================================================
//function : ProjectPointOnCurve
//purpose :
//=======================================================================
static void ProjectPointOnCurve(const Standard_Real InitValue,
const gp_Pnt APoint,
const Standard_Real Tolerance,
const Standard_Integer NumIteration,
const Adaptor3d_Curve& Curve,
Standard_Boolean& Status,
Standard_Real& Result)
{
Standard_Real d2 = 0.;
Standard_Integer num_iter = 0, not_done = 1, ii;
gp_Pnt a_point;
gp_Vec vector, d1, d2;
Standard_Real func, func_derivative,
param = InitValue;
Status = Standard_False;
do
{
num_iter++;
Curve.D2(param, a_point, d1, d2);
for (ii = 1 ; ii <= 3 ; ii++)
vector.SetCoord(ii, APoint.Coord(ii) - a_point.Coord(ii));
func = vector.Dot(d1);
if ( Abs(func) < Tolerance * d1.Magnitude())
{
not_done = 0;
Status = Standard_True;
}
else
{
func_derivative = vector.Dot(d2) - d1.Dot(d1);
// Avoid division by zero.
const Standard_Real Toler = 1.0e-12;
if( Abs(func_derivative) > Toler )
param -= func / func_derivative;
param = Max(param,Curve.FirstParameter());
param = Min(param,Curve.LastParameter());
}
} while (not_done && num_iter <= NumIteration);
Result = param;
}
//=======================================================================
//function : ComputeTolReached
//purpose :
//=======================================================================
static Standard_Real ComputeTolReached(const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
const Standard_Integer nbp)
{
Standard_Real d2 = 0.0; // Square max discrete deviation.
const Standard_Real first = c3d->FirstParameter();
const Standard_Real last = c3d->LastParameter();
for(Standard_Integer i = 0; i <= nbp; i++){
Standard_Real t = IntToReal(i)/IntToReal(nbp);
Standard_Real u = first*(1.-t) + last*t;
for(Standard_Integer i = 0; i <= nbp; i++)
{
Standard_Real t = IntToReal(i) / IntToReal(nbp);
Standard_Real u = first * (1.0 - t) + last * t;
gp_Pnt Pc3d = c3d->Value(u);
gp_Pnt Pcons = cons.Value(u);
if (Precision::IsInfinite(Pcons.X()) ||
Precision::IsInfinite(Pcons.Y()) ||
Precision::IsInfinite(Pcons.Z())) {
Precision::IsInfinite(Pcons.Y()) ||
Precision::IsInfinite(Pcons.Z()))
{
d2=Precision::Infinite();
break;
}
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp > d2) d2 = temp;
d2 = Max(d2, Pc3d.SquareDistance(Pcons));
}
d2 = 1.5*sqrt(d2);
if(d2<1.e-7) d2 = 1.e-7;
return d2;
const Standard_Real aMult = 1.5; // To be tolerant to discrete tolerance computing.
Standard_Real aDeviation = aMult * sqrt(d2);
aDeviation = Max(aDeviation, Precision::Confusion()); // Tolerance in modeling space.
return aDeviation;
}
//=======================================================================
//function : Check
//purpose : Check current interpolation for validity.
//=======================================================================
static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
const TColStd_Array1OfReal& Poles,
const Standard_Integer nbp,
const TColStd_Array1OfReal& pc3d,
// const TColStd_Array1OfReal& pcons,
const TColStd_Array1OfReal& ,
const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
Standard_Real& tol,
const Standard_Real oldtol)
const TColStd_Array1OfReal& Poles,
const Standard_Integer nbp,
const TColStd_Array1OfReal& pc3d,
const TColStd_Array1OfReal& ,
const Handle(Adaptor3d_HCurve)& c3d,
const Adaptor3d_CurveOnSurface& cons,
Standard_Real& tol,
const Standard_Real oldtol)
{
Standard_Real d = tol;
Standard_Integer extrap_mode[2] ;
extrap_mode[0] = extrap_mode[1] = 3;
Standard_Integer i;
#ifdef OCCT_DEBUG
if (Voir) {
cout<<endl;
cout<<"Control the change of variable : "<<endl;
cout<<"yawn mesured by projection : "<<d<<endl;
cout<<"Number of points : "<<nbp<<endl;
}
#endif
#if 0
Standard_Real glis = 0., dglis = 0.;
for(i = 1; i <= nbp; i++){
Standard_Real tc3d = pc3d(i);
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
gp_Pnt Pcons = cons.Value(tcons);
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp >= dglis) dglis = temp;
temp = Abs(tcons-pcons(i));
if(temp >= glis) glis = temp;
}
dglis = sqrt(dglis);
#ifdef OCCT_DEBUG
if ( Voir) {
cout<<"shift of parameter to the imposed points : "<<glis<<endl;
cout<<"shift distance at the imposed points : "<<dglis<<endl;
}
#endif
dglis = 0.;
for(i = 1; i < nbp; i++){
Standard_Real tc3d = 0.5*(pc3d(i)+pc3d(i+1));
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
gp_Pnt Pcons = cons.Value(tcons);
Standard_Real temp = Pc3d.SquareDistance(Pcons);
if(temp >= dglis) dglis = temp;
}
dglis = sqrt(dglis);
#ifdef OCCT_DEBUG
if (Voir)
cout<<"distance de glissement en milieu d intervals : "<<dglis<<endl;
#endif
#endif
const Standard_Integer aDegree = 3;
Standard_Integer extrap_mode[2] = {aDegree, aDegree};
Standard_Real d2 = 0.;
Standard_Integer nn = 2*nbp;
Standard_Real unsurnn = 1./nn;
// Modified by skv - Wed Jun 2 11:49:59 2004 OCC5898 Begin
// Correction of the interval of valid values. This condition has no sensible
// grounds. But it is better then the old one (which is commented out) because
// it fixes the bug OCC5898. To develop more or less sensible criterion it is
// necessary to deeply investigate this problem which is not possible in frames
// of debugging.
Standard_Real aParamFirst = 3.0 * pc3d(1) - 2.0 * pc3d(nbp);
Standard_Real aParamLast = 3.0 * pc3d(nbp) - 2.0 * pc3d(1);
// Standard_Real firstborne= 2*pc3d(1)-pc3d(nbp);
// Standard_Real lastborne= 2*pc3d(nbp)-pc3d(1);
Standard_Real firstborne= 3.*pc3d(1) - 2.*pc3d(nbp);
Standard_Real lastborne = 3.*pc3d(nbp) - 2.*pc3d(1);
// Modified by skv - Wed Jun 2 11:50:03 2004 OCC5898 End
//jgv
Standard_Real FirstPar = cons.FirstParameter();
Standard_Real LastPar = cons.LastParameter();
if (firstborne < FirstPar)
firstborne = FirstPar;
if (lastborne > LastPar)
lastborne = LastPar;
/////
for(i = 0; i <= nn; i++){
if (aParamFirst < FirstPar)
aParamFirst = FirstPar;
if (aParamLast > LastPar)
aParamLast = LastPar;
Standard_Real d2 = 0.0; // Maximum square deviation on the samples.
const Standard_Real d = tol;
const Standard_Integer nn = 2 * nbp;
const Standard_Real unsurnn = 1.0/nn;
for(Standard_Integer i = 0; i <= nn; i++)
{
// Compute corresponding parameter on 2d curve.
// It should be inside of 3d curve parameter space.
Standard_Real t = unsurnn*i;
Standard_Real tc3d = pc3d(1)*(1.-t) + pc3d(nbp)*t;
gp_Pnt Pc3d = c3d->Value(tc3d);
Standard_Real tcons;
BSplCLib::Eval(tc3d,Standard_False,0,extrap_mode[0],
3,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
if (tcons < firstborne || tcons > lastborne) {
tol=Precision::Infinite();
aDegree,FlatKnots,1, (Standard_Real&)Poles(1),tcons);
if (tcons < aParamFirst ||
tcons > aParamLast)
{
tol = Precision::Infinite();
return Standard_False;
}
gp_Pnt Pcons = cons.Value(tcons);
@ -302,24 +253,30 @@ static Standard_Boolean Check(const TColStd_Array1OfReal& FlatKnots,
if(temp > d2) d2 = temp;
}
tol = sqrt(d2);
#ifdef OCCT_DEBUG
if (Voir)
cout<<"distance max on "<<nn<<" points : "<<tol<<endl<<endl;
#endif
return ((tol <= d) || (tol > 0.8 * oldtol));
}
// Check poles parameters to be ordered.
for(Standard_Integer i = Poles.Lower() + 1; i <= Poles.Upper(); ++i)
{
const Standard_Real aPreviousParam = Poles(i - 1);
const Standard_Real aCurrentParam = Poles(i);
if (aPreviousParam > aCurrentParam)
return Standard_False;
}
return (tol <= d || tol > 0.8 * oldtol);
}
//=======================================================================
//function : Approx_SameParameter
//purpose :
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Geom_Curve)& C3D,
const Handle(Geom2d_Curve)& C2D,
const Handle(Geom_Surface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Geom2d_Curve)& C2D,
const Handle(Geom_Surface)& S,
const Standard_Real Tol)
: mySameParameter(Standard_True),
myDone(Standard_False)
{
myHCurve2d = new Geom2dAdaptor_HCurve(C2D);
myC3d = new GeomAdaptor_HCurve(C3D);
@ -327,17 +284,16 @@ mySameParameter(Standard_True), myDone(Standard_False)
Build(Tol);
}
//=======================================================================
//function : Approx_SameParameter
//purpose :
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D,
const Handle(Geom2d_Curve)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Geom2d_Curve)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol)
: mySameParameter(Standard_True),
myDone(Standard_False)
{
myC3d = C3D;
mySurf = S;
@ -345,17 +301,16 @@ mySameParameter(Standard_True), myDone(Standard_False)
Build(Tol);
}
//=======================================================================
//function : Approx_SameParameter
//purpose :
//=======================================================================
Approx_SameParameter::Approx_SameParameter(const Handle(Adaptor3d_HCurve)& C3D,
const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol):
mySameParameter(Standard_True), myDone(Standard_False)
const Handle(Adaptor2d_HCurve2d)& C2D,
const Handle(Adaptor3d_HSurface)& S,
const Standard_Real Tol)
: mySameParameter(Standard_True),
myDone(Standard_False)
{
myC3d = C3D;
mySurf = S;
@ -363,7 +318,6 @@ mySameParameter(Standard_True), myDone(Standard_False)
Build(Tol);
}
//=======================================================================
//function : Build
//purpose :
@ -381,10 +335,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_Real fc3d = myC3d->FirstParameter();
Standard_Real lc3d = myC3d->LastParameter();
GeomAbs_Shape Continuity = myHCurve2d->Continuity();
if(Continuity > GeomAbs_C1) Continuity = GeomAbs_C1;
//Control tangents at the extremities to know if the
//reparametring is possible and calculate the tangents
//at the extremities of the function of change of variable.
@ -392,46 +342,38 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
gp_Pnt Pcons,Pc3d;
gp_Vec Vcons,Vc3d;
Standard_Real Tol = Tolerance;
Standard_Real Tol2 = Tol * Tol;
Standard_Real deltamin = Precision::PConfusion();//50*Tolp;
const Standard_Real Tol = Tolerance;
const Standard_Real Tol2 = Tol * Tol;
Standard_Real deltamin = Precision::PConfusion();
Standard_Real besttol2 = Tol2;
Standard_Boolean extrok = 0;
extrok = 1;
// Check tangency on curve border.
Standard_Boolean extrok = 1;
CurveOnSurface.D1(fcons,Pcons,Vcons);
myC3d->D1(fc3d,Pc3d,Vc3d);
Standard_Real dist2 = Pcons.SquareDistance(Pc3d);
Standard_Real dmax2 = dist2;
Standard_Real magVcons = Vcons.Magnitude();
if (magVcons > 1.e-12){
if (magVcons > 1.e-12)
tangent[0] = Vc3d.Magnitude() / magVcons;
}
else extrok = 0;
CurveOnSurface.D1(lcons,Pcons,Vcons);
myC3d->D1(lc3d,Pc3d,Vc3d);
dist2 = Pcons.SquareDistance(Pc3d);
if(dist2 > dmax2) dmax2 = dist2;
dmax2 = Max(dmax2, dist2);
magVcons = Vcons.Magnitude();
if (magVcons > 1.e-12){
if (magVcons > 1.e-12)
tangent[1] = Vc3d.Magnitude() / magVcons;
}
else extrok = 0;
//if(dmax2 > besttol2) besttol2 = dmax2;
//Take a multiple of the sample pof CheckShape,
//at least the control points will be correct. No comment!!!
#ifdef OCCT_DEBUG
Standard_Integer nbcoups = 0;
#endif
Standard_Boolean interpolok = 0;
Standard_Real tolsov = 1.e200;
//Take parameters with constant step on the curve on surface
@ -445,7 +387,7 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_Real wc3d = fc3d;
Standard_Real qpcons[aMaxArraySize], qnewpcons[aMaxArraySize],
qpc3d[aMaxArraySize], qnewpc3d[aMaxArraySize];
qpc3d[aMaxArraySize], qnewpc3d[aMaxArraySize];
Standard_Real * pcons = qpcons; Standard_Real * newpcons = qnewpcons;
Standard_Real * pc3d = qpc3d; Standard_Real * newpc3d = qnewpc3d;
@ -458,8 +400,12 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
pcons[NCONTROL] = lcons;
pc3d[NCONTROL] = lc3d;
// Change number of points in case of C0 continuity.
Standard_Integer New_NCONTROL = NCONTROL;
if(Continuity < GeomAbs_C1) {
GeomAbs_Shape Continuity = myHCurve2d->Continuity();
if(Continuity > GeomAbs_C1) Continuity = GeomAbs_C1;
if(Continuity < GeomAbs_C1)
{
Standard_Integer NbInt = myHCurve2d->NbIntervals(GeomAbs_C1) + 1;
TColStd_Array1OfReal Param_de_decoupeC1 (1, NbInt);
myHCurve2d->Intervals(Param_de_decoupeC1, GeomAbs_C1);
@ -502,12 +448,12 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
pc3d[New_NCONTROL] = lc3d;
}
// Check existing same parameter state.
Extrema_LocateExtPC Projector;
Projector.Initialize(myC3d->Curve(),fc3d,lc3d,Tol);
Standard_Integer count = 1;
Standard_Real previousp = fc3d, initp=0, curp;//, deltamin = 50*Tolp;
Standard_Real previousp = fc3d, initp=0, curp;
Standard_Real bornesup = lc3d - deltamin;
Standard_Boolean projok = 0,
use_parameter ;
@ -596,7 +542,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
{
//Projector
#ifdef OCCT_DEBUG
// JAG
cout << "Projection not done" << endl;
#endif
}
@ -608,7 +553,9 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
return;
}
if(!extrok) { // If not already SameP and tangent to mill, abandon.
if(!extrok)
{
// If not already SameP and tangent to mill, abandon.
mySameParameter = Standard_False;
#ifdef OCCT_DEBUG
cout<<"SameParameter problem : zero tangent to extremities"<<endl;
@ -619,30 +566,11 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
pcons[count] = lcons;
pc3d[count] = lc3d;
#ifdef OCCT_DEBUG
if (AffichFw) {
char Name[17];
Name[0]='\0';
TColgp_Array1OfPnt2d DEBP2d (0,count);
TColStd_Array1OfInteger DEBMults(0,count);
DEBMults.Init(1); DEBMults(0) = 2; DEBMults(count) = 2;
TColStd_Array1OfReal DEBKnots(0,count);
for (Standard_Integer DEBi = 0; DEBi <= count; DEBi++) {
DEBKnots(DEBi) = DEBi;
DEBP2d (DEBi) = gp_Pnt2d(pc3d[DEBi],pcons[DEBi]);
}
Handle(Geom2d_BSplineCurve) DEBBS =
new Geom2d_BSplineCurve(DEBP2d,DEBKnots,DEBMults,1);
Sprintf(Name,"DEBC2d_%d",++NbCurve);
#ifdef DRAW
DrawTrSurf::Set(Name,DEBBS);
#endif
}
#endif
// There is at least one point where same parameter is broken.
// Try to build B-spline interpolation curve with degree 3.
// The loop is organized over number of poles.
Standard_Boolean hasCountChanged = Standard_False;
while(!interpolok)
do
{
// The tables and their limits for the interpolation.
Standard_Integer num_knots = count + 7;
@ -679,53 +607,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
Standard_ConstructionError::Raise();
}
//-------------------------------------------
#ifdef OCCT_DEBUG
if (AffichFw) {
nbcoups ++;
char Name[17];
Name[0] = '\0';
Standard_Integer nnn = 100;
TColgp_Array1OfPnt2d DEBP2d (0,nnn);
TColStd_Array1OfInteger DEBMults(0,nnn);
DEBMults.Init(1); DEBMults(0) = 2; DEBMults(nnn) = 2;
TColStd_Array1OfReal DEBKnots(0,nnn);
Standard_Real du = (lc3d - fc3d) / nnn;
Standard_Real u3d = fc3d;
Standard_Integer extrap_mode[2] ;
extrap_mode[0] = extrap_mode[1] = 3;
Standard_Real eval_result[2] ;
Standard_Integer DerivativeRequest = 0;
Standard_Real *PolesArray =
(Standard_Real *) &Poles(Poles.Lower()) ;
for (Standard_Integer DEBi = 0; DEBi <= nnn; DEBi++) {
DEBKnots(DEBi) = DEBi;
BSplCLib::Eval(u3d,
Standard_False,
DerivativeRequest,
extrap_mode[0],
3,
FlatKnots,
1,
PolesArray[0],
eval_result[0]) ;
DEBP2d (DEBi) = gp_Pnt2d(u3d,eval_result[0]);
u3d += du;
}
Handle(Geom2d_BSplineCurve) DEBBS =
new Geom2d_BSplineCurve(DEBP2d,DEBKnots,DEBMults,1);
Sprintf(Name,"DEBC2d_%d_%d",NbCurve,nbcoups );
#ifdef DRAW
DrawTrSurf::Set(Name,DEBBS);
#endif
}
#endif
//-------------------------------------------
//-------------------------------------------
// Test if par2d(par3d) is monotonous function or not ----- IFV, Jan 2000
// and try to insert new point to improve BSpline interpolation
@ -772,7 +653,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
}
else {
#ifdef OCCT_DEBUG
// JAG
cout << "Projection not done" << endl;
#endif
}
@ -790,14 +670,19 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
pcons = newpcons;
newpcons = temp;
if((count != newcount) && newcount < aMaxArraySize) { count = newcount; continue;}
if((count != newcount) && newcount < aMaxArraySize)
{
hasCountChanged = Standard_True;
count = newcount;
continue;
}
count = newcount;
Standard_Real algtol = sqrt(besttol2);
interpolok = Check (FlatKnots, Poles, count+1, Paramc3d, Paramcons,
myC3d, CurveOnSurface, algtol, tolsov);
myC3d, CurveOnSurface, algtol, tolsov);
if (Precision::IsInfinite(algtol)) {
mySameParameter = Standard_False;
@ -809,17 +694,12 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
tolsov = algtol;
interpolok = (interpolok || count >= aMaxArraySize);
interpolok = (interpolok || // Good result.
count >= aMaxArraySize - 1 ); // Number of points.
if(interpolok) {
Standard_Real besttol = sqrt(besttol2);
#ifdef OCCT_DEBUG
if (Voir) {
if(algtol > besttol){
cout<<"SameParameter : Tol can't be reached before approx"<<endl;
}
}
#endif
Handle(TColStd_HArray1OfReal) tol1d,tol2d,tol3d;
tol1d = new TColStd_HArray1OfReal(1,2) ;
tol1d->SetValue(1, mySurf->UResolution(besttol));
@ -840,7 +720,7 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
if(myTolReached > anErrorMAX)
{
//This tolerance is too big. Probably, we will not can get
//This tolerance is too big. Probably, we will not be able to get
//edge with sameparameter in this case.
myDone = Standard_False;
@ -853,7 +733,7 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
//(else we can have circularity)
{
myCurve2d = aC2d;
myHCurve2d = new Geom2dAdaptor_HCurve(myCurve2d);
myHCurve2d = aHCurve2d;
myDone = Standard_True;
}
else
@ -866,10 +746,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
if(!interpolok)
{
#ifdef OCCT_DEBUG
if (Voir)
cout<<"SameParameter : Not enough points, enrich"<<endl;
#endif
newcount = 0;
for(Standard_Integer n = 0; n < count; n++){
@ -902,7 +778,6 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
}
else {
#ifdef OCCT_DEBUG
// JAG
cout << "Projection not done" << endl;
#endif
}
@ -927,5 +802,82 @@ void Approx_SameParameter::Build(const Standard_Real Tolerance)
hasCountChanged = Standard_False;
}
}
} while(!interpolok && hasCountChanged);
if (!myDone)
{
// Loop is finished unsuccessfully. Fix tolerance by maximal deviation,
// using data from the last loop iteration.
Standard_Integer num_knots = count + 7;
Standard_Integer num_poles = count + 3;
TColStd_Array1OfReal Paramc3d(*pc3d,1,count + 1);
TColStd_Array1OfReal Paramcons(*pcons,1,count + 1);
TColStd_Array1OfInteger ContactOrder(1,num_poles) ;
TColStd_Array1OfReal Poles(1,num_poles) ;
TColStd_Array1OfReal InterpolationParameters(1,num_poles) ;
TColStd_Array1OfReal FlatKnots(1,num_knots) ;
// Fill tables taking attention to end values.
ContactOrder.Init(0);
ContactOrder(2) = ContactOrder(num_poles - 1) = 1;
FlatKnots(1) = FlatKnots(2) = FlatKnots(3) = FlatKnots(4) = fc3d;
FlatKnots(num_poles + 1) = FlatKnots(num_poles + 2) =
FlatKnots(num_poles + 3) = FlatKnots(num_poles + 4) = lc3d;
Poles(1) = fcons; Poles(num_poles) = lcons;
Poles(2) = tangent[0]; Poles(num_poles - 1) = tangent[1];
InterpolationParameters(1) = InterpolationParameters(2) = fc3d;
InterpolationParameters(num_poles - 1) = InterpolationParameters(num_poles) = lc3d;
for (ii = 3; ii <= num_poles - 2; ii++)
{
Poles(ii) = Paramcons(ii - 1);
InterpolationParameters(ii) = FlatKnots(ii+2) = Paramc3d(ii - 1);
}
Standard_Integer inversion_problem;
BSplCLib::Interpolate(3,FlatKnots,InterpolationParameters,ContactOrder,
1,Poles(1),inversion_problem);
if(inversion_problem)
{
Standard_ConstructionError::Raise();
}
Standard_Real besttol = sqrt(besttol2);
Handle(TColStd_HArray1OfReal) tol1d,tol2d,tol3d;
tol1d = new TColStd_HArray1OfReal(1,2) ;
tol1d->SetValue(1, mySurf->UResolution(besttol));
tol1d->SetValue(2, mySurf->VResolution(besttol));
Approx_SameParameter_Evaluator ev (FlatKnots, Poles, myHCurve2d);
AdvApprox_ApproxAFunction anApproximator(2,0,0,tol1d,tol2d,tol3d,fc3d,lc3d,
Continuity,11,40,ev);
if (!anApproximator.IsDone() &&
!anApproximator.HasResult() )
{
myDone = Standard_False;
return;
}
GeomLib_MakeCurvefromApprox aCurveBuilder(anApproximator) ;
Handle(Geom2d_BSplineCurve) aC2d = aCurveBuilder.Curve2dFromTwo1d(1,2) ;
Handle(Adaptor2d_HCurve2d) aHCurve2d = new Geom2dAdaptor_HCurve(aC2d);
CurveOnSurface.Load(aHCurve2d);
myTolReached = ComputeTolReached(myC3d,CurveOnSurface,NCONTROL);
if(myTolReached > anErrorMAX)
{
//This tolerance is too big. Probably, we will not be able to get
//edge with sameparameter in this case.
myDone = Standard_False;
return;
}
myCurve2d = aC2d;
myHCurve2d = aHCurve2d;
myDone = Standard_True;
}
}

View File

@ -1247,7 +1247,7 @@ void BRepLib::SameParameter(const TopoDS_Edge& AnEdge,
}
else if (SameP.IsDone()) {
Standard_Real tolreached = SameP.TolReached();
if(tolreached < error) {
if(tolreached <= error) {
curPC = SameP.Curve2d();
updatepc = Standard_True;
maxdist = Max(maxdist,tolreached);
@ -1280,7 +1280,7 @@ void BRepLib::SameParameter(const TopoDS_Edge& AnEdge,
// Modified by skv - Thu Jun 3 12:39:19 2004 OCC5898 Begin
if (!IsSameP) {
if (anEdgeTol > error) {
if (anEdgeTol >= error) {
maxdist = Max(maxdist, anEdgeTol);
IsSameP = Standard_True;
}

View File

@ -23,11 +23,12 @@ regexp {VERTEX[ \t]*: MAX=([-0-9.+eE]+)} $ToleranceList full VertexTolerance
set minTolerance ${EdgeTolerance}
if { ${minTolerance} > ${VertexTolerance} } {
set minTolerance $(VertexTolerance)
set minTolerance ${VertexTolerance}
}
checkreal "Min tolerance" ${minTolerance} ${oTolerance} 0 0.001
checkmaxtol result -ref 2279.641703013865
checkmaxtol result -ref 2352.4465999220711
checknbshapes result -shell 1
checkfreebounds result 5

View File

@ -12,7 +12,7 @@ igesread [locate_data_file bug25175_3.igs] a *
sewing result 0.1 a
checkmaxtol result -ref 0.21794517334615857
checkmaxtol result -ref 0.40493352048584974
checknbshapes result -shell 1
checkfreebounds result 0

View File

@ -0,0 +1,17 @@
puts "TODO OCC27531 ALL: Error: Max tolerance"
puts "========"
puts "0027015: Sewing returns invalid shape if some faces are nearly plane cones"
puts "========"
puts ""
restore [locate_data_file bug27015.brep] aS
sewing result 0.2 aS
# check result shape for validity.
checkshape result
# Check tolerance of the result shape.
# Currently same parameter algorithm can not interpolate pcurve.
#"same parameter" state is obtained increasing tolerance to ~130.0 mm (max deviation between curves in 3d and 2d).
checkmaxtol result -ref 1.0

View File

@ -10,7 +10,7 @@ TPSTAT : Faulties = 0 ( 0 ) Warnings = 72 ( 612 ) Summary = 72 ( 612
CHECKSHAPE : Wires = 1 ( 3 ) Faces = 1 ( 2 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 0 ( 0 ) Shell = 0 ( 0 ) Face = 457 ( 457 ) Summary = 10469 ( 10468 )
STATSHAPE : Solid = 0 ( 0 ) Shell = 0 ( 0 ) Face = 457 ( 457 ) FreeWire = 26 ( 26 ) FreeEdge = 1283 ( 1283 ) SharedEdge = 4129 ( 4128 )
TOLERANCE : MaxTol = 0.9874160851 ( 0.98741607 ) AvgTol = 0.01671715735 ( 0.01690643311 )
TOLERANCE : MaxTol = 0.9874160851 ( 0.98741607 ) AvgTol = 0.01694436711 ( 0.0170526461 )
LABELS : N0Labels = 1706 ( 1706 ) N1Labels = 0 ( 0 ) N2Labels = 0 ( 0 ) TotalLabels = 1706 ( 1706 ) NameLabels = 1706 ( 1706 ) ColorLabels = 1680 ( 1706 ) LayerLabels = 1680 ( 1706 )
PROPS : Centroid = 0 ( 0 ) Volume = 0 ( 0 ) Area = 0 ( 0 )
NCOLORS : NColors = 4 ( 4 )

View File

@ -1,2 +1,5 @@
if {[string compare $command "SplitAngle"] == 0 } {
puts "TODO OCC23127 ALL: Faulty shapes in variables faulty_"
}
restore [locate_data_file FL_KO10005.brep] a

View File

@ -1,7 +1,3 @@
if {[string compare $command "SplitAngle"] == 0 } {
puts "TODO OCC23245 ALL: Faulty shapes in variables faulty_1 to faulty_"
}
restore [locate_data_file GOUVERGUI.brep] a

View File

@ -1,5 +1,2 @@
if {[string compare $command "SplitAngle"] == 0 } {
puts "TODO OCC23127 ALL: Faulty shapes in variables faulty_1 to faulty_"
}
restore [locate_data_file P-ROUES.brep] a

View File

@ -1,4 +1,3 @@
puts "TODO OCC26577 All: Faulty shapes in variables faulty_1 to faulty"
restore [locate_data_file bug26663_test_offset_L3.brep] s
OFFSETSHAPE ${off_param} {} ${calcul} ${type}
checknbshapes result -ref [lrange [nbshapes s] 8 19]

View File

@ -4,7 +4,7 @@ restore [locate_data_file CIN902_intcqhmn.rle] a
sewing result $tol a
checkmaxtol result -ref 3.77768e+001
checkmaxtol result -ref 31.117378506550729
checknbshapes result -shell 1
checkfreebounds result 47
checkfaults result a 7

View File

@ -4,7 +4,7 @@ restore [locate_data_file CIN902_intcqhmo.rle] a
sewing result $tol a
checkmaxtol result -ref 3.77768e+001
checkmaxtol result -ref 31.117378506550729
checknbshapes result -shell 1
checkfreebounds result 47
checkfaults result a 7

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
thrusections result 1 0 w1 w2

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
thrusections result 1 0 w2 w1

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F

View File

@ -1,4 +1,3 @@
puts "TODO OCC23126 ALL: Faulty shapes in variables faulty_1 to faulty_3"
restore [locate_data_file cts21570_1.rle] w1
restore [locate_data_file cts21570_2.rle] w2
orientation w1 F