1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00

0027895: Correction in the constructor Extrema_ExtElC::Extrema_ExtElC (const gp_Lin&,const gp_Lin&,const Standard_Real)

Computation algorithm is made more simple.
Adjusting some test cases according to their new behavior.
This commit is contained in:
nbv 2016-09-22 16:46:12 +03:00 committed by apn
parent e146ef9a93
commit 4e283d3379
3 changed files with 73 additions and 62 deletions

View File

@ -233,8 +233,8 @@ Extrema_ExtElC::Extrema_ExtElC ()
//function : Extrema_ExtElC
//purpose :
//=======================================================================
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
const gp_Lin& C2,
Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& theC1,
const gp_Lin& theC2,
const Standard_Real)
// Function:
// Find min distance between 2 straight lines.
@ -245,71 +245,82 @@ Extrema_ExtElC::Extrema_ExtElC (const gp_Lin& C1,
// 1- if Angle(D1,D2) < AngTol, straight lines are parallel.
// The distance is the distance between a point of C1 and the straight line C2.
// 2- if Angle(D1,D2) > AngTol:
// Let P1=C1(u1) and P2=C2(u2) be 2 solution points:
// Then, ( P1P2.D1 = 0. (1)
// ( P1P2.D2 = 0. (2)
// Let O1 and O2 be the origins of C1 and C2;
// THen, (1) <=> (O1P2-u1*D1).D1 = 0. as O1P1 = u1*D1
// <=> u1 = O1P2.D1 as D1.D1 = 1.
// (2) <=> (P1O2+u2*D2).D2 = 0. as O2P2 = u2*D2
// <=> u2 = O2P1.D2 as D2.D2 = 1.
// <=> u2 = (O2O1+O1P1).D2
// <=> u2 = O2O1.D2+((O1P2.T1)T1).T2) as O1P1 = u1*T1 = (O1P2.T1)T1
// <=> u2 = O2O1.D2+(((O1O2+O2P2).D1)D1).D2)
// <=> u2 = O2O1.D2+((O1O2.D1)D1).D2)+(O2P2.D1)(D1.D2)
// <=> u2 = ((O1O2.D1)D1-O1O2).D2 + u2*(D2.D1)(D1.D2)
// <=> u2 = (((O1O2.D1)D1-O1O2).D2) / 1.-(D1.D2)**2
// Let P1=C1(u1) and P2=C2(u2).
// Then we must find u1 and u2 such as the distance P1P2 is minimal.
// Target function is:
// F(u1, u2) = ((L1x+D1x*u1)-(L2x+D2x*u2))^2 +
// ((L1y+D1y*u1)-(L2y+D2y*u2))^2 +
// ((L1z+D1z*u1)-(L2z+D2z*u2))^2 --> min,
// where L1 and L2 are lines locations, D1 and D2 are lines directions.
// Let simplify the function F
// F(u1, u2) = (D1x*u1-D2x*u2-Lx)^2 + (D1y*u1-D2y*u2-Ly)^2 + (D1z*u1-D2z*u2-Lz)^2,
// where L is a vector L1L2.
// In point of minimum, the condition
// {dF/du1 = 0
// {dF/du2 = 0
// must be satisfied.
// dF/du1 = 2*D1x*(D1x*u1-D2x*u2-Lx) +
// 2*D1y*(D1y*u1-D2y*u2-Ly) +
// 2*D1z*(D1z*u1-D2z*u2-Lz) =
// = 2*((D1^2)*u1-(D1.D2)*u2-L.D1) =
// = 2*(u1-(D1.D2)*u2-L.D1)
// dF/du2 = -2*D2x*(D1x*u1-D2x*u2-Lx) -
// 2*D2y*(D1y*u1-D2y*u2-Ly) -
// 2*D2z*(D1z*u1-D2z*u2-Lz)=
// = -2*((D2.D1)*u1-(D2^2)*u2-(D2.L)) =
// = -2*((D2.D1)*u1-u2-(D2.L))
// Consequently, we have two-equation system with two variables:
// {u1 - (D1.D2)*u2 = L.D1
// {(D1.D2)*u1 - u2 = L.D2
// This system has one solution if (D1.D2)^2 != 1
// (if straight lines are not parallel).
{
myDone = Standard_False;
myNbExt = 0;
gp_Dir D1 = C1.Position().Direction();
gp_Dir D2 = C2.Position().Direction();
// MSV 16/01/2000: avoid "divide by zero"
Standard_Real D1DotD2 = D1.Dot(D2);
Standard_Real aSin = 1.-D1DotD2*D1DotD2;
if (aSin < gp::Resolution() ||
D1.IsParallel(D2, Precision::Angular())) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
myIsPar = Standard_False;
gp_Pnt O1 = C1.Location();
gp_Pnt O2 = C2.Location();
gp_Vec O1O2 (O1,O2);
Standard_Real U2 = (D1.XYZ()*(O1O2.Dot(D1))-(O1O2.XYZ())).Dot(D2.XYZ());
if( Precision::IsInfinite(U2) ) {
const gp_Dir &aD1 = theC1.Position().Direction(),
&aD2 = theC2.Position().Direction();
const Standard_Real aCosA = aD1.Dot(aD2);
const Standard_Real aSqSinA = 1.0 - aCosA * aCosA;
Standard_Real aU1 = 0.0, aU2 = 0.0;
if (aSqSinA < gp::Resolution() || aD1.IsParallel(aD2, Precision::Angular()))
{
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
}
else {
U2 /= aSin;
if( Precision::IsInfinite(U2) ) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
else
{
const gp_XYZ aL1L2 = theC2.Location().XYZ() - theC1.Location().XYZ();
const Standard_Real aD1L = aD1.XYZ().Dot(aL1L2),
aD2L = aD2.XYZ().Dot(aL1L2);
aU1 = (aD1L - aCosA * aD2L) / aSqSinA;
aU2 = (aCosA * aD1L - aD2L) / aSqSinA;
myIsPar = Precision::IsInfinite(aU1) || Precision::IsInfinite(aU2);
}
else {
gp_Pnt P2(ElCLib::Value(U2,C2));
Standard_Real U1 = (gp_Vec(O1,P2)).Dot(D1);
if( Precision::IsInfinite(U1) ) {
myIsPar = Standard_True;
mySqDist[0] = C2.SquareDistance(C1.Location());
mySqDist[1] = mySqDist[0];
if (myIsPar)
{
mySqDist[0] = mySqDist[1] = theC2.SquareDistance(theC1.Location());
myDone = Standard_True;
return;
}
else {
gp_Pnt P1(ElCLib::Value(U1,C1));
mySqDist[myNbExt] = P1.SquareDistance(P2);
myPoint[myNbExt][0] = Extrema_POnCurv(U1,P1);
myPoint[myNbExt][1] = Extrema_POnCurv(U2,P2);
// Here myIsPar == Standard_False;
const gp_Pnt aP1(ElCLib::Value(aU1, theC1)),
aP2(ElCLib::Value(aU2, theC2));
mySqDist[myNbExt] = aP1.SquareDistance(aP2);
myPoint[myNbExt][0] = Extrema_POnCurv(aU1, aP1);
myPoint[myNbExt][1] = Extrema_POnCurv(aU2, aP2);
myNbExt = 1;
}
}
}
}
myDone = Standard_True;
}
//=======================================================================

View File

@ -14,5 +14,5 @@ bcommon result b1 b2
checkprops result -s 1690.81
checkshape result
checknbshapes result -vertex 20 -edge 31 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 80
checknbshapes result -vertex 19 -edge 30 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 78
checkview -display result -2d -path ${imagedir}/${test_image}.png

View File

@ -17,5 +17,5 @@ bcommon result b1 b2
checkprops result -s 1690.81
checkshape result
checknbshapes result -vertex 20 -edge 31 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 80
checknbshapes result -vertex 19 -edge 30 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 78
checkview -display result -2d -path ${imagedir}/${test_image}.png