1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0026431: Can't cut a sphere from a cylinder

This branch contains fixes for 26675 and 26431 bugs.

1. Normalization has been eliminated.
2. Interfaces of AppDef_Compute::Parametrization(...) and BRepAlgo_BooleanOperations::SetApproxParameters() methods have been changed.
3. Overloaded methods for ApproxInt_Approx::SetParameters(...), TopOpeBRepTool_GeomTool::GetTolerances(...) and TopOpeBRepTool_GeomTool::SetTolerances(...) have been removed (because some fields of these classes are not used more).
4. Comments for some methods have been changed in BRepApprox_TheMultiLineOfApprox.hxx and GeomInt_TheMultiLineOfWLApprox.hxx files.
5. Some fields have been deleted from ApproxInt_MultiLine class. Kept members have become constant.
6. Interface of ksection DRAW-command has been changed.
7. Now, 2dintersect DRAW-command prints information about found segments.
8. Some code fragments have been rewritten to make them easier.
9. Algorithm of splitting WLine, which goes through pole of sphere has been improved.
10. Improve approximation algorithm in order to it will compute correct 2D- and 3D-tangent at the end of bezier constraints (including case when curve goes through or finishes on singular points).
11. Interface of IntPatch_WLine::Dump(...) method has been corrected.
12. Some methods for working with Walking-line are made more universal (available for both GeomInt and IntTools packages).
13. Problem in BRepLib::SameParameter(...) method has been fixed (see corresponding comment).
14. Small correction in Draft package.
15. Any outputs in IntPatch_Intersection::Dump(...) method have become disabled because they are useless. If anybody need in this outputs he/she will correct this method himself/herself.

Adjusting some test cases according to their new behavior.
Creation of new test cases.

----------------------------------------------------------------------------------------------------------------------------

Some explanation of new behavior of some test cases:

 1. Regressions:

a) blend simple X4
The problem is described in the issue #0026740. According to this description,  the result on the current MASTER seems to be wrong indeed.

b) boolean bcommon_complex C7 and boolean bcut_complex Q1
These test case use same shapes with different Boolean operation (COMMON and CUT). They are already BAD (on the MASTER). Now, some sub-shapes have become not-shared, simply. In my opinion, we shall apply new behavior of these tests.

c) boolean bsection M3
The problem described in the issue #0026777 exists even on the current MASTER.

d) boolean bsection M9
The problem is described in the message http://tracker.dev.opencascade.org/view.php?id=26815#c47546. Here, we have really regression in the picture.

e) boolean bsection N2

The problem is described in issue #0026814.

f) boolean volumemaker G1

The problem is described in issue #26020.

g) bugs modalg_1 bug1255 (and bug1255_1)

The problem is described in issue #26815.

h) bugs modalg_2 bug5805_18, bugs modalg_2 bug5805_42, bugs modalg_2 bug5805_46

The problem is described in issue #25925.

i) bugs modalg_3 bug602

The problem is describes in issue #602.

j) bugs modalg_5 bug24915

The problem is described in the message http://tracker.dev.opencascade.org/view.php?id=25929#c48565. It is not fixed by this issue.

k) bugs modalg_5 bug25838

The main reason is described in issue #0026816.

----------------------------------------------------------------------------
2. Improvements:

a) boolean volumemaker F9
b) bugs modalg_1 bug10160_3
c) bugs modalg_2 bug22557
d) bugs modalg_5 bug25319_1 (_2)
e) draft angle G2
f) offset shape A1
g) offset with_intersect_80 N7
This commit is contained in:
nbv 2015-11-10 10:31:19 +03:00 committed by bugmaster
parent f44aa19760
commit 4e14c88f77
81 changed files with 5716 additions and 3883 deletions

View File

@ -116,7 +116,7 @@ public:
Standard_EXPORT const AppParCurves_MultiBSpCurve& SplineValue();
//! returns the type of parametrization
Standard_EXPORT void Parametrization (Approx_ParametrizationType& partype) const;
Standard_EXPORT Approx_ParametrizationType Parametrization () const;
//! returns the new parameters of the approximation
//! corresponding to the points of the multicurve <Index>.

View File

@ -56,6 +56,92 @@ static int FlatLength(const TColStd_Array1OfInteger& Mults) {
return sum;
}
//=======================================================================
//function : CheckTangents
//purpose : Checks if theArrTg3d and theArrTg2d have direction
// corresponded to the direction between theArrPt1 and theArrPt2.
// If it is not then reverses tangent vectors.
// theArrPt1 (as same as theArrPt2) is sub-set of all 3D-points in
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
//
//ATTENTION!!!
// The property of correlation between Tg3d and Tg2d is used here.
// Therefore, only 3D-coinciding is checked.
//=======================================================================
static void CheckTangents(const TColgp_Array1OfPnt& theArrPt1,
const TColgp_Array1OfPnt& theArrPt2,
TColgp_Array1OfVec& theArrTg3d,
TColgp_Array1OfVec2d& theArrTg2d)
{
if(theArrPt1.Lower() != theArrPt2.Lower())
return;
if(theArrPt1.Upper() != theArrPt2.Upper())
return;
if(theArrTg3d.Length() != theArrPt1.Length())
return;
Standard_Boolean isToChangeDir = Standard_False;
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
{
const gp_Vec aV1(theArrPt1(i), theArrPt2(i));
const gp_Vec& aV2 = theArrTg3d(i);
if(aV1.Dot(aV2) < 0.0)
{
isToChangeDir = Standard_True;
break;
}
}
if(!isToChangeDir)
return;
//Change directions for every 2D- and 3D-tangents
for(Standard_Integer i = theArrTg3d.Lower(); i <= theArrTg3d.Upper(); i++)
{
theArrTg3d(i).Reverse();
}
for(Standard_Integer i = theArrTg2d.Lower(); i <= theArrTg2d.Upper(); i++)
{
theArrTg2d(i).Reverse();
}
}
//=======================================================================
//function : CheckTangents
//purpose : Checks if theArrTg2d have direction
// corresponded to the direction between theArrPt1 and theArrPt2.
// If it is not then reverses tangent vector.
// theArrPt1 (as same as theArrPt2) is sub-set of all 2D-points in
// one multy-point (multy-point is union of sets of 2D- and 3D-points).
//=======================================================================
static void CheckTangents(const TColgp_Array1OfPnt2d& theArrPt1,
const TColgp_Array1OfPnt2d& theArrPt2,
TColgp_Array1OfVec2d& theArrTg2d)
{
if(theArrPt1.Lower() != theArrPt2.Lower())
return;
if(theArrPt1.Upper() != theArrPt2.Upper())
return;
for(Standard_Integer i = theArrPt1.Lower(); i <= theArrPt1.Upper(); i++)
{
const gp_Vec2d aV1(theArrPt1(i), theArrPt2(i));
const gp_Vec2d& aV2 = theArrTg2d(i);
if(aV1.Dot(aV2) < 0.0)
{
theArrTg2d(i).Reverse();
}
}
}
AppParCurves_LeastSquare::
AppParCurves_LeastSquare(const MultiLine& SSP,
@ -893,14 +979,20 @@ void AppParCurves_LeastSquare::Perform(const math_Vector& Parameters,
//=======================================================================
//function : Affect
//purpose : Index is an ID of the point in MultiLine. Every point is set of
// several 3D- and 2D-points. E.g. every points of Walking-line,
// obtained in intersection algorithm, is set of one 3D points
// (nbP == 1) and two 2D-points (nbP2d == 2).
//=======================================================================
void AppParCurves_LeastSquare::Affect(const MultiLine& SSP,
const Standard_Integer Index,
AppParCurves_Constraint& Cons,
math_Vector& Vt,
math_Vector& Vc)
{
// Vt: vecteur tangent, Vc: vecteur courbure.
// Vt: vector of tangent, Vc: vector of curvature.
if (Cons >= AppParCurves_TangencyPoint) {
Standard_Integer i, i2 = 1;
@ -908,59 +1000,99 @@ void AppParCurves_LeastSquare::Affect(const MultiLine& SSP,
Standard_Integer mynbP2d = nbP2d, mynbP = nbP;
if (nbP2d == 0) mynbP2d = 1;
if (nbP == 0) mynbP = 1;
TColgp_Array1OfPnt TabP(1, mynbP);
TColgp_Array1OfPnt2d TabP2d(1, mynbP2d);
TColgp_Array1OfVec TabV(1, mynbP);
TColgp_Array1OfVec2d TabV2d(1, mynbP2d);
if (Cons == AppParCurves_CurvaturePoint) {
if (nbP != 0 && nbP2d != 0) {
Ok = ToolLine::Curvature(SSP, Index,TabV,TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
if (Cons == AppParCurves_CurvaturePoint)
{
if (nbP != 0 && nbP2d != 0)
{
Ok = ToolLine::Curvature(SSP, Index,TabV,TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
else if (nbP2d != 0) {
Ok = ToolLine::Curvature(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
else if (nbP2d != 0)
{
Ok = ToolLine::Curvature(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
else {
Ok = ToolLine::Curvature(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
Ok = ToolLine::Curvature(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_TangencyPoint;}
}
if (Ok) {
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vc(i2), Vc(i2+1), Vc(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vc(i2), Vc(i2+1));
i2 += 2;
}
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vc(i2), Vc(i2+1), Vc(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vc(i2), Vc(i2+1));
i2 += 2;
}
}
}
i2 = 1;
if (Cons >= AppParCurves_TangencyPoint) {
if (nbP != 0 && nbP2d != 0) {
Ok = ToolLine::Tangency(SSP, Index, TabV, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
Ok = ToolLine::Tangency(SSP, Index, TabV, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
else if (nbP2d != 0) {
Ok = ToolLine::Tangency(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
Ok = ToolLine::Tangency(SSP, Index, TabV2d);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
else {
Ok = ToolLine::Tangency(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_PassPoint;}
Ok = ToolLine::Tangency(SSP, Index, TabV);
if (!Ok) { Cons = AppParCurves_PassPoint;}
}
if (Ok) {
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vt(i2), Vt(i2+1), Vt(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vt(i2), Vt(i2+1));
i2 += 2;
}
if (Ok)
{
TColgp_Array1OfPnt anArrPts3d1(1, mynbP), anArrPts3d2(1, mynbP);
if(nbP != 0)
{
if(Index < ToolLine::LastPoint(SSP))
{
ToolLine::Value(SSP, Index, anArrPts3d1);
ToolLine::Value(SSP, Index+1, anArrPts3d2);
}
else
{// (Index == ToolLine::LastPoint(theML))
ToolLine::Value(SSP, Index-1, anArrPts3d1);
ToolLine::Value(SSP, Index, anArrPts3d2);
}
CheckTangents(anArrPts3d1, anArrPts3d2, TabV, TabV2d);
}
else if(nbP2d != 0)
{
TColgp_Array1OfPnt2d anArrPts2d1(1, mynbP2d), anArrPts2d2(1, mynbP2d);
if(Index < ToolLine::LastPoint(SSP))
{
ToolLine::Value(SSP, Index, anArrPts3d1, anArrPts2d1);
ToolLine::Value(SSP, Index+1, anArrPts3d2, anArrPts2d2);
}
else
{// (Index == ToolLine::LastPoint(theML))
ToolLine::Value(SSP, Index-1, anArrPts3d1, anArrPts2d1);
ToolLine::Value(SSP, Index, anArrPts3d2, anArrPts2d2);
}
CheckTangents(anArrPts2d1, anArrPts2d2, TabV2d);
}
for (i = 1; i <= nbP; i++) {
(TabV(i)).Coord(Vt(i2), Vt(i2+1), Vt(i2+2));
i2 += 3;
}
for (i = 1; i <= nbP2d; i++) {
(TabV2d(i)).Coord(Vt(i2), Vt(i2+1));
i2 += 2;
}
}
}
}

View File

@ -1274,7 +1274,7 @@ void Approx_ComputeLine::Error(const Standard_Integer Index,
tol2d = Tolers2d.Value(Index);
}
void Approx_ComputeLine::Parametrization(Approx_ParametrizationType& partype) const
Approx_ParametrizationType Approx_ComputeLine::Parametrization() const
{
partype = Par;
return Par;
}

File diff suppressed because it is too large Load Diff

View File

@ -20,11 +20,310 @@
#include <GeomAbs_SurfaceType.hxx>
#include <Precision.hxx>
#define ComputeParametersOnImplicitSurface(MyISurf,P,u,v) MyISurf.Parameters(P,u,v)
//=======================================================================
//function : IsSingular
//purpose : Returns TRUE if vectors theDU || theDV or if at least one
// of them has null-magnitude.
// theSqLinTol is square of linear tolerance.
// theAngTol is angular tolerance.
//=======================================================================
static Standard_Boolean IsSingular( const gp_Vec& theDU,
const gp_Vec& theDV,
const Standard_Real theSqLinTol,
const Standard_Real theAngTol)
{
gp_Vec aDU(theDU), aDV(theDV);
#define Debug(expr) cout<<" expr :"<<expr;
#define MyISurf MyZerImpFunc.ISurface()
#define MyPSurf MyZerImpFunc.PSurface()
const Standard_Real aSqMagnDU = aDU.SquareMagnitude(),
aSqMagnDV = aDV.SquareMagnitude();
if(aSqMagnDU < theSqLinTol)
return Standard_True;
aDU.Divide(sqrt(aSqMagnDU));
if(aSqMagnDV < theSqLinTol)
return Standard_True;
aDV.Divide(sqrt(aSqMagnDV));
//Here aDU and aDV vectors have magnitude 1.0.
if(aDU.Crossed(aDV).SquareMagnitude() < theAngTol*theAngTol)
return Standard_True;
return Standard_False;
}
//=======================================================================
//function : SingularProcessing
//purpose : Computes 2D-representation (in UV-coordinates) of
// theTg3D vector on the surface in case when
// theDU.Crossed(theDV).Magnitude() == 0.0. Stores result in
// theTg2D variable.
// theDU and theDV are vectors of 1st derivative
// (with respect to U and V variables correspondingly).
// If theIsTo3DTgCompute == TRUE then theTg3D has not been
// defined yet (it should be computed).
// theLinTol is SQUARE of the tolerance.
//
//Algorithm:
// Condition
// Tg=theDU*theTg2D.X()+theDV*theTg2D.Y()
// has to be satisfied strictly.
// More over, vector Tg has to be NORMALYZED
// (if theIsTo3DTgCompute == TRUE then new computed vector will
// always have magnitude 1.0).
//=======================================================================
static Standard_Boolean SingularProcessing( const gp_Vec& theDU,
const gp_Vec& theDV,
const Standard_Boolean theIsTo3DTgCompute,
const Standard_Real theLinTol,
const Standard_Real theAngTol,
gp_Vec& theTg3D,
gp_Vec2d& theTg2D)
{
//Attention: @ \sin theAngTol \approx theAngTol @ (for cross-product)
//Really, vector theTg3D has to be normalyzed (if theIsTo3DTgCompute == FALSE).
const Standard_Real aSQTan = theTg3D.SquareMagnitude();
const Standard_Real aSqMagnDU = theDU.SquareMagnitude(),
aSqMagnDV = theDV.SquareMagnitude();
//There are some reasons of singularity
//1.
if((aSqMagnDU < theLinTol) && (aSqMagnDV < theLinTol))
{
//For future, this case can be processed as same as in case of
//osculating surfaces (expanding in Taylor series). Here,
//we return only.
return Standard_False;
}
//2.
if(aSqMagnDU < theLinTol)
{
//In this case, theTg3D vector will be parallel with theDV.
//Its true direction shall be precised later (the algorithm is
//based on array of Walking-points).
if(theIsTo3DTgCompute)
{
//theTg3D will be normalyzed. Its magnitude is
const Standard_Real aTgMagn = 1.0;
const Standard_Real aNorm = sqrt(aSqMagnDV);
theTg3D = theDV.Divided(aNorm);
theTg2D.SetCoord(0.0, aTgMagn/aNorm);
}
else
{
//theTg3D is already defined.
//Here we check only, if this tangent is parallel to theDV.
if(theDV.Crossed(theTg3D).SquareMagnitude() <
theAngTol*theAngTol*aSqMagnDV*aSQTan)
{
//theTg3D is parallel to theDV
//Use sign "+" if theTg3D and theDV are codirectional
//and sign "-" if opposite
const Standard_Real aDP = theTg3D.Dot(theDV);
theTg2D.SetCoord(0.0, Sign(sqrt(aSQTan/aSqMagnDV), aDP));
}
else
{
//theTg3D is not parallel to theDV
//It is abnormal
return Standard_False;
}
}
return Standard_True;
}
//3.
if(aSqMagnDV < theLinTol)
{
//In this case, theTg3D vector will be parallel with theDU.
//Its true direction shall be precised later (the algorithm is
//based on array of Walking-points).
if(theIsTo3DTgCompute)
{
//theTg3D will be normalyzed. Its magnitude is
const Standard_Real aTgMagn = 1.0;
const Standard_Real aNorm = sqrt(aSqMagnDU);
theTg3D = theDU.Divided(aNorm);
theTg2D.SetCoord(aTgMagn/aNorm, 0.0);
}
else
{
//theTg3D is already defined.
//Here we check only, if this tangent is parallel to theDU.
if(theDU.Crossed(theTg3D).SquareMagnitude() <
theAngTol*theAngTol*aSqMagnDU*aSQTan)
{
//theTg3D is parallel to theDU
//Use sign "+" if theTg3D and theDU are codirectional
//and sign "-" if opposite
const Standard_Real aDP = theTg3D.Dot(theDU);
theTg2D.SetCoord(Sign(sqrt(aSQTan/aSqMagnDU), aDP), 0.0);
}
else
{
//theTg3D is not parallel to theDU
//It is abnormal
return Standard_False;
}
}
return Standard_True;
}
//4. If aSqMagnDU > 0.0 && aSqMagnDV > 0.0 but theDV || theDU.
const Standard_Real aLenU = sqrt(aSqMagnDU),
aLenV = sqrt(aSqMagnDV);
//aLenSum > 0.0 definitely
const Standard_Real aLenSum = aLenU + aLenV;
if(theDV.Dot(theDU) > 0.0)
{
//Vectors theDV and theDU are codirectional.
if(theIsTo3DTgCompute)
{
theTg2D.SetCoord(1.0/aLenSum, 1.0/aLenSum);
theTg3D = theDU*theTg2D.X() + theDV*theTg2D.Y();
}
else
{
//theTg3D is already defined.
//Here we check only, if this tangent is parallel to theDU
//(and theDV together).
if(theDU.Crossed(theTg3D).SquareMagnitude() <
theAngTol*theAngTol*aSqMagnDU*aSQTan)
{
//theTg3D is parallel to theDU
const Standard_Real aDP = theTg3D.Dot(theDU);
const Standard_Real aLenTg = Sign(sqrt(aSQTan), aDP);
theTg2D.SetCoord(aLenTg/aLenSum, aLenTg/aLenSum);
}
else
{
//theTg3D is not parallel to theDU
//It is abnormal
return Standard_False;
}
}
}
else
{
//Vectors theDV and theDU are opposite.
if(theIsTo3DTgCompute)
{
//Here we chose theDU as direction of theTg3D.
//True direction shall be precised later (the algorithm is
//based on array of Walking-points).
theTg2D.SetCoord(1.0/aLenSum, -1.0/aLenSum);
theTg3D = theDU*theTg2D.X() + theDV*theTg2D.Y();
}
else
{
//theTg3D is already defined.
//Here we check only, if this tangent is parallel to theDU
//(and theDV together).
if(theDU.Crossed(theTg3D).SquareMagnitude() <
theAngTol*theAngTol*aSqMagnDU*aSQTan)
{
//theTg3D is parallel to theDU
const Standard_Real aDP = theTg3D.Dot(theDU);
const Standard_Real aLenTg = Sign(sqrt(aSQTan), aDP);
theTg2D.SetCoord(aLenTg/aLenSum, -aLenTg/aLenSum);
}
else
{
//theTg3D is not parallel to theDU
//It is abnormal
return Standard_False;
}
}
}
return Standard_True;
}
//=======================================================================
//function : NonSingularProcessing
//purpose : Computes 2D-representation (in UV-coordinates) of
// theTg3D vector on the surface in case when
// theDU.Crossed(theDV).Magnitude() > 0.0. Stores result in
// theTg2D variable.
// theDU and theDV are vectors of 1st derivative
// (with respect to U and V variables correspondingly).
// theLinTol is SQUARE of the tolerance.
//
//Algorithm:
// Condition
// Tg=theDU*theTg2D.X()+theDV*theTg2D.Y()
// has to be satisfied strictly.
// More over, vector Tg has always to be NORMALYZED.
//=======================================================================
static Standard_Boolean NonSingularProcessing(const gp_Vec& theDU,
const gp_Vec& theDV,
const gp_Vec& theTg3D,
const Standard_Real theLinTol,
const Standard_Real theAngTol,
gp_Vec2d& theTg2D)
{
const gp_Vec aNormal = theDU.Crossed(theDV);
const Standard_Real aSQMagn = aNormal.SquareMagnitude();
if(IsSingular(theDU, theDV, theLinTol, theAngTol))
{
gp_Vec aTg(theTg3D);
return
SingularProcessing(theDU, theDV, Standard_False,
theLinTol, theAngTol, aTg, theTg2D);
}
//If @\vec{T}=\vec{A}*U+\vec{B}*V@ then
// \left\{\begin{matrix}
// \vec{A} \times \vec{T} = (\vec{A} \times \vec{B})*V
// \vec{B} \times \vec{T} = (\vec{B} \times \vec{A})*U
// \end{matrix}\right.
//From here, values of U and V can be found very easily
//(if @\left \| \vec{A} \times \vec{B} \right \| > 0.0 @,
//else it is singular case).
const gp_Vec aTgU(theTg3D.Crossed(theDU)), aTgV(theTg3D.Crossed(theDV));
const Standard_Real aDeltaU = aTgV.SquareMagnitude()/aSQMagn;
const Standard_Real aDeltaV = aTgU.SquareMagnitude()/aSQMagn;
theTg2D.SetCoord(Sign(sqrt(aDeltaU), aTgV.Dot(aNormal)), -Sign(sqrt(aDeltaV), aTgU.Dot(aNormal)));
return Standard_True;
}
//--------------------------------------------------------------------------------
ApproxInt_ImpPrmSvSurfaces::ApproxInt_ImpPrmSvSurfaces( const TheISurface& ISurf
@ -111,16 +410,31 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::TangencyOnSurf2(const Standard_Real
T=MyTguv2;
return(t);
}
//--------------------------------------------------------------------------------
Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
,Standard_Real& v1
,Standard_Real& u2
,Standard_Real& v2
,gp_Pnt& P
,gp_Vec& Tg
,gp_Vec2d& Tguv1
,gp_Vec2d& Tguv2) {
//=======================================================================
//function : Compute
//purpose : Computes point on curve, 3D and 2D-tangents of a curve and
// parameters on the surfaces.
//=======================================================================
Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1,
Standard_Real& v1,
Standard_Real& u2,
Standard_Real& v2,
gp_Pnt& P,
gp_Vec& Tg,
gp_Vec2d& Tguv1,
gp_Vec2d& Tguv2)
{
const IntSurf_Quadric& aQSurf = MyZerImpFunc.ISurface();
const ThePSurface& aPSurf = MyZerImpFunc.PSurface();
gp_Vec2d& aQuadTg = MyImplicitFirst ? Tguv1 : Tguv2;
gp_Vec2d& aPrmTg = MyImplicitFirst ? Tguv2 : Tguv1;
//for square
const Standard_Real aNullValue = Precision::Approximation()*
Precision::Approximation(),
anAngTol = Precision::Angular();
Standard_Real tu1=u1;
Standard_Real tu2=u2;
Standard_Real tv1=v1;
@ -175,7 +489,6 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
Standard_Real aBornInf[2],aBornSup[2],aF[1],aX[2],aTolerance[2];
math_Vector BornInf(aBornInf,1,2),BornSup(aBornSup,1,2),F(aF,1,1),
X(aX,1,2),Tolerance(aTolerance,1,2);
@ -183,14 +496,14 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
math_Matrix D(aD,1, 1, 1, 2);
Standard_Real binfu,bsupu,binfv,bsupv;
binfu = ThePSurfaceTool::FirstUParameter(MyPSurf);
binfv = ThePSurfaceTool::FirstVParameter(MyPSurf);
bsupu = ThePSurfaceTool::LastUParameter(MyPSurf);
bsupv = ThePSurfaceTool::LastVParameter(MyPSurf);
binfu = ThePSurfaceTool::FirstUParameter(aPSurf);
binfv = ThePSurfaceTool::FirstVParameter(aPSurf);
bsupu = ThePSurfaceTool::LastUParameter(aPSurf);
bsupv = ThePSurfaceTool::LastVParameter(aPSurf);
BornInf(1) = binfu; BornSup(1) = bsupu;
BornInf(2) = binfv; BornSup(2) = bsupv;
//--- ThePSurfaceTool::GetResolution(MyPSurf,Tolerance(1),Tolerance(2));
//--- ThePSurfaceTool::GetResolution(aPSurf,Tolerance(1),Tolerance(2));
Tolerance(1) = 1.0e-8; Tolerance(2) = 1.0e-8;
Standard_Real TranslationU=0.0;
@ -200,8 +513,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
Rsnld.SetTolerance(Tolerance);
if(MyImplicitFirst) {
if(u2<binfu-0.0000000001) {
if(ThePSurfaceTool::IsUPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(MyPSurf);
if(ThePSurfaceTool::IsUPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(aPSurf);
do { TranslationU+=d; } while(u2+TranslationU < binfu);
}
else {
@ -211,8 +524,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
else if(u2>bsupu+0.0000000001) {
if(ThePSurfaceTool::IsUPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(MyPSurf);
if(ThePSurfaceTool::IsUPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(aPSurf);
do { TranslationU-=d; } while(u2+TranslationU > bsupu);
}
else {
@ -222,8 +535,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
if(v2<binfv-0.0000000001) {
if(ThePSurfaceTool::IsVPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(MyPSurf);
if(ThePSurfaceTool::IsVPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(aPSurf);
do { TranslationV+=d; } while(v2+TranslationV < binfv);
}
else {
@ -233,8 +546,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
else if(v2>bsupv+0.0000000001) {
if(ThePSurfaceTool::IsVPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(MyPSurf);
if(ThePSurfaceTool::IsVPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(aPSurf);
do { TranslationV-=d; } while(v2+TranslationV > bsupv);
}
else {
@ -248,8 +561,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
else {
if(u1<binfu-0.0000000001) {
if(ThePSurfaceTool::IsUPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(MyPSurf);
if(ThePSurfaceTool::IsUPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(aPSurf);
do { TranslationU+=d; } while(u1+TranslationU < binfu);
}
else {
@ -259,8 +572,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
else if(u1>bsupu+0.0000000001) {
if(ThePSurfaceTool::IsUPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(MyPSurf);
if(ThePSurfaceTool::IsUPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::UPeriod(aPSurf);
do { TranslationU-=d; } while(u1+TranslationU > bsupu);
}
else {
@ -270,8 +583,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
if(v1<binfv-0.0000000001) {
if(ThePSurfaceTool::IsVPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(MyPSurf);
if(ThePSurfaceTool::IsVPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(aPSurf);
do { TranslationV+=d; } while(v1+TranslationV < binfv);
}
else {
@ -281,8 +594,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
}
else if(v1>bsupv+0.0000000001) {
if(ThePSurfaceTool::IsVPeriodic(MyPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(MyPSurf);
if(ThePSurfaceTool::IsVPeriodic(aPSurf)) {
Standard_Real d = ThePSurfaceTool::VPeriod(aPSurf);
do { TranslationV-=d; } while(v1+TranslationV > bsupv);
}
else {
@ -296,9 +609,8 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
}
//----------------------------------------------------
//-- Pour eviter de coller le point de depart de la
//-- recherche sur une des bornes (Rsnld -> NotDone)
//--
//Make a small step from boundaries in order to avoid
//finding "outboundaried" solution (Rsnld -> NotDone).
if(X(1)-0.0000000001 <= binfu) X(1)=X(1)+0.0000001;
if(X(1)+0.0000000001 >= bsupu) X(1)=X(1)-0.0000001;
if(X(2)-0.0000000001 <= binfv) X(2)=X(2)+0.0000001;
@ -308,15 +620,6 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
Standard_Real PourTesterU = X(1);
Standard_Real PourTesterV = X(2);
/* ***************************************************************
cout<<" Envoi a Rsnld : "; Debug(X(1)); Debug(X(2));
Debug(BornInf(1)); Debug(BornInf(2));
Debug(BornSup(1)); Debug(BornSup(2)); cout<<endl;
Debug(u1); Debug(v1); Debug(u2); Debug(v2); Debug(MyImplicitFirst);
cout<<endl;
**************************************************************** */
Rsnld.Perform(MyZerImpFunc,X,BornInf,BornSup);
if(Rsnld.IsDone()) {
MyHasBeenComputed = Standard_True;
@ -324,120 +627,202 @@ Standard_Boolean ApproxInt_ImpPrmSvSurfaces::Compute( Standard_Real& u1
Standard_Real DistAvantApresU = Abs(PourTesterU-X(1));
Standard_Real DistAvantApresV = Abs(PourTesterV-X(2));
MyPnt = P = ThePSurfaceTool::Value(MyPSurf,X(1),X(2));
if( (DistAvantApresV <= 0.001 )
&& (DistAvantApresU <= 0.001 )) {
gp_Vec PD1U,PD1V;
gp_Vec ID1U,ID1V;
if(MyImplicitFirst) {
u2 = X(1)-TranslationU;
v2 = X(2)-TranslationV;
ComputeParametersOnImplicitSurface(MyISurf,P,u1,v1);
if(MyISurf.TypeQuadric() != GeomAbs_Plane) {
while(u1-tu1>M_PI) u1-=M_PI+M_PI;
while(tu1-u1>M_PI) u1+=M_PI+M_PI;
}
MyParOnS1.SetCoord(tu1,tv1);
MyParOnS2.SetCoord(tu2,tv2);
ThePSurfaceTool::D1(MyPSurf,X(1),X(2),P,PD1U,PD1V);
MyISurf.D1(u1,v1,P,ID1U,ID1V);
MyPnt = P = ThePSurfaceTool::Value(aPSurf, X(1), X(2));
if( (DistAvantApresV <= 0.001 ) &&
(DistAvantApresU <= 0.001 ))
{
gp_Vec aD1uPrm,aD1vPrm;
gp_Vec aD1uQuad,aD1vQuad;
if(MyImplicitFirst)
{
u2 = X(1)-TranslationU;
v2 = X(2)-TranslationV;
if(aQSurf.TypeQuadric() != GeomAbs_Plane)
{
while(u1-tu1>M_PI) u1-=M_PI+M_PI;
while(tu1-u1>M_PI) u1+=M_PI+M_PI;
}
MyParOnS1.SetCoord(tu1,tv1);
MyParOnS2.SetCoord(tu2,tv2);
gp_Pnt aP2;
ThePSurfaceTool::D1(aPSurf, X(1), X(2), P, aD1uPrm, aD1vPrm);
aQSurf.D1(u1,v1, aP2, aD1uQuad, aD1vQuad);
//Middle-point of P-P2 segment
P.BaryCenter(1.0, aP2, 1.0);
}
else {
u1 = X(1)-TranslationU;
v1 = X(2)-TranslationV;
ComputeParametersOnImplicitSurface(MyISurf,P,u2,v2);
if(MyISurf.TypeQuadric() != GeomAbs_Plane) {
while(u2-tu2>M_PI) u2-=M_PI+M_PI;
while(tu2-u2>M_PI) u2+=M_PI+M_PI;
}
MyParOnS1.SetCoord(tu1,tv1);
MyParOnS2.SetCoord(tu2,tu2);
ThePSurfaceTool::D1(MyPSurf,X(1),X(2),P,PD1U,PD1V);
MyISurf.D1(u2,v2,P,ID1U,ID1V);
}
gp_Vec VNormaleImp = MyISurf.Normale(MyPnt);
gp_Vec VNormalePrm = PD1U.Crossed(PD1V);
if( VNormaleImp.SquareMagnitude() <= gp::Resolution()
|| VNormalePrm.SquareMagnitude() <= gp::Resolution()) {
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return(Standard_False);
}
gp_Dir NormaleImp(VNormaleImp);
gp_Dir NormalePrm(VNormalePrm);
gp_Vec VNImp(NormaleImp);
gp_Vec VNPrm(NormalePrm);
MyTg = VNImp.Crossed(VNPrm);
Standard_Real NmyTg = MyTg.Magnitude();
if(NmyTg < 0.000001) {
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return(Standard_False);
}
MyTg.SetCoord(MyTg.X()/NmyTg,MyTg.Y()/NmyTg,MyTg.Z()/NmyTg);
MyTg = NormaleImp.Crossed(NormalePrm);
Tg = MyTg;
Standard_Real TUTV,TgTU,TgTV,TUTU,TVTV,DIS;
Standard_Real DeltaU,DeltaV;
TUTU = PD1U.Dot(PD1U);
TVTV = PD1V.Dot(PD1V);
TUTV = PD1U.Dot(PD1V);
TgTU = MyTg.Dot(PD1U);
TgTV = MyTg.Dot(PD1V);
DIS = TUTU * TVTV - TUTV * TUTV;
if(DIS<1e-10 && DIS>-1e-10) {
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return(Standard_False);
else
{
u1 = X(1)-TranslationU;
v1 = X(2)-TranslationV;
//aQSurf.Parameters(P, u2, v2);
if(aQSurf.TypeQuadric() != GeomAbs_Plane)
{
while(u2-tu2>M_PI) u2-=M_PI+M_PI;
while(tu2-u2>M_PI) u2+=M_PI+M_PI;
}
MyParOnS1.SetCoord(tu1,tv1);
MyParOnS2.SetCoord(tu2,tu2);
gp_Pnt aP2;
ThePSurfaceTool::D1(aPSurf, X(1), X(2), P, aD1uPrm, aD1vPrm);
aQSurf.D1(u2, v2, aP2, aD1uQuad, aD1vQuad);
//Middle-point of P-P2 segment
P.BaryCenter(1.0, aP2, 1.0);
}
MyPnt = P;
DeltaU = (TgTU * TVTV - TgTV * TUTV ) / DIS ;
DeltaV = (TgTV * TUTU - TgTU * TUTV ) / DIS ;
if(MyImplicitFirst) {
MyTguv1.SetCoord( MyTg.Dot(ID1U)/(ID1U.Dot(ID1U))
,MyTg.Dot(ID1V)/(ID1V.Dot(ID1V)));
MyTguv2.SetCoord(DeltaU,DeltaV);
Tguv1 = MyTguv1;
Tguv2 = MyTguv2;
//Normals to the surfaces
gp_Vec aNormalPrm(aD1uPrm.Crossed(aD1vPrm)),
aNormalImp(aQSurf.Normale(MyPnt));
const Standard_Real aSQMagnPrm = aNormalPrm.SquareMagnitude(),
aSQMagnImp = aNormalImp.SquareMagnitude();
Standard_Boolean isPrmSingular = Standard_False,
isImpSingular = Standard_False;
if(IsSingular(aD1uPrm, aD1vPrm, aNullValue, anAngTol))
{
isPrmSingular = Standard_True;
if(!SingularProcessing(aD1uPrm, aD1vPrm, Standard_True,
aNullValue, anAngTol, Tg, aPrmTg))
{
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return Standard_False;
}
MyTg = Tg;
}
else {
MyTguv1.SetCoord(DeltaU,DeltaV);
MyTguv2.SetCoord( MyTg.Dot(ID1U)/(ID1U.Dot(ID1U))
,MyTg.Dot(ID1V)/(ID1V.Dot(ID1V)));
Tguv1 = MyTguv1;
Tguv2 = MyTguv2;
else
{
aNormalPrm.Divide(sqrt(aSQMagnPrm));
}
//Analogicaly for implicit surface
if(aSQMagnImp < aNullValue)
{
isImpSingular = Standard_True;
if(!SingularProcessing(aD1uQuad, aD1vQuad, !isPrmSingular,
aNullValue, anAngTol, Tg, aQuadTg))
{
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return Standard_False;
}
MyTg = Tg;
}
else
{
aNormalImp.Divide(sqrt(aSQMagnImp));
}
if(isImpSingular && isPrmSingular)
{
//All is OK. All abnormal cases were processed above.
MyTguv1 = Tguv1;
MyTguv2 = Tguv2;
MyIsTangent=Standard_True;
return MyIsTangent;
}
else if(!(isImpSingular || isPrmSingular))
{
//Processing pure non-singular case
//(3D- and 2D-tangents are still not defined)
//Ask to pay attention to the fact that here
//aNormalImp and aNormalPrm are normalyzed.
//Therefore, @ \left \| \vec{Tg} \right \| = 0.0 @
//if and only if (aNormalImp || aNormalPrm).
Tg = aNormalImp.Crossed(aNormalPrm);
}
const Standard_Real aSQMagnTg = Tg.SquareMagnitude();
if(aSQMagnTg < aNullValue)
{
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return Standard_False;
}
//Normalyze Tg vector
Tg.Divide(sqrt(aSQMagnTg));
MyTg = Tg;
if(!isPrmSingular)
{
//If isPrmSingular==TRUE then aPrmTg has already been computed.
if(!NonSingularProcessing(aD1uPrm, aD1vPrm, Tg, aNullValue, anAngTol, aPrmTg))
{
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return Standard_False;
}
}
if(!isImpSingular)
{
//If isImpSingular==TRUE then aQuadTg has already been computed.
if(!NonSingularProcessing(aD1uQuad, aD1vQuad, Tg, aNullValue, anAngTol, aQuadTg))
{
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return Standard_False;
}
}
MyTguv1 = Tguv1;
MyTguv2 = Tguv2;
MyIsTangent=Standard_True;
return(Standard_True);
#ifdef OCCT_DEBUG
//cout << "+++++++++++++++++ ApproxInt_ImpPrmSvSurfaces::Compute(...) ++++++++++" << endl;
//printf( "P2d_1(%+10.20f, %+10.20f); P2d_2(%+10.20f, %+10.20f)\n"
// "P(%+10.20f, %+10.20f, %+10.20f);\n"
// "Tg = {%+10.20f, %+10.20f, %+10.20f};\n"
// "Tguv1 = {%+10.20f, %+10.20f};\n"
// "Tguv2 = {%+10.20f, %+10.20f}\n",
// u1, v1, u2, v2,
// P.X(), P.Y(), P.Z(),
// Tg.X(), Tg.Y(), Tg.Z(),
// Tguv1.X(), Tguv1.Y(), Tguv2.X(), Tguv2.Y());
//cout << "-----------------------------------------------------------------------" << endl;
#endif
return Standard_True;
}
else {
//-- cout<<" ApproxInt_ImpImpSvSurfaces.gxx : Distance apres recadrage Trop Grande "<<endl;
MyIsTangent=Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return(Standard_False);
return Standard_False;
}
}
else {
MyIsTangent = Standard_False;
MyHasBeenComputed = MyHasBeenComputedbis = Standard_False;
return(Standard_False);
return Standard_False;
}
}

View File

@ -195,25 +195,6 @@ void ApproxInt_KnotTools::ComputeKnotInds(const NCollection_LocalArray<Standard_
aFeatureInds.Append(i);
}
}
else if(aCurv(i)*aCurv(i + 1) < 0.0)
{
if(Abs(aCurv(i)) < Abs(aCurv(i + 1)))
{
if(i != theInds.Last())
{
theInds.Append(i);
aFeatureInds.Append(i);
}
}
else
{
if(i+1 != theInds.Last())
{
theInds.Append(i + 1);
aFeatureInds.Append(i + 1);
}
}
}
}
if(aCurv.Upper() != theInds.Last())
{
@ -369,7 +350,7 @@ void ApproxInt_KnotTools::FilterKnots(NCollection_Sequence<Standard_Integer>& th
Standard_Integer anIdx = i + 1;
for( ; anIdx <= theInds.Length(); ++anIdx)
{
if (theInds(anIdx) - anIndsPrev > theMinNbPnts)
if (theInds(anIdx) - anIndsPrev >= theMinNbPnts)
break;
}
anIdx--;
@ -379,10 +360,36 @@ void ApproxInt_KnotTools::FilterKnots(NCollection_Sequence<Standard_Integer>& th
aMidIdx - theInds(anIdx) < theMinNbPnts &&
theInds(anIdx) - anIndsPrev >= aMinNbStep)
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(theInds(anIdx));
anIndsPrev = theInds(anIdx);
i = anIdx;
if (theInds(anIdx) - anIndsPrev > 2 * theMinNbPnts)
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(anIndsPrev + theMinNbPnts);
anIndsPrev = anIndsPrev + theMinNbPnts;
i = anIdx - 1;
}
else
{
if (theInds(anIdx - 1) - anIndsPrev >= theMinNbPnts / 2)
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(theInds(anIdx - 1));
anIndsPrev = theInds(anIdx - 1);
i = anIdx - 1;
if (theInds(anIdx) - theInds(anIdx - 1) <= theMinNbPnts / 2)
{
theLKnots.SetValue(theLKnots.Upper(), theInds(anIdx));
anIndsPrev = theInds(anIdx );
i = anIdx;
}
}
else
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(theInds(anIdx));
anIndsPrev = theInds(anIdx);
i = anIdx;
}
}
}
else if (anIdx == theInds.Upper() && // Last point obtained.
theLKnots.Length() >= 2) // It is possible to modify last item.

View File

@ -14,101 +14,85 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#define DEBUG 0
#include <TColStd_Array1OfReal.hxx>
#include <IntSurf_LineOn2S.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec2d.hxx>
#include <gp_Vec.hxx>
#include <IntSurf_LineOn2S.hxx>
ApproxInt_MultiLine::ApproxInt_MultiLine(const Handle_TheLine& line,
const Standard_Address svsurf,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real ax,
const Standard_Real yo,
const Standard_Real ay,
const Standard_Real zo,
const Standard_Real az,
const Standard_Real u1o,
const Standard_Real a1u,
const Standard_Real v1o,
const Standard_Real a1v,
const Standard_Real u2o,
const Standard_Real a2u,
const Standard_Real v2o,
const Standard_Real a2v,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin,
const Standard_Integer IndMax):
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
ApproxInt_MultiLine::
ApproxInt_MultiLine(const Handle_TheLine& line,
const Standard_Address svsurf,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin,
const Standard_Integer IndMax): PtrOnmySvSurfaces(svsurf),
myLine(line),
indicemin(Min(IndMin, IndMax)),
indicemax(Max(IndMin, IndMax)),
nbp3d(NbP3d), nbp2d(NbP2d),
p2donfirst(P2DOnFirst),
Xo(xo), Yo(yo), Zo(zo),
U1o(u1o), V1o(v1o),
U2o(u2o), V2o(v2o)
PtrOnmySvSurfaces(svsurf),
myLine(line),
indicemin(IndMin),
indicemax(IndMax),
nbp3d(NbP3d),
nbp2d(NbP2d),
p2donfirst(P2DOnFirst),
Xo(xo),Ax(ax),Yo(yo),Ay(ay),Zo(zo),Az(az),
U1o(u1o),A1u(a1u),V1o(v1o),A1v(a1v),
U2o(u2o),A2u(a2u),V2o(v2o),A2v(a2v)
{
#if DEBUG
if(indicemin>=indicemax) {
cout<<"\n********************************************";
cout<<"\n***** ApproxInt_MultiLine ********";
cout<<"\n***** indicemin = indicemax = "<<indicemin;
cout<<"\n********************************************"<<endl;
}
#if OCCT_DEBUG
//if(indicemin == indicemax)
//{
// cout<<"ApproxInt_MultiLine: indicemin = indicemax = " << indicemin << endl;
//}
#endif
}
//--------------------------------------------------------------------------------
ApproxInt_MultiLine::ApproxInt_MultiLine(const Handle_TheLine& line,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real ax,
const Standard_Real yo,
const Standard_Real ay,
const Standard_Real zo,
const Standard_Real az,
const Standard_Real u1o,
const Standard_Real a1u,
const Standard_Real v1o,
const Standard_Real a1v,
const Standard_Real u2o,
const Standard_Real a2u,
const Standard_Real v2o,
const Standard_Real a2v,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin,
const Standard_Integer IndMax):
PtrOnmySvSurfaces(0),
myLine(line),
indicemin(IndMin),
indicemax(IndMax),
nbp3d(NbP3d),
nbp2d(NbP2d),
p2donfirst(P2DOnFirst),
Xo(xo),Ax(ax),Yo(yo),Ay(ay),Zo(zo),Az(az),
U1o(u1o),A1u(a1u),V1o(v1o),A1v(a1v),
U2o(u2o),A2u(a2u),V2o(v2o),A2v(a2v)
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
ApproxInt_MultiLine::
ApproxInt_MultiLine(const Handle_TheLine& line,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin,
const Standard_Integer IndMax): PtrOnmySvSurfaces(0),
myLine(line),
indicemin(Min(IndMin, IndMax)),
indicemax(Max(IndMin, IndMax)),
nbp3d(NbP3d), nbp2d(NbP2d),
p2donfirst(P2DOnFirst),
Xo(xo), Yo(yo), Zo(zo),
U1o(u1o), V1o(v1o),
U2o(u2o), V2o(v2o)
{
if(indicemin>=indicemax) {
#if DEBUG
cout<<"\n********************************************";
cout<<"\n***** ApproxInt_MultiLine ********";
cout<<"\n***** indicemin = indicemax = "<<indicemin;
cout<<"\n********************************************"<<endl;
#if OCCT_DEBUG
//if(indicemin == indicemax)
//{
// cout<<"ApproxInt_MultiLine: indicemin = indicemax = " << indicemin << endl;
//}
#endif
}
}
//--------------------------------------------------------------------------------
Standard_Integer ApproxInt_MultiLine::FirstPoint() const {
return(indicemin);
@ -134,216 +118,152 @@ Standard_Integer ApproxInt_MultiLine::NbP2d() const {
}
//================================================================================
void ApproxInt_MultiLine::Value(const Standard_Integer Index,
TColgp_Array1OfPnt& TabPnt) const
TColgp_Array1OfPnt& TabPnt) const
{
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real X = POn2S.Value().X();
Standard_Real Y = POn2S.Value().Y();
Standard_Real Z = POn2S.Value().Z();
TabPnt(1) = gp_Pnt(X*Ax + Xo, Y*Ay + Yo, Z*Az + Zo);
const gp_Pnt& aP = myLine->Point(Index).Value();
TabPnt(1).SetCoord(aP.X()+Xo, aP.Y()+Yo, aP.Z()+Zo);
}
//--------------------------------------------------------------------------------
void ApproxInt_MultiLine::Value( const Standard_Integer Index
,TColgp_Array1OfPnt2d& TabPnt2d) const
//=======================================================================
//function : Value
//purpose :
//=======================================================================
void ApproxInt_MultiLine::Value(const Standard_Integer Index,
TColgp_Array1OfPnt2d& TabPnt2d) const
{
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real u1,u2,v1,v2;
POn2S.Parameters(u1,v1,u2,v2);
if(nbp2d==1) {
if(p2donfirst) {
TabPnt2d(1) = gp_Pnt2d(u1 * A1u + U1o , v1 * A1v + V1o);
Standard_Real u1 = 0.0, u2 = 0.0, v1 = 0.0, v2 = 0.0;
POn2S.Parameters(u1, v1, u2, v2);
if(nbp2d==1)
{
if(p2donfirst)
{
TabPnt2d(1).SetCoord(u1+U1o, v1+V1o);
}
else {
TabPnt2d(1) = gp_Pnt2d(u2 * A2u + U2o , v2 * A2v + V2o);
else
{
TabPnt2d(1).SetCoord(u2+U2o, v2+V2o);
}
}
else {
TabPnt2d(1) = gp_Pnt2d(u1 * A1u + U1o , v1 * A1v + V1o);
if(TabPnt2d.Length()>=2) {
TabPnt2d(2) = gp_Pnt2d(u2 * A2u + U2o , v2 * A2v + V2o);
else
{
TabPnt2d(1).SetCoord(u1+U1o, v1+V1o);
if(TabPnt2d.Length() >= 2)
{
TabPnt2d(2).SetCoord(u2+U2o, v2+V2o);
}
}
}
//--------------------------------------------------------------------------------
void ApproxInt_MultiLine::Value( const Standard_Integer Index
,TColgp_Array1OfPnt& TabPnt
,TColgp_Array1OfPnt2d& TabPnt2d) const
//=======================================================================
//function : Value
//purpose :
//=======================================================================
void ApproxInt_MultiLine::Value(const Standard_Integer Index,
TColgp_Array1OfPnt& TabPnt,
TColgp_Array1OfPnt2d& TabPnt2d) const
{
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real u1,u2,v1,v2;
POn2S.Parameters(u1,v1,u2,v2);
if(nbp2d==1) {
if(p2donfirst) {
TabPnt2d(1) = gp_Pnt2d(u1 * A1u + U1o , v1 * A1v + V1o);
}
else {
TabPnt2d(1) = gp_Pnt2d(u2 * A2u + U2o , v2 * A2v + V2o);
}
}
else {
TabPnt2d(1) = gp_Pnt2d(u1 * A1u + U1o , v1 * A1v + V1o);
if(TabPnt2d.Length()>=2) {
TabPnt2d(2) = gp_Pnt2d(u2 * A2u + U2o , v2 * A2v + V2o);
}
}
Standard_Real X = POn2S.Value().X();
Standard_Real Y = POn2S.Value().Y();
Standard_Real Z = POn2S.Value().Z();
TabPnt(1) = gp_Pnt(X * Ax + Xo, Y * Ay + Yo, Z * Az + Zo);
Value(Index, TabPnt);
Value(Index, TabPnt2d);
}
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index
,TColgp_Array1OfVec& TabVec) const
{
//=======================================================================
//function : Tangency
//purpose :
//=======================================================================
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index,
TColgp_Array1OfVec& TabVec) const
{
if(PtrOnmySvSurfaces==NULL)
return(Standard_False);
return Standard_False;
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real u1,u2,v1,v2;
gp_Vec Tg;
const IntSurf_PntOn2S& POn2S = myLine->Point(Index);
Standard_Real u1 = 0.0, u2 = 0.0, v1 = 0.0, v2 = 0.0;
POn2S.Parameters(u1,v1,u2,v2);
Standard_Boolean ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->Tangency( u1,v1,u2,v2,Tg);
if(ret) {
Standard_Real X = Tg.X();
Standard_Real Y = Tg.Y();
Standard_Real Z = Tg.Z();
TabVec(1) = gp_Vec(X * Ax, Y * Ay, Z * Az);
Standard_Boolean ret=
((TheSvSurfaces *)PtrOnmySvSurfaces)->Tangency(u1, v1, u2, v2, TabVec(1));
if(!ret)
{
TabVec(1).SetCoord(0.0, 0.0, 0.0);
}
else
TabVec(1) = gp_Vec(0.0,0.0,0.0);
return(ret);
return ret;
}
//--------------------------------------------------------------------------------
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index
,TColgp_Array1OfVec2d& TabVec2d) const
{
//=======================================================================
//function : Tangency
//purpose :
//=======================================================================
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index,
TColgp_Array1OfVec2d& TabVec2d) const
{
if(PtrOnmySvSurfaces==NULL)
return(Standard_False);
return Standard_False;
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real u1,u2,v1,v2,U,V;
gp_Vec2d Tg2d;
Standard_Boolean ret;
const IntSurf_PntOn2S& POn2S = myLine->Point(Index);
Standard_Real u1 = 0.0, u2 = 0.0, v1 = 0.0, v2 = 0.0;
POn2S.Parameters(u1,v1,u2,v2);
if(nbp2d==1) {
Standard_Real Au = A1u;
Standard_Real Av = A1v;
if(p2donfirst) {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1( u1,v1,u2,v2,Tg2d);
Standard_Boolean ret = Standard_False;
if(nbp2d==1)
{
if(p2donfirst)
{
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1(u1, v1, u2, v2, TabVec2d(1));
}
else {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf2( u1,v1,u2,v2,Tg2d);
Au = A2u;
Av = A2v;
else
{
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf2(u1, v1, u2, v2, TabVec2d(1));
}
if(ret) {
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(1) = gp_Vec2d(U * Au, V * Av);
}
else {
TabVec2d(1) = gp_Vec2d(0.0,0.0);
}
}
else {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1( u1,v1,u2,v2,Tg2d);
if(ret) {
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(1) = gp_Vec2d(U * A1u, V * A1v);
if(TabVec2d.Length()>=2) {
ret&=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf2( u1,v1,u2,v2,Tg2d);
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(2) = gp_Vec2d(U * A2u, V * A2v);
}
else {
TabVec2d(1) = gp_Vec2d(0.0,0.0);
if(TabVec2d.Length()>=2) {
TabVec2d(2) = gp_Vec2d(0.0,0.0);
}
else
{
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1(u1, v1, u2, v2, TabVec2d(1));
if(ret)
{
if(TabVec2d.Length()>=2)
{
ret =
(ret &&
((TheSvSurfaces *)PtrOnmySvSurfaces)->
TangencyOnSurf2(u1, v1, u2, v2, TabVec2d(2)));
}
}
}
return(ret);
if(!ret)
{
TabVec2d(1) = gp_Vec2d(0.0, 0.0);
if(TabVec2d.Length() >= 2)
{
TabVec2d(2) = gp_Vec2d(0.0,0.0);
}
}
return ret;
}
//--------------------------------------------------------------------------------
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index
,TColgp_Array1OfVec& TabVec
,TColgp_Array1OfVec2d& TabVec2d) const
//=======================================================================
//function : Tangency
//purpose :
//=======================================================================
Standard_Boolean ApproxInt_MultiLine::Tangency( const Standard_Integer Index,
TColgp_Array1OfVec& TabVec,
TColgp_Array1OfVec2d& TabVec2d) const
{
if(PtrOnmySvSurfaces==NULL)
return(Standard_False);
IntSurf_PntOn2S POn2S(myLine->Point(Index));
Standard_Real u1,u2,v1,v2,U,V;
gp_Vec2d Tg2d;
gp_Vec Tg;
Standard_Boolean ret;
POn2S.Parameters(u1,v1,u2,v2);
if(nbp2d==1) {
Standard_Real Au = A1u;
Standard_Real Av = A1v;
if(p2donfirst) {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1( u1,v1,u2,v2,Tg2d);
}
else {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf2( u1,v1,u2,v2,Tg2d);
Au = A2u;
Av = A2v;
}
if(ret) {
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(1) = gp_Vec2d(U * Au, V * Av);
}
else {
TabVec2d(1) = gp_Vec2d(0.0,0.0);
}
}
else {
ret=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf1( u1,v1,u2,v2,Tg2d);
if(ret) {
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(1) = gp_Vec2d(U * A1u, V * A1v);
if(TabVec2d.Length()>=2) {
ret&=((TheSvSurfaces *)PtrOnmySvSurfaces)->TangencyOnSurf2( u1,v1,u2,v2,Tg2d);
U = Tg2d.X();
V = Tg2d.Y();
TabVec2d(2) = gp_Vec2d(U * A2u, V * A2v);
}
}
else {
TabVec2d(1) = gp_Vec2d(0.0,0.0);
if(TabVec2d.Length()>=2) {
TabVec2d(2) = gp_Vec2d(0.0,0.0);
}
}
}
if(ret) {
ret&=((TheSvSurfaces *)PtrOnmySvSurfaces)->Tangency( u1,v1,u2,v2,Tg);
Standard_Real X = Tg.X();
Standard_Real Y = Tg.Y();
Standard_Real Z = Tg.Z();
TabVec(1) = gp_Vec(X * Ax, Y * Ay, Z * Az);
}
else {
TabVec(1) = gp_Vec(0.0,0.0,0.0);
}
return(ret);
return (Tangency(Index, TabVec) && Tangency(Index, TabVec2d));
}
//--------------------------------------------------------------------------------
//================================================================================
ApproxInt_MultiLine ApproxInt_MultiLine::MakeMLBetween(const Standard_Integer Low,
const Standard_Integer High,
const Standard_Integer aNbPntsToInsert)
const {
//=======================================================================
//function : MakeMLBetween
//purpose :
//=======================================================================
ApproxInt_MultiLine
ApproxInt_MultiLine::MakeMLBetween( const Standard_Integer Low,
const Standard_Integer High,
const Standard_Integer aNbPntsToInsert) const
{
if(PtrOnmySvSurfaces==NULL) {
//-- cout<<"\n Erreur dans : ApproxInt_MultiLine ApproxInt_MultiLine::MakeMLBetween "<<endl;
Handle(IntSurf_LineOn2S) vide1 = new IntSurf_LineOn2S();
@ -352,13 +272,12 @@ const {
NULL,
nbp3d,
nbp2d,
Xo,Ax,Yo,Ay,Zo,Az,
U1o,A1u,V1o,A1v,
U2o,A2u,V2o,A2v,
Xo,Yo,Zo,U1o,V1o,U2o,V2o,
p2donfirst,
1,1));
//-- return(*this);
}
Standard_Integer NbPntsToInsert=aNbPntsToInsert;
if(NbPntsToInsert<(High-Low)) NbPntsToInsert=(High-Low);
Standard_Integer NbPnts = NbPntsToInsert + High - Low + 1;
@ -401,7 +320,6 @@ const {
AC(Low) =0.0;
#if 0
for( i=Low+1; i<=High; i++) {
myLine->Point(i).Parameters(u1,v1,u2,v2);
U1(i) = u1;
@ -422,20 +340,17 @@ const {
V1(i) = v1;
U2(i) = u2;
V2(i) = v2;
AC(i) = AC(i-1)
+ (myLine->Point(i-1).Value()).Distance(myLine->Point(i).Value());
AC(i) = AC(i-1) + (myLine->Point(i-1).Value()).Distance(myLine->Point(i).Value());
}
#endif
//-------------------------------------------------------------
//-- Creation des structures contenant les resultats
Handle(IntSurf_LineOn2S) ResultPntOn2SLine
= new IntSurf_LineOn2S();
Handle(IntSurf_LineOn2S) ResultPntOn2SLine = new IntSurf_LineOn2S();
IntSurf_PntOn2S StartPOn2S;
TColStd_Array1OfReal StartParams(1,4);
TColStd_Array1OfReal StartParams(1,4);
ds = AC(High) / (NbPnts-1);
Standard_Integer Indice = Low;
@ -450,8 +365,11 @@ const {
//-- s s --
//-- Current Indice tel que AC(Indice)<= s < AC(Indice+1) --
//----------------------------------------------------------
while(AC(Indice+1) <= s) {
if(!HasBeenInserted) ResultPntOn2SLine->Add(myLine->Point(Indice));
while(AC(Indice+1) <= s)
{
if(!HasBeenInserted)
ResultPntOn2SLine->Add(myLine->Point(Indice));
HasBeenInserted = Standard_False;
Indice++;
if (Indice == High)
@ -461,10 +379,12 @@ const {
if (Indice == High)
break;
if(!HasBeenInserted && AC(Indice) <= s) {
if(!HasBeenInserted && AC(Indice) <= s)
{
ResultPntOn2SLine->Add(myLine->Point(Indice));
HasBeenInserted = Standard_True;
}
Standard_Real a = s - AC(Indice);
Standard_Real b = AC(Indice+1) - s;
Standard_Real nab = 1.0/(a+b);
@ -474,48 +394,57 @@ const {
//-- Si Dist au precedent point < dsmin --
//-- --
//----------------------------------------------------------
if((a>dsmin) && (b>dsmin)) {
if((a>dsmin) && (b>dsmin))
{
u1 = (U1(Indice) * b + U1(Indice+1) * a) * nab;
v1 = (V1(Indice) * b + V1(Indice+1) * a) * nab;
u2 = (U2(Indice) * b + U2(Indice+1) * a) * nab;
v2 = (V2(Indice) * b + V2(Indice+1) * a) * nab;
if(((TheSvSurfaces *)PtrOnmySvSurfaces)->Compute(u1,v1,u2,v2,P,T,TS1,TS2)) {
StartPOn2S.SetValue(P,u1,v1,u2,v2);
//-- cout<<" Insertion du point calcule : "<<u1<<","<<v1<<","<<u2<<","<<v2<<",";
//-- cout<<P.X()<<","<<P.Y()<<","<<P.Z()<<endl;
ResultPntOn2SLine->Add(StartPOn2S);
if(((TheSvSurfaces *)PtrOnmySvSurfaces)->Compute(u1,v1,u2,v2,P,T,TS1,TS2))
{
StartPOn2S.SetValue(P,u1,v1,u2,v2);
//-- cout<<" Insertion du point calcule : "<<u1<<","<<v1<<","<<u2<<","<<v2<<",";
//-- cout<<P.X()<<","<<P.Y()<<","<<P.Z()<<endl;
ResultPntOn2SLine->Add(StartPOn2S);
}
else {
//-- cout<<" Probleme Non Traite ds ApproxInt_ApproxIntIntersection "<<endl;
else
{
//-- cout<<" Probleme Non Traite ds ApproxInt_ApproxIntIntersection "<<endl;
}
}
else {
else
{
//-- Point non situe a distance suffisante de 2 pts existants
//-- avec le point p[indice] deja insere
if(b<0.0) {
while(AC(Indice+1) <= s) {
if(!HasBeenInserted) ResultPntOn2SLine->Add(myLine->Point(Indice));
//-- cout<<" Insertion du point :"<<Indice<<endl;
HasBeenInserted = Standard_False;
Indice++;
if(b<0.0)
{
while(AC(Indice+1) <= s)
{
if(!HasBeenInserted)
ResultPntOn2SLine->Add(myLine->Point(Indice));
//-- cout<<" Insertion du point :"<<Indice<<endl;
HasBeenInserted = Standard_False;
Indice++;
if (Indice == High)
break;
}
if (Indice == High)
}
if(Indice == High)
break;
if(!HasBeenInserted && AC(Indice) <= s) {
ResultPntOn2SLine->Add(myLine->Point(Indice));
HasBeenInserted = Standard_True;
}
if(!HasBeenInserted && AC(Indice) <= s)
{
ResultPntOn2SLine->Add(myLine->Point(Indice));
HasBeenInserted = Standard_True;
}
}
else {
s+=dsmin - ds;
else
{
s+= (dsmin - ds);
}
}
}
@ -538,7 +467,8 @@ const {
Standard_Integer CodeErreur=0;
for(i=3,NbPnts=temp->NbPnts();CodeErreur==0 && i<=NbPnts; i++) {
for(i=3,NbPnts=temp->NbPnts();CodeErreur==0 && i<=NbPnts; i++)
{
Standard_Real d,du,dv,duv2;
temp->Point(i).Parameters(u1,v1,u2,v2);
//-- Virage P1A P1B P1C
@ -551,11 +481,13 @@ const {
du = P1C.X() - u1;
dv = P1C.Y() - v1;
d = du*du+dv*dv;
if(d>duv2) {
if(d>duv2)
{
CodeErreur = 1;
CodeErreur = 1;
break;
}
//-- Virage P2A P2B P2C
P2C.SetCoord(u2,v2);
du = P2B.X()-P2A.X();
@ -566,63 +498,80 @@ const {
du = P2C.X() - u2;
dv = P2C.Y() - v2;
d = du*du+dv*dv;
if(d>duv2) {
if(d>duv2)
{
CodeErreur = 2;
break;
}
P1A=P1B;
P2A=P2B;
P1B=P1C;
P2B=P2C;
}
#if DEBUG
if (temp->NbPnts() < NbPntsToInsert + High - Low + 1) {
cout<<" *** Pas assez de points entre :"<<Low<<" et "<<High<<" -> "<<temp->NbPnts()<<endl;
}
if(CodeErreur) {
cout<<" *** CodeErreur : "<<CodeErreur<<endl;
}
#if OCCT_DEBUG
//if (temp->NbPnts() < NbPntsToInsert + High - Low + 1)
//{
// cout<<" *** Pas assez de points entre :"<<
// Low<<" et "<<High<<" -> "<<temp->NbPnts()<<endl;
//}
//if(CodeErreur)
//{
// cout<<" *** CodeErreur : "<<CodeErreur<<endl;
//}
#endif
if((temp->NbPnts() >= NbPntsToInsert + High - Low + 1)
&& (CodeErreur==0)) {
return(ApproxInt_MultiLine(temp,
(High-Low>10)? PtrOnmySvSurfaces : NULL,
nbp3d,
nbp2d,
Xo,Ax,Yo,Ay,Zo,Az,
U1o,A1u,V1o,A1v,
U2o,A2u,V2o,A2v,
p2donfirst,
1,ResultPntOn2SLine->NbPoints()));
if((temp->NbPnts() >= NbPntsToInsert + High - Low + 1) && (CodeErreur==0))
{
return(ApproxInt_MultiLine( temp,
(High-Low>10)? PtrOnmySvSurfaces : NULL,
nbp3d,
nbp2d,
Xo,Yo,Zo,
U1o,V1o,
U2o,V2o,
p2donfirst,
1,ResultPntOn2SLine->NbPoints()));
}
else {
else
{
//-- cout<<" ApproxInt_MultiLine "<<endl;
//-- cout<<" Pas de Rajout de points ds1min = "<<minds1<<" ds2min = "<<minds2<<endl;
Handle(IntSurf_LineOn2S) vide1 = new IntSurf_LineOn2S();
Handle(TheLine) vide = new TheLine(vide1,Standard_False);
return(ApproxInt_MultiLine(vide,
NULL,
nbp3d,
nbp2d,
Xo,Ax,Yo,Ay,Zo,Az,
U1o,A1u,V1o,A1v,
U2o,A2u,V2o,A2v,
p2donfirst,
1,1));
return(ApproxInt_MultiLine( vide,
NULL,
nbp3d,
nbp2d,
Xo,Yo,Zo,
U1o,V1o,
U2o,V2o,
p2donfirst,
1,1));
}
}
//======================================================================
//=======================================================================
//function : Dump
//purpose :
//=======================================================================
void ApproxInt_MultiLine::Dump() const
{
TColgp_Array1OfPnt anArr1(1, 1);
TColgp_Array1OfPnt2d anArr2(1, 2);
for(Standard_Integer ind = FirstPoint(); ind <= LastPoint(); ind++)
const Standard_Integer anIndF = FirstPoint(),
anIndL = LastPoint();
for(Standard_Integer ind = anIndF; ind <= anIndL; ind++)
{
Value(ind, anArr1, anArr2);
printf("%4d [%+10.20f %+10.20f %+10.20f] [%+10.20f %+10.20f] [%+10.20f %+10.20f]\n",
ind, anArr1(1).X(), anArr1(1).Y(), anArr1(1).Z(), anArr2(1).X(),anArr2(1).Y(),anArr2(2).X(),anArr2(2).Y());
printf("%4d [%+10.20f %+10.20f %+10.20f] "
"[%+10.20f %+10.20f] [%+10.20f %+10.20f]\n",
ind, anArr1(1).X(), anArr1(1).Y(), anArr1(1).Z(), anArr2(1).X(),
anArr2(1).Y(),anArr2(2).X(),anArr2(2).Y());
}
}

View File

@ -42,8 +42,7 @@
BRepAlgo_BooleanOperations::BRepAlgo_BooleanOperations() :
myApproxNbPntMax (30) ,
myApproxTol3D (1.e-7) ,
myApproxTol2D (1.e-7) ,
myApproxRelativeTol (Standard_True)
myApproxTol2D (1.e-7)
{
}
@ -109,13 +108,11 @@ myApproxRelativeTol (Standard_True)
//=======================================================================
void BRepAlgo_BooleanOperations::SetApproxParameters (const Standard_Integer NbPntMax,
const Standard_Real Tol3D,
const Standard_Real Tol2D,
const Standard_Boolean RelativeTol)
const Standard_Real Tol2D)
{
myApproxNbPntMax = NbPntMax ;
myApproxTol3D = Tol3D ;
myApproxTol2D = Tol2D ;
myApproxRelativeTol = RelativeTol ;
}
//=======================================================================
@ -140,7 +137,7 @@ myApproxRelativeTol (Standard_True)
TopOpeBRepDS_BuildTool& BTofBuilder = myDSA.myHB->ChangeBuildTool();
TopOpeBRepTool_GeomTool& GTofBTofBuilder = BTofBuilder.ChangeGeomTool();
GTofBTofBuilder.SetNbPntMax(myApproxNbPntMax);
GTofBTofBuilder.SetTolerances (myApproxTol3D, myApproxTol2D, myApproxRelativeTol) ;
GTofBTofBuilder.SetTolerances (myApproxTol3D, myApproxTol2D) ;
Handle(TopOpeBRepBuild_HBuilder)& HB = myDSA.myHB;
Handle(TopOpeBRepDS_HDataStructure)& HDS = myDSA.ChangeDS();
HB->Perform(HDS,myS1,myS2);

View File

@ -58,7 +58,7 @@ public:
//! the same time in one curve.
//! Tol3D, Tol2D : Tolerances to be reached by the approximation.
//! RelativeTol : The given tolerances are relative.
Standard_EXPORT void SetApproxParameters (const Standard_Integer NbPntMax, const Standard_Real Tol3D, const Standard_Real Tol2D, const Standard_Boolean RelativeTol);
Standard_EXPORT void SetApproxParameters (const Standard_Integer NbPntMax, const Standard_Real Tol3D, const Standard_Real Tol2D);
Standard_EXPORT void Define (const TopoDS_Shape& S1, const TopoDS_Shape& S2, Handle(TopOpeBRepDS_HDataStructure)& HDS);
@ -129,9 +129,6 @@ private:
Standard_Integer myApproxNbPntMax;
Standard_Real myApproxTol3D;
Standard_Real myApproxTol2D;
Standard_Boolean myApproxRelativeTol;
};

View File

@ -51,22 +51,24 @@ class AppParCurves_MultiBSpCurve;
struct Approx_Data
{
Approx_Data()
Approx_Data() : myBezierApprox(Standard_True),
Xo(0.0), Yo(0.0), Zo(0.0),
U1o(0.0), V1o(0.0), U2o(0.0), V2o(0.0),
ApproxXYZ(Standard_True),
ApproxU1V1(Standard_True),
ApproxU2V2(Standard_True),
indicemin(0), indicemax(0),
myNbPntMax(30), parametrization(Approx_ChordLength)
{
myMinFactorXYZ = 0.0;
myMinFactorUV = 0.0;
}
Standard_Boolean myBezierApprox;
Standard_Real Xo, Ax, Yo, Ay, Zo, Az,
U1o, A1u, V1o, A1v, U2o, A2u, V2o, A2v;
Standard_Real Xo, Yo, Zo, U1o, V1o, U2o, V2o;
Standard_Boolean ApproxXYZ, ApproxU1V1, ApproxU2V2;
Standard_Integer indicemin, indicemax, nbpntmax;
Standard_Integer indicemin, indicemax, myNbPntMax;
Approx_ParametrizationType parametrization;
Standard_Real myMinFactorXYZ, myMinFactorUV;
};
class BRepApprox_Approx
{
public:
@ -80,10 +82,16 @@ public:
Standard_EXPORT void Perform (const Handle(BRepApprox_ApproxLine)& aLine, const Standard_Boolean ApproxXYZ = Standard_True, const Standard_Boolean ApproxU1V1 = Standard_True, const Standard_Boolean ApproxU2V2 = Standard_True, const Standard_Integer indicemin = 0, const Standard_Integer indicemax = 0);
Standard_EXPORT void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d, const Standard_Integer DegMin, const Standard_Integer DegMax, const Standard_Integer NbIterMax, const Standard_Boolean ApproxWithTangency = Standard_True, const Approx_ParametrizationType Parametrization = Approx_ChordLength);
Standard_EXPORT void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d, const Standard_Boolean RelativeTol, const Standard_Integer DegMin, const Standard_Integer DegMax, const Standard_Integer NbIterMax, const Standard_Integer NbPntMax, const Standard_Boolean ApproxWithTangency = Standard_True, const Approx_ParametrizationType Parametrization = Approx_ChordLength);
Standard_EXPORT
void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d,
const Standard_Integer DegMin,
const Standard_Integer DegMax,
const Standard_Integer NbIterMax,
const Standard_Integer NbPntMax = 30,
const Standard_Boolean ApproxWithTangency = Standard_True,
const Approx_ParametrizationType
Parametrization = Approx_ChordLength);
Standard_EXPORT void Perform();
Standard_EXPORT Standard_Real TolReached3d() const;
@ -106,22 +114,12 @@ protected:
private:
Standard_EXPORT Standard_Integer CorrectFinishIdx(const Standard_Integer theMinIdx,
const Standard_Integer theMaxIdx,
const Handle(BRepApprox_ApproxLine)& theline);
Standard_EXPORT void Perform (const BRepAdaptor_Surface& Surf1, const IntSurf_Quadric& Surf2, const Handle(BRepApprox_ApproxLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax);
Standard_EXPORT void Perform (const IntSurf_Quadric& Surf1, const BRepAdaptor_Surface& Surf2, const Handle(BRepApprox_ApproxLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax);
Standard_EXPORT void Perform (const IntSurf_Quadric& Surf1, const BRepAdaptor_Surface& Surf2, const Handle(BRepApprox_ApproxLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax, const Standard_Boolean isTheQuadFirst);
Standard_EXPORT void UpdateTolReached();
//! Fill data structure for intersection approximation.
Standard_EXPORT void fillData(const Handle(BRepApprox_ApproxLine)& theLine,
const Standard_Boolean theApproxXYZ,
const Standard_Boolean theApproxU1V1,
const Standard_Boolean theApproxU2V2);
Standard_EXPORT void fillData(const Handle(BRepApprox_ApproxLine)& theLine);
//! Prepare data structure for further computations.
Standard_EXPORT void prepareDS(const Standard_Boolean theApproxXYZ,
@ -141,19 +139,15 @@ private:
BRepApprox_TheComputeLineOfApprox myComputeLine;
BRepApprox_TheComputeLineBezierOfApprox myComputeLineBezier;
Approx_MCurvesToBSpCurve myBezToBSpl;
Standard_Boolean myTolReached;
Standard_Boolean myWithTangency;
Standard_Real myTol3d;
Standard_Real myTol2d;
Standard_Boolean myRelativeTol;
Standard_Integer myDegMin;
Standard_Integer myDegMax;
Standard_Integer myNbPntMax;
Standard_Integer myNbIterMax;
Standard_Real myTolReached3d;
Standard_Real myTolReached2d;
Approx_Data myData;
Standard_Real myUVRes1, myUVRes2;
NCollection_Vector<Standard_Integer> myKnots;
};

View File

@ -116,15 +116,12 @@ public:
Standard_EXPORT const AppParCurves_MultiBSpCurve& SplineValue();
//! returns the type of parametrization
Standard_EXPORT void Parametrization (Approx_ParametrizationType& partype) const;
Standard_EXPORT Approx_ParametrizationType Parametrization () const;
//! returns the new parameters of the approximation
//! corresponding to the points of the multicurve <Index>.
Standard_EXPORT const TColStd_Array1OfReal& Parameters (const Standard_Integer Index = 1) const;
protected:

View File

@ -40,56 +40,71 @@ class BRepApprox_TheMultiLineOfApprox
public:
DEFINE_STANDARD_ALLOC
//! The class SvSurfaces is used when the
//! approximation algorithm needs some extra points on
//! the line <line>. A New line is then created which
//! shares the same surfaces and functions.
//!
//! SvSurfaces is a deferred class which allows
//! several implementations of this algorithm with
//! different surfaces (bi-parametric ones, or
//! The class SvSurfaces is used when the approximation algorithm
//! needs some extra points on the line <line>.
//! A New line is then created which shares the same surfaces and functions.
//! SvSurfaces is a deferred class which allows several implementations of
//! this algorithm with different surfaces (bi-parametric ones, or
//! implicit and biparametric ones)
Standard_EXPORT BRepApprox_TheMultiLineOfApprox(const Handle(BRepApprox_ApproxLine)& line, const Standard_Address PtrSvSurfaces, const Standard_Integer NbP3d, const Standard_Integer NbP2d, const Standard_Real xo, const Standard_Real ax, const Standard_Real yo, const Standard_Real ay, const Standard_Real zo, const Standard_Real az, const Standard_Real u1o, const Standard_Real a1u, const Standard_Real v1o, const Standard_Real a1v, const Standard_Real u2o, const Standard_Real a2u, const Standard_Real v2o, const Standard_Real a2v, const Standard_Boolean P2DOnFirst, const Standard_Integer IndMin = 0, const Standard_Integer IndMax = 0);
Standard_EXPORT BRepApprox_TheMultiLineOfApprox(const Handle(BRepApprox_ApproxLine)& line,
const Standard_Address PtrSvSurfaces,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin = 0,
const Standard_Integer IndMax = 0);
//! No Extra points will be added on the current line
Standard_EXPORT BRepApprox_TheMultiLineOfApprox(const Handle(BRepApprox_ApproxLine)& line, const Standard_Integer NbP3d, const Standard_Integer NbP2d, const Standard_Real xo, const Standard_Real ax, const Standard_Real yo, const Standard_Real ay, const Standard_Real zo, const Standard_Real az, const Standard_Real u1o, const Standard_Real a1u, const Standard_Real v1o, const Standard_Real a1v, const Standard_Real u2o, const Standard_Real a2u, const Standard_Real v2o, const Standard_Real a2v, const Standard_Boolean P2DOnFirst, const Standard_Integer IndMin = 0, const Standard_Integer IndMax = 0);
Standard_EXPORT BRepApprox_TheMultiLineOfApprox(const Handle(BRepApprox_ApproxLine)& line,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin = 0,
const Standard_Integer IndMax = 0);
Standard_EXPORT Standard_Integer FirstPoint() const;
Standard_EXPORT Standard_Integer LastPoint() const;
//! Returns the number of 2d points of a TheLine.
Standard_EXPORT Standard_Integer NbP2d() const;
//! Returns the number of 3d points of a TheLine.
Standard_EXPORT Standard_Integer NbP3d() const;
Standard_EXPORT Approx_Status WhatStatus() const;
//! returns the 3d points of the multipoint <MPointIndex>
//! when only 3d points exist.
//! Returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt& tabPt) const;
//! returns the 2d points of the multipoint <MPointIndex>
//! when only 2d points exist.
//! Returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt2d& tabPt2d) const;
//! returns the 3d and 2d points of the multipoint
//! <MPointIndex>.
//! Returns the 3d and 2d points of the multipoint <MPointIndex>.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt& tabPt, TColgp_Array1OfPnt2d& tabPt2d) const;
//! returns the 3d points of the multipoint <MPointIndex>
//! when only 3d points exist.
//! Returns the 3d tangency points of the multipoint <MPointIndex> only when 3d points exist.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec& tabV) const;
//! returns the 2d tangency points of the multipoint
//! <MPointIndex> only when 2d points exist.
//! Returns the 2d tangency points of the multipoint <MPointIndex> only when 2d points exist.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec2d& tabV2d) const;
//! returns the 3d and 2d points of the multipoint
//! <MPointIndex>.
//! Returns the 3d and 2d points of the multipoint <MPointIndex>.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec& tabV, TColgp_Array1OfVec2d& tabV2d) const;
Standard_EXPORT BRepApprox_TheMultiLineOfApprox MakeMLBetween (const Standard_Integer Low, const Standard_Integer High, const Standard_Integer NbPointsToInsert) const;
@ -97,48 +112,25 @@ public:
//! Dump of the current multi-line.
Standard_EXPORT void Dump() const;
protected:
BRepApprox_TheMultiLineOfApprox operator=(BRepApprox_TheMultiLineOfApprox&);
private:
Standard_Address PtrOnmySvSurfaces;
Handle(BRepApprox_ApproxLine) myLine;
Standard_Integer indicemin;
Standard_Integer indicemax;
Standard_Integer nbp3d;
Standard_Integer nbp2d;
Standard_Boolean p2donfirst;
Standard_Real Xo;
Standard_Real Ax;
Standard_Real Yo;
Standard_Real Ay;
Standard_Real Zo;
Standard_Real Az;
Standard_Real U1o;
Standard_Real A1u;
Standard_Real V1o;
Standard_Real A1v;
Standard_Real U2o;
Standard_Real A2u;
Standard_Real V2o;
Standard_Real A2v;
const Standard_Address PtrOnmySvSurfaces;
const Handle(BRepApprox_ApproxLine) myLine;
const Standard_Integer indicemin;
const Standard_Integer indicemax;
const Standard_Integer nbp3d;
const Standard_Integer nbp2d;
const Standard_Boolean p2donfirst;
const Standard_Real Xo;
const Standard_Real Yo;
const Standard_Real Zo;
const Standard_Real U1o;
const Standard_Real V1o;
const Standard_Real U2o;
const Standard_Real V2o;
};
#endif // _BRepApprox_TheMultiLineOfApprox_HeaderFile

View File

@ -1259,7 +1259,20 @@ void BRepLib::SameParameter(const TopoDS_Edge& AnEdge,
else GCurve->PCurve2(curPC);
}
}
else IsSameP = 0;
else
{
//Approx_SameParameter has failed.
//Consequently, the situation might be,
//when 3D and 2D-curve do not have same-range.
GeomLib::SameRange( Tol2d, PC[i],
GCurve->First(), GCurve->Last(),
f3d,l3d,curPC);
if (i == 0) GCurve->PCurve(curPC);
else GCurve->PCurve2(curPC);
IsSameP = 0;
}
}
else IsSameP = 0;

View File

@ -31,6 +31,8 @@
#include <math_Matrix.hxx>
static const Standard_Integer aGlobalMaxDegree = 25;
//=======================================================================
//struct : BSplCLib_DataContainer
//purpose: Auxiliary structure providing buffers for poles and knots used in
@ -43,7 +45,7 @@ struct BSplCLib_DataContainer
{
(void)Degree; // avoid compiler warning
Standard_OutOfRange_Raise_if (Degree > BSplCLib::MaxDegree() ||
BSplCLib::MaxDegree() > 25,
BSplCLib::MaxDegree() > aGlobalMaxDegree,
"BSplCLib: bspline degree is greater than maximum supported");
}
@ -324,7 +326,7 @@ BSplCLib::BuildBSpMatrix(const TColStd_Array1OfReal& Parameters,
ReturnCode = 0,
FirstNonZeroBsplineIndex,
BandWidth,
MaxOrder = 21,
MaxOrder = aGlobalMaxDegree+1,
Order ;
math_Matrix BSplineBasis(1, MaxOrder,

View File

@ -3039,8 +3039,6 @@ Standard_Boolean ChFi3d_ComputeCurves(const Handle(Adaptor3d_HSurface)& S1,
Standard_Real& tolreached,
const Standard_Boolean wholeCurv)
{
Standard_Real Step = 0.1;
gp_Pnt pdeb1 = S1->Value(Pardeb(1),Pardeb(2));
gp_Pnt pfin1 = S1->Value(Parfin(1),Parfin(2));
gp_Pnt pdeb2 = S2->Value(Pardeb(3),Pardeb(4));
@ -3267,7 +3265,8 @@ Standard_Boolean ChFi3d_ComputeCurves(const Handle(Adaptor3d_HSurface)& S1,
else Ul = Uok;
}
else { // both projected, but where?
if (Uf == Ul) continue;
if (Abs(Uf - Ul) < Precision::PConfusion())
continue;
}
ptestdeb = C3d->Value(Uf);
ptestfin = C3d->Value(Ul);
@ -3323,7 +3322,8 @@ Standard_Boolean ChFi3d_ComputeCurves(const Handle(Adaptor3d_HSurface)& S1,
// At this stage :
// classic intersections have failed, the path is approached in vain.
// Standard_Real Step = 0.1;
Standard_Real Step = 0.1;
for(;;) {
//Attention the parameters of arrow for the path and
//the tolerance for the approximation can't be taken as those of the
@ -3451,8 +3451,12 @@ Standard_Boolean ChFi3d_ComputeCurves(const Handle(Adaptor3d_HSurface)& S1,
//
Handle(IntPatch_WLine) WL = new IntPatch_WLine(L2S,Standard_False);
#ifdef OCCT_DEBUG
//WL->Dump(0);
#endif
GeomInt_WLApprox approx;
approx.SetParameters(tolap,tol2d,4,8,0,1);
approx.SetParameters(tolap, tol2d, 4, 8, 0, 30, Standard_True);
// manage here the approximations that are not useful on planes!
approx.Perform(S1,S2,WL,
Standard_True,Standard_True,Standard_True,

View File

@ -946,13 +946,14 @@ void Draft_Modification::Perform ()
return;
}
Standard_Real Dist2, Dist2Min = 0., Glob2Min = RealLast();
Standard_Real Glob2Min = RealLast();
GeomAdaptor_Curve TheCurve;
Standard_Integer i,j; //,jmin;
if (i2s.Line(1)->DynamicType() != STANDARD_TYPE(Geom_BSplineCurve))
{
Standard_Real Dist2Min = RealLast();
imin = 0;
for (i=1; i<= i2s.NbLines(); i++) {
TheCurve.Load(i2s.Line(i));
@ -1041,7 +1042,7 @@ void Draft_Modification::Perform ()
Dist2Min = myExtPC.SquareDistance(1);
locpmin = myExtPC.Point(1).Parameter();
for (j=2; j<=myExtPC.NbExt(); j++) {
Dist2 = myExtPC.SquareDistance(j);
const Standard_Real Dist2 = myExtPC.SquareDistance(j);
if (Dist2 < Dist2Min) {
Dist2Min = Dist2;
locpmin = myExtPC.Point(j).Parameter();
@ -1142,15 +1143,15 @@ void Draft_Modification::Perform ()
Handle( Geom_Curve ) FirstCurve;
if (Candidates.Length() > 1)
{
Dist2Min = RealLast();
Standard_Real DistMin = Precision::Infinite();
for (i = 1; i <= Candidates.Length(); i++)
{
Handle( Geom_Curve ) aCurve = Candidates(i);
gp_Pnt Pnt = aCurve->Value( aCurve->FirstParameter() );
Dist2 = Pnt.SquareDistance( pfv );
if (Dist2 < Dist2Min)
const Standard_Real Dist = Pnt.Distance( pfv );
if (Dist - DistMin < -Precision::Confusion())
{
Dist2Min = Dist2;
DistMin = Dist;
FirstCurve = aCurve;
}
}
@ -1210,12 +1211,12 @@ void Draft_Modification::Perform ()
TheCurve.Load( newC );
Extrema_ExtPC myExtPC( pfv, TheCurve );
Dist2Min = RealLast();
Standard_Real Dist2Min = RealLast();
for (i = 1; i <= myExtPC.NbExt(); i++)
{
if (myExtPC.IsMin(i))
{
Dist2 = myExtPC.SquareDistance(i);
const Standard_Real Dist2 = myExtPC.SquareDistance(i);
if (Dist2 < Dist2Min)
{
Dist2Min = Dist2;

View File

@ -40,6 +40,7 @@ class gp_Pnt2d;
class IntPatch_RLine;
class Bnd_Box2d;
class Adaptor3d_TopolTool;
class IntPatch_WLine;
@ -110,7 +111,9 @@ public:
//! of the source surface.
Standard_EXPORT static void TrimILineOnSurfBoundaries (const Handle(Geom2d_Curve)& theC2d1, const Handle(Geom2d_Curve)& theC2d2, const Bnd_Box2d& theBound1, const Bnd_Box2d& theBound2, GeomInt_VectorOfReal& theArrayOfParameters);
Standard_EXPORT static Handle(Geom_Curve) MakeBSpline (const Handle(IntPatch_WLine)& WL, const Standard_Integer ideb, const Standard_Integer ifin);
Standard_EXPORT static Handle(Geom2d_BSplineCurve) MakeBSpline2d(const Handle(IntPatch_WLine)& theWLine, const Standard_Integer ideb, const Standard_Integer ifin, const Standard_Boolean onFirst);
protected:

View File

@ -15,6 +15,7 @@
// commercial license or contractual agreement.
#include <IntPatch_Point.hxx>
#include <Geom_Surface.hxx>
//=======================================================================

File diff suppressed because it is too large Load Diff

View File

@ -14,15 +14,250 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <vector>
#include <GeomInt_LineTool.hxx>
#include <Extrema_ExtPS.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <Geom_Surface.hxx>
#include <IntPatch_ALine.hxx>
#include <IntPatch_GLine.hxx>
#include <IntPatch_Line.hxx>
#include <IntPatch_Point.hxx>
#include <IntPatch_RLine.hxx>
#include <IntPatch_WLine.hxx>
#include <Precision.hxx>
#include <NCollection_IncAllocator.hxx>
#include <NCollection_List.hxx>
#include <NCollection_LocalArray.hxx>
#include <NCollection_StdAllocator.hxx>
#include <TColStd_Array1OfListOfInteger.hxx>
class ProjectPointOnSurf
{
public:
ProjectPointOnSurf() : myIsDone (Standard_False),myIndex(0) {}
void Init(const Handle(Geom_Surface)& Surface,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real Vmin,
const Standard_Real Vsup);
void Init ();
void Perform(const gp_Pnt& P);
Standard_Boolean IsDone () const { return myIsDone; }
void LowerDistanceParameters(Standard_Real& U, Standard_Real& V ) const;
Standard_Real LowerDistance() const;
protected:
Standard_Boolean myIsDone;
Standard_Integer myIndex;
Extrema_ExtPS myExtPS;
GeomAdaptor_Surface myGeomAdaptor;
};
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void ProjectPointOnSurf::Init ( const Handle(Geom_Surface)& Surface,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real Vmin,
const Standard_Real Vsup )
{
const Standard_Real Tolerance = Precision::PConfusion();
//
myGeomAdaptor.Load(Surface, Umin,Usup,Vmin,Vsup);
myExtPS.Initialize(myGeomAdaptor, Umin, Usup, Vmin, Vsup, Tolerance, Tolerance);
myIsDone = Standard_False;
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void ProjectPointOnSurf::Init ()
{
myIsDone = myExtPS.IsDone() && (myExtPS.NbExt() > 0);
if (myIsDone) {
// evaluate the lower distance and its index;
Standard_Real Dist2Min = myExtPS.SquareDistance(1);
myIndex = 1;
for (Standard_Integer i = 2; i <= myExtPS.NbExt(); i++)
{
const Standard_Real Dist2 = myExtPS.SquareDistance(i);
if (Dist2 < Dist2Min) {
Dist2Min = Dist2;
myIndex = i;
}
}
}
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void ProjectPointOnSurf::Perform(const gp_Pnt& P)
{
myExtPS.Perform(P);
Init ();
}
//=======================================================================
//function : LowerDistanceParameters
//purpose :
//=======================================================================
void ProjectPointOnSurf::LowerDistanceParameters (Standard_Real& U,
Standard_Real& V ) const
{
StdFail_NotDone_Raise_if(!myIsDone, "GeomInt_IntSS::ProjectPointOnSurf::LowerDistanceParameters");
(myExtPS.Point(myIndex)).Parameter(U,V);
}
//=======================================================================
//function : LowerDistance
//purpose :
//=======================================================================
Standard_Real ProjectPointOnSurf::LowerDistance() const
{
StdFail_NotDone_Raise_if(!myIsDone, "GeomInt_IntSS::ProjectPointOnSurf::LowerDistance");
return sqrt(myExtPS.SquareDistance(myIndex));
}
//=======================================================================
//function : AdjustPeriodic
//purpose :
//=======================================================================
static Standard_Real AdjustPeriodic(const Standard_Real theParameter,
const Standard_Real parmin,
const Standard_Real parmax,
const Standard_Real thePeriod,
Standard_Real& theOffset)
{
Standard_Real aresult = theParameter;
theOffset = 0.;
while(aresult < parmin) {
aresult += thePeriod;
theOffset += thePeriod;
}
while(aresult > parmax) {
aresult -= thePeriod;
theOffset -= thePeriod;
}
return aresult;
}
//=======================================================================
//function : IsPointOnBoundary
//purpose :
//=======================================================================
static Standard_Boolean IsPointOnBoundary(const Standard_Real theParameter,
const Standard_Real theFirstBoundary,
const Standard_Real theSecondBoundary,
const Standard_Real theResolution,
Standard_Boolean& IsOnFirstBoundary)
{
IsOnFirstBoundary = Standard_True;
if(fabs(theParameter - theFirstBoundary) < theResolution)
return Standard_True;
if(fabs(theParameter - theSecondBoundary) < theResolution)
{
IsOnFirstBoundary = Standard_False;
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : FindPoint
//purpose :
//=======================================================================
static Standard_Boolean FindPoint(const gp_Pnt2d& theFirstPoint,
const gp_Pnt2d& theLastPoint,
const Standard_Real theUmin,
const Standard_Real theUmax,
const Standard_Real theVmin,
const Standard_Real theVmax,
gp_Pnt2d& theNewPoint)
{
gp_Vec2d aVec(theFirstPoint, theLastPoint);
Standard_Integer i = 0, j = 0;
for(i = 0; i < 4; i++) {
gp_Vec2d anOtherVec;
gp_Vec2d anOtherVecNormal;
gp_Pnt2d aprojpoint = theLastPoint;
if((i % 2) == 0) {
anOtherVec.SetX(0.);
anOtherVec.SetY(1.);
anOtherVecNormal.SetX(1.);
anOtherVecNormal.SetY(0.);
if(i < 2)
aprojpoint.SetX(theUmin);
else
aprojpoint.SetX(theUmax);
}
else {
anOtherVec.SetX(1.);
anOtherVec.SetY(0.);
anOtherVecNormal.SetX(0.);
anOtherVecNormal.SetY(1.);
if(i < 2)
aprojpoint.SetY(theVmin);
else
aprojpoint.SetY(theVmax);
}
gp_Vec2d anormvec = aVec;
anormvec.Normalize();
Standard_Real adot1 = anormvec.Dot(anOtherVecNormal);
if(fabs(adot1) < Precision::Angular())
continue;
Standard_Real adist = 0.;
if((i % 2) == 0) {
adist = (i < 2) ? fabs(theLastPoint.X() - theUmin) : fabs(theLastPoint.X() - theUmax);
}
else {
adist = (i < 2) ? fabs(theLastPoint.Y() - theVmin) : fabs(theLastPoint.Y() - theVmax);
}
Standard_Real anoffset = adist * anOtherVec.Dot(anormvec) / adot1;
for(j = 0; j < 2; j++) {
anoffset = (j == 0) ? anoffset : -anoffset;
gp_Pnt2d acurpoint(aprojpoint.XY() + (anOtherVec.XY()*anoffset));
gp_Vec2d acurvec(theLastPoint, acurpoint);
//
Standard_Real aDotX, anAngleX, aPC;
//
aDotX=aVec.Dot(acurvec);
anAngleX=aVec.Angle(acurvec);
aPC=Precision::PConfusion();
//
if(aDotX > 0. && fabs(anAngleX) < aPC) {
//
if((i % 2) == 0) {
if((acurpoint.Y() >= theVmin) &&
(acurpoint.Y() <= theVmax)) {
theNewPoint = acurpoint;
return Standard_True;
}
}
else {
if((acurpoint.X() >= theUmin) &&
(acurpoint.X() <= theUmax)) {
theNewPoint = acurpoint;
return Standard_True;
}
}
}
}
}
return Standard_False;
}
//=======================================================================
//function : NbVertex
@ -164,3 +399,600 @@ Standard_Real GeomInt_LineTool::LastParameter (const Handle(IntPatch_Line)& L)
}
return 0.0;
}
//=======================================================================
//function : DecompositionOfWLine
//purpose :
//=======================================================================
Standard_Boolean GeomInt_LineTool::
DecompositionOfWLine( const Handle(IntPatch_WLine)& theWLine,
const Handle(GeomAdaptor_HSurface)& theSurface1,
const Handle(GeomAdaptor_HSurface)& theSurface2,
const Standard_Real aTolSum,
const GeomInt_LineConstructor& theLConstructor,
IntPatch_SequenceOfLine& theNewLines)
{
typedef NCollection_List<Standard_Integer> ListOfInteger;
//have to use std::vector, not NCollection_Vector in order to use copy constructor of
//ListOfInteger which will be created with specific allocator instance
typedef std::vector<ListOfInteger, NCollection_StdAllocator<
ListOfInteger> > ArrayOfListOfInteger;
Standard_Boolean bIsPrevPointOnBoundary, bIsCurrentPointOnBoundary;
Standard_Integer nblines, aNbPnts, aNbParts, pit, i, j, aNbListOfPointIndex;
Standard_Real aTol, umin, umax, vmin, vmax;
//an inc allocator, it will contain wasted space (upon list's Clear()) but it should
//still be faster than the standard allocator, and wasted memory should not be
//significant and will be limited by time span of this function;
//this is a separate allocator from the anIncAlloc below what provides better data
//locality in the latter (by avoiding wastes which will only be in anIdxAlloc)
Handle(NCollection_IncAllocator) anIdxAlloc = new NCollection_IncAllocator();
ListOfInteger aListOfPointIndex (anIdxAlloc);
//GeomAPI_ProjectPointOnSurf aPrj1, aPrj2;
ProjectPointOnSurf aPrj1, aPrj2;
Handle(Geom_Surface) aSurf1, aSurf2;
//
aNbParts=theLConstructor.NbParts();
aNbPnts=theWLine->NbPnts();
//
if((!aNbPnts) || (!aNbParts)){
return Standard_False;
}
//
Handle(NCollection_IncAllocator) anIncAlloc = new NCollection_IncAllocator();
NCollection_StdAllocator<ListOfInteger> anAlloc (anIncAlloc);
const ListOfInteger aDummy (anIncAlloc); //empty list to be copy constructed from
ArrayOfListOfInteger anArrayOfLines (aNbPnts + 1, aDummy, anAlloc);
NCollection_LocalArray<Standard_Integer> anArrayOfLineTypeArr (aNbPnts + 1);
Standard_Integer* anArrayOfLineType = anArrayOfLineTypeArr;
//
nblines = 0;
aTol = Precision::Confusion();
//
aSurf1 = theSurface1->ChangeSurface().Surface();
aSurf1->Bounds(umin, umax, vmin, vmax);
aPrj1.Init(aSurf1, umin, umax, vmin, vmax);
//
aSurf2 = theSurface2->ChangeSurface().Surface();
aSurf2->Bounds(umin, umax, vmin, vmax);
aPrj2.Init(aSurf2, umin, umax, vmin, vmax);
//
//
bIsPrevPointOnBoundary=Standard_False;
for(pit=1; pit<=aNbPnts; pit++) {
const IntSurf_PntOn2S& aPoint = theWLine->Point(pit);
bIsCurrentPointOnBoundary=Standard_False;
//
// whether aPoint is on boundary or not
//
for(i=0; i<2; i++) {// exploration Surface 1,2
Handle(GeomAdaptor_HSurface) aGASurface = (!i) ? theSurface1 : theSurface2;
aGASurface->ChangeSurface().Surface()->Bounds(umin, umax, vmin, vmax);
//
for(j=0; j<2; j++) {// exploration of coordinate U,V
Standard_Boolean isperiodic;
//
isperiodic = (!j) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
if(!isperiodic) {
continue;
}
//
Standard_Real aResolution, aPeriod, alowerboundary, aupperboundary, U, V;
Standard_Real aParameter, anoffset, anAdjustPar;
Standard_Boolean bIsOnFirstBoundary, bIsPointOnBoundary;
//
aResolution = (!j) ? aGASurface->UResolution(aTol) : aGASurface->VResolution(aTol);
aPeriod = (!j) ? aGASurface->UPeriod() : aGASurface->VPeriod();
alowerboundary = (!j) ? umin : vmin;
aupperboundary = (!j) ? umax : vmax;
U=0.;V=0.;//?
//
if(!i){
aPoint.ParametersOnS1(U, V);
}
else{
aPoint.ParametersOnS2(U, V);
}
//
aParameter = (!j) ? U : V;
anoffset=0.;
anAdjustPar=AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
//
bIsOnFirstBoundary=Standard_True;
//
bIsPointOnBoundary=
IsPointOnBoundary(anAdjustPar, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary);
if(bIsPointOnBoundary) {
bIsCurrentPointOnBoundary = Standard_True;
break;
}
}// for(j=0; j<2; j++)
if(bIsCurrentPointOnBoundary){
break;
}
}// for(i=0; i<2; i++)
//
if((bIsCurrentPointOnBoundary != bIsPrevPointOnBoundary)) {
if(!aListOfPointIndex.IsEmpty()) {
nblines++;
anArrayOfLines[nblines] = aListOfPointIndex;
anArrayOfLineType[nblines] = bIsPrevPointOnBoundary;
aListOfPointIndex.Clear();
}
bIsPrevPointOnBoundary = bIsCurrentPointOnBoundary;
}
aListOfPointIndex.Append(pit);
} // for(pit=1; pit<=aNbPnts; pit++)
//
aNbListOfPointIndex=aListOfPointIndex.Extent();
if(aNbListOfPointIndex) {
nblines++;
anArrayOfLines[nblines].Assign (aListOfPointIndex);
anArrayOfLineType[nblines] = bIsPrevPointOnBoundary;
aListOfPointIndex.Clear();
}
//
if(nblines <= 1){
return Standard_False;
}
//
// Correct wlines.begin
Standard_Integer aLineType;
TColStd_Array1OfListOfInteger anArrayOfLineEnds(1, nblines);
Handle(IntSurf_LineOn2S) aSeqOfPntOn2S = new IntSurf_LineOn2S (new NCollection_IncAllocator());
//
for(i = 1; i <= nblines; i++) {
aLineType=anArrayOfLineType[i];
if(aLineType) {
continue;
}
//
const ListOfInteger& aListOfIndex = anArrayOfLines[i];
if(aListOfIndex.Extent() < 2) {
continue;
}
//
TColStd_ListOfInteger aListOfFLIndex;
Standard_Integer aneighbourindex, aLineTypeNeib;
//
for(j = 0; j < 2; j++) {// neighbour line choice
aneighbourindex = (!j) ? (i-1) : (i+1);
if((aneighbourindex < 1) || (aneighbourindex > nblines)){
continue;
}
//
aLineTypeNeib=anArrayOfLineType[aneighbourindex];
if(!aLineTypeNeib){
continue;
}
//
const ListOfInteger& aNeighbour = anArrayOfLines[aneighbourindex];
Standard_Integer anIndex = (!j) ? aNeighbour.Last() : aNeighbour.First();
const IntSurf_PntOn2S& aPoint = theWLine->Point(anIndex);
// check if need use derivative.begin .end [absence]
//
IntSurf_PntOn2S aNewP = aPoint;
Standard_Integer surfit, parit;
//
for(surfit = 0; surfit < 2; ++surfit) {
Handle(GeomAdaptor_HSurface) aGASurface = (!surfit) ? theSurface1 : theSurface2;
umin = aGASurface->FirstUParameter();
umax = aGASurface->LastUParameter();
vmin = aGASurface->FirstVParameter();
vmax = aGASurface->LastVParameter();
Standard_Real U=0., V=0.;
if(!surfit) {
aNewP.ParametersOnS1(U, V);
}
else {
aNewP.ParametersOnS2(U, V);
}
//
Standard_Integer nbboundaries = 0;
Standard_Integer bIsUBoundary = Standard_False; // use if nbboundaries == 1
Standard_Integer bIsFirstBoundary = Standard_False; // use if nbboundaries == 1
//
for(parit = 0; parit < 2; parit++) {
Standard_Boolean isperiodic = (!parit) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
Standard_Real aResolution = (!parit) ? aGASurface->UResolution(aTol) : aGASurface->VResolution(aTol);
Standard_Real alowerboundary = (!parit) ? umin : vmin;
Standard_Real aupperboundary = (!parit) ? umax : vmax;
Standard_Real aParameter = (!parit) ? U : V;
Standard_Boolean bIsOnFirstBoundary = Standard_True;
if(!isperiodic) {
if(IsPointOnBoundary(aParameter, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary)) {
bIsUBoundary = (!parit);
bIsFirstBoundary = bIsOnFirstBoundary;
nbboundaries++;
}
}
else {
Standard_Real aPeriod = (!parit) ? aGASurface->UPeriod() : aGASurface->VPeriod();
Standard_Real anoffset = 0.;
Standard_Real anAdjustPar = AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
if(IsPointOnBoundary(anAdjustPar, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary)) {
bIsUBoundary = (parit == 0);
bIsFirstBoundary = bIsOnFirstBoundary;
nbboundaries++;
}
}
}
//
Standard_Boolean bComputeLineEnd = Standard_False;
if(nbboundaries == 2) {
bComputeLineEnd = Standard_True;
}
else if(nbboundaries == 1) {
Standard_Boolean isperiodic = (bIsUBoundary) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
if(isperiodic) {
Standard_Real alowerboundary = (bIsUBoundary) ? umin : vmin;
Standard_Real aupperboundary = (bIsUBoundary) ? umax : vmax;
Standard_Real aPeriod = (bIsUBoundary) ? aGASurface->UPeriod() : aGASurface->VPeriod();
Standard_Real aParameter = (bIsUBoundary) ? U : V;
Standard_Real anoffset = 0.;
Standard_Real anAdjustPar = AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
Standard_Real adist = (bIsFirstBoundary) ? fabs(anAdjustPar - alowerboundary) : fabs(anAdjustPar - aupperboundary);
Standard_Real anotherPar = (bIsFirstBoundary) ? (aupperboundary - adist) : (alowerboundary + adist);
anotherPar += anoffset;
Standard_Integer aneighbourpointindex = (j == 0) ? aListOfIndex.First() : aListOfIndex.Last();
const IntSurf_PntOn2S& aNeighbourPoint = theWLine->Point(aneighbourpointindex);
Standard_Real nU1, nV1;
if(surfit == 0)
aNeighbourPoint.ParametersOnS1(nU1, nV1);
else
aNeighbourPoint.ParametersOnS2(nU1, nV1);
Standard_Real adist1 = (bIsUBoundary) ? fabs(nU1 - U) : fabs(nV1 - V);
Standard_Real adist2 = (bIsUBoundary) ? fabs(nU1 - anotherPar) : fabs(nV1 - anotherPar);
bComputeLineEnd = Standard_True;
Standard_Boolean bCheckAngle1 = Standard_False;
Standard_Boolean bCheckAngle2 = Standard_False;
gp_Vec2d aNewVec;
Standard_Real anewU = (bIsUBoundary) ? anotherPar : U;
Standard_Real anewV = (bIsUBoundary) ? V : anotherPar;
//
if(((adist1 - adist2) > Precision::PConfusion()) &&
(adist2 < (aPeriod / 4.))) {
bCheckAngle1 = Standard_True;
aNewVec = gp_Vec2d(gp_Pnt2d(nU1, nV1), gp_Pnt2d(anewU, anewV));
if(aNewVec.SquareMagnitude() < (gp::Resolution() * gp::Resolution())) {
aNewP.SetValue((surfit == 0), anewU, anewV);
bCheckAngle1 = Standard_False;
}
}
else if(adist1 < (aPeriod / 4.)) {
bCheckAngle2 = Standard_True;
aNewVec = gp_Vec2d(gp_Pnt2d(nU1, nV1), gp_Pnt2d(U, V));
if(aNewVec.SquareMagnitude() < (gp::Resolution() * gp::Resolution())) {
bCheckAngle2 = Standard_False;
}
}
//
if(bCheckAngle1 || bCheckAngle2) {
// assume there are at least two points in line (see "if" above)
Standard_Integer anindexother = aneighbourpointindex;
while((anindexother <= aListOfIndex.Last()) && (anindexother >= aListOfIndex.First())) {
anindexother = (j == 0) ? (anindexother + 1) : (anindexother - 1);
const IntSurf_PntOn2S& aPrevNeighbourPoint = theWLine->Point(anindexother);
Standard_Real nU2, nV2;
if(surfit == 0)
aPrevNeighbourPoint.ParametersOnS1(nU2, nV2);
else
aPrevNeighbourPoint.ParametersOnS2(nU2, nV2);
gp_Vec2d aVecOld(gp_Pnt2d(nU2, nV2), gp_Pnt2d(nU1, nV1));
if(aVecOld.SquareMagnitude() <= (gp::Resolution() * gp::Resolution())) {
continue;
}
else {
Standard_Real anAngle = aNewVec.Angle(aVecOld);
if((fabs(anAngle) < (M_PI * 0.25)) && (aNewVec.Dot(aVecOld) > 0.)) {
if(bCheckAngle1) {
Standard_Real U1, U2, V1, V2;
IntSurf_PntOn2S atmppoint = aNewP;
atmppoint.SetValue((surfit == 0), anewU, anewV);
atmppoint.Parameters(U1, V1, U2, V2);
gp_Pnt P1 = theSurface1->Value(U1, V1);
gp_Pnt P2 = theSurface2->Value(U2, V2);
gp_Pnt P0 = aPoint.Value();
if(P0.IsEqual(P1, aTol) &&
P0.IsEqual(P2, aTol) &&
P1.IsEqual(P2, aTol)) {
bComputeLineEnd = Standard_False;
aNewP.SetValue((surfit == 0), anewU, anewV);
}
}
if(bCheckAngle2) {
bComputeLineEnd = Standard_False;
}
}
break;
}
} // end while(anindexother...)
}
}
}
//
if(bComputeLineEnd) {
Standard_Integer aneighbourpointindex1 = (j == 0) ? aListOfIndex.First() : aListOfIndex.Last();
const IntSurf_PntOn2S& aNeighbourPoint = theWLine->Point(aneighbourpointindex1);
Standard_Real nU1, nV1;
if(surfit == 0)
aNeighbourPoint.ParametersOnS1(nU1, nV1);
else
aNeighbourPoint.ParametersOnS2(nU1, nV1);
gp_Pnt2d ap1(nU1, nV1);
gp_Pnt2d ap2(nU1, nV1);
Standard_Integer aneighbourpointindex2 = aneighbourpointindex1;
while((aneighbourpointindex2 <= aListOfIndex.Last()) && (aneighbourpointindex2 >= aListOfIndex.First())) {
aneighbourpointindex2 = (j == 0) ? (aneighbourpointindex2 + 1) : (aneighbourpointindex2 - 1);
const IntSurf_PntOn2S& aPrevNeighbourPoint = theWLine->Point(aneighbourpointindex2);
Standard_Real nU2, nV2;
if(surfit == 0)
aPrevNeighbourPoint.ParametersOnS1(nU2, nV2);
else
aPrevNeighbourPoint.ParametersOnS2(nU2, nV2);
ap2.SetX(nU2);
ap2.SetY(nV2);
if(ap1.SquareDistance(ap2) > (gp::Resolution() * gp::Resolution())) {
break;
}
}
gp_Pnt2d anewpoint;
Standard_Boolean found = FindPoint(ap2, ap1, umin, umax, vmin, vmax, anewpoint);
if(found) {
// check point
Standard_Real aCriteria =aTolSum;// BRep_Tool::Tolerance(theFace1) + BRep_Tool::Tolerance(theFace2);
//GeomAPI_ProjectPointOnSurf& aProjector = (surfit == 0) ? aPrj2 : aPrj1;
ProjectPointOnSurf& aProjector = (surfit == 0) ? aPrj2 : aPrj1;
Handle(GeomAdaptor_HSurface) aSurface = (surfit == 0) ? theSurface1 : theSurface2;
gp_Pnt aP3d = aSurface->Value(anewpoint.X(), anewpoint.Y());
aProjector.Perform(aP3d);
if(aProjector.IsDone()) {
if(aProjector.LowerDistance() < aCriteria) {
Standard_Real foundU = U, foundV = V;
aProjector.LowerDistanceParameters(foundU, foundV);
if(surfit == 0)
aNewP.SetValue(aP3d, anewpoint.X(), anewpoint.Y(), foundU, foundV);
else
aNewP.SetValue(aP3d, foundU, foundV, anewpoint.X(), anewpoint.Y());
}
}
}
}
}
aSeqOfPntOn2S->Add(aNewP);
aListOfFLIndex.Append(aSeqOfPntOn2S->NbPoints());
}
anArrayOfLineEnds.SetValue(i, aListOfFLIndex);
}
// Correct wlines.end
// Split wlines.begin
for(j = 1; j <= theLConstructor.NbParts(); j++) {
Standard_Real fprm = 0., lprm = 0.;
theLConstructor.Part(j, fprm, lprm);
Standard_Integer ifprm = (Standard_Integer)fprm;
Standard_Integer ilprm = (Standard_Integer)lprm;
//
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
//
for(i = 1; i <= nblines; i++) {
if(anArrayOfLineType[i] != 0) {
continue;
}
const ListOfInteger& aListOfIndex = anArrayOfLines[i];
if(aListOfIndex.Extent() < 2) {
continue;
}
const TColStd_ListOfInteger& aListOfFLIndex = anArrayOfLineEnds.Value(i);
Standard_Boolean bhasfirstpoint = (aListOfFLIndex.Extent() == 2);
Standard_Boolean bhaslastpoint = (aListOfFLIndex.Extent() == 2);
if(!bhasfirstpoint && !aListOfFLIndex.IsEmpty()) {
bhasfirstpoint = (i != 1);
}
if(!bhaslastpoint && !aListOfFLIndex.IsEmpty()) {
bhaslastpoint = (i != nblines);
}
Standard_Boolean bIsFirstInside = ((ifprm >= aListOfIndex.First()) && (ifprm <= aListOfIndex.Last()));
Standard_Boolean bIsLastInside = ((ilprm >= aListOfIndex.First()) && (ilprm <= aListOfIndex.Last()));
if(!bIsFirstInside && !bIsLastInside) {
if((ifprm < aListOfIndex.First()) && (ilprm > aListOfIndex.Last())) {
// append whole line, and boundaries if neccesary
if(bhasfirstpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.First());
aLineOn2S->Add(aP);
}
ListOfInteger::Iterator anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
if(bhaslastpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.Last());
aLineOn2S->Add(aP);
}
// check end of split line (end is almost always)
Standard_Integer aneighbour = i + 1;
Standard_Boolean bIsEndOfLine = Standard_True;
if(aneighbour <= nblines) {
const ListOfInteger& aListOfNeighbourIndex = anArrayOfLines[aneighbour];
if((anArrayOfLineType[aneighbour] != 0) &&
(aListOfNeighbourIndex.IsEmpty())) {
bIsEndOfLine = Standard_False;
}
}
if(bIsEndOfLine) {
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
aLineOn2S = new IntSurf_LineOn2S();
}
}
continue;
}
// end if(!bIsFirstInside && !bIsLastInside)
if(bIsFirstInside && bIsLastInside) {
// append inside points between ifprm and ilprm
ListOfInteger::Iterator anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if((anIt.Value() < ifprm) || (anIt.Value() > ilprm))
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
}
else {
if(bIsFirstInside) {
// append points from ifprm to last point + boundary point
ListOfInteger::Iterator anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if(anIt.Value() < ifprm)
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
if(bhaslastpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.Last());
aLineOn2S->Add(aP);
}
// check end of split line (end is almost always)
Standard_Integer aneighbour = i + 1;
Standard_Boolean bIsEndOfLine = Standard_True;
if(aneighbour <= nblines) {
const ListOfInteger& aListOfNeighbourIndex = anArrayOfLines[aneighbour];
if((anArrayOfLineType[aneighbour] != 0) &&
(aListOfNeighbourIndex.IsEmpty())) {
bIsEndOfLine = Standard_False;
}
}
if(bIsEndOfLine) {
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
aLineOn2S = new IntSurf_LineOn2S();
}
}
// end if(bIsFirstInside)
if(bIsLastInside) {
// append points from first boundary point to ilprm
if(bhasfirstpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.First());
aLineOn2S->Add(aP);
}
ListOfInteger::Iterator anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if(anIt.Value() > ilprm)
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
}
//end if(bIsLastInside)
}
}
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
}
// Split wlines.end
//
// cda002/I3
Standard_Real fprm, lprm;
Standard_Integer ifprm, ilprm, aNbPoints, aIndex;
//
aNbParts=theLConstructor.NbParts();
//
for(j = 1; j <= aNbParts; j++) {
theLConstructor.Part(j, fprm, lprm);
ifprm=(Standard_Integer)fprm;
ilprm=(Standard_Integer)lprm;
//
if ((ilprm-ifprm)==1) {
for(i = 1; i <= nblines; i++) {
aLineType=anArrayOfLineType[i];
if(aLineType) {
continue;
}
//
const ListOfInteger& aListOfIndex = anArrayOfLines[i];
aNbPoints=aListOfIndex.Extent();
if(aNbPoints==1) {
aIndex=aListOfIndex.First();
if (aIndex==ifprm || aIndex==ilprm) {
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
const IntSurf_PntOn2S& aP1 = theWLine->Point(ifprm);
const IntSurf_PntOn2S& aP2 = theWLine->Point(ilprm);
aLineOn2S->Add(aP1);
aLineOn2S->Add(aP2);
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
}
}
}
}
//
return Standard_True;
}

View File

@ -23,9 +23,12 @@
#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <GeomInt_LineConstructor.hxx>
#include <IntPatch_SequenceOfLine.hxx>
class IntPatch_Line;
class IntPatch_Point;
class IntPatch_WLine;
class GeomAdaptor_HSurface;
class GeomInt_LineTool
@ -43,7 +46,13 @@ public:
Standard_EXPORT static Standard_Real LastParameter (const Handle(IntPatch_Line)& L);
Standard_EXPORT static Standard_Boolean
DecompositionOfWLine( const Handle(IntPatch_WLine)& theWLine,
const Handle(GeomAdaptor_HSurface)& theSurface1,
const Handle(GeomAdaptor_HSurface)& theSurface2,
const Standard_Real aTolSum,
const GeomInt_LineConstructor& theLConstructor,
IntPatch_SequenceOfLine& theNewLines);
protected:

View File

@ -116,8 +116,8 @@ public:
Standard_EXPORT const AppParCurves_MultiBSpCurve& SplineValue();
//! returns the type of parametrization
Standard_EXPORT void Parametrization (Approx_ParametrizationType& partype) const;
Standard_EXPORT Approx_ParametrizationType Parametrization () const;
//! returns the new parameters of the approximation
//! corresponding to the points of the multicurve <Index>.
Standard_EXPORT const TColStd_Array1OfReal& Parameters (const Standard_Integer Index = 1) const;

View File

@ -41,55 +41,75 @@ public:
DEFINE_STANDARD_ALLOC
//! The class SvSurfaces is used when the
//! approximation algorithm needs some extra points on
//! the line <line>. A New line is then created which
//! shares the same surfaces and functions.
//!
//! SvSurfaces is a deferred class which allows
//! several implementations of this algorithm with
//! different surfaces (bi-parametric ones, or
//! The class SvSurfaces is used when the approximation algorithm
//! needs some extra points on the line <line>.
//! A New line is then created which shares the same surfaces and functions.
//! SvSurfaces is a deferred class which allows several implementations of
//! this algorithm with different surfaces (bi-parametric ones, or
//! implicit and biparametric ones)
Standard_EXPORT GeomInt_TheMultiLineOfWLApprox(const Handle(IntPatch_WLine)& line, const Standard_Address PtrSvSurfaces, const Standard_Integer NbP3d, const Standard_Integer NbP2d, const Standard_Real xo, const Standard_Real ax, const Standard_Real yo, const Standard_Real ay, const Standard_Real zo, const Standard_Real az, const Standard_Real u1o, const Standard_Real a1u, const Standard_Real v1o, const Standard_Real a1v, const Standard_Real u2o, const Standard_Real a2u, const Standard_Real v2o, const Standard_Real a2v, const Standard_Boolean P2DOnFirst, const Standard_Integer IndMin = 0, const Standard_Integer IndMax = 0);
Standard_EXPORT GeomInt_TheMultiLineOfWLApprox( const Handle(IntPatch_WLine)& line,
const Standard_Address PtrSvSurfaces,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin = 0,
const Standard_Integer IndMax = 0);
//! No Extra points will be added on the current line
Standard_EXPORT GeomInt_TheMultiLineOfWLApprox(const Handle(IntPatch_WLine)& line, const Standard_Integer NbP3d, const Standard_Integer NbP2d, const Standard_Real xo, const Standard_Real ax, const Standard_Real yo, const Standard_Real ay, const Standard_Real zo, const Standard_Real az, const Standard_Real u1o, const Standard_Real a1u, const Standard_Real v1o, const Standard_Real a1v, const Standard_Real u2o, const Standard_Real a2u, const Standard_Real v2o, const Standard_Real a2v, const Standard_Boolean P2DOnFirst, const Standard_Integer IndMin = 0, const Standard_Integer IndMax = 0);
Standard_EXPORT GeomInt_TheMultiLineOfWLApprox( const Handle(IntPatch_WLine)& line,
const Standard_Integer NbP3d,
const Standard_Integer NbP2d,
const Standard_Real xo,
const Standard_Real yo,
const Standard_Real zo,
const Standard_Real u1o,
const Standard_Real v1o,
const Standard_Real u2o,
const Standard_Real v2o,
const Standard_Boolean P2DOnFirst,
const Standard_Integer IndMin = 0,
const Standard_Integer IndMax = 0);
Standard_EXPORT Standard_Integer FirstPoint() const;
Standard_EXPORT Standard_Integer LastPoint() const;
//! Returns the number of 2d points of a TheLine.
Standard_EXPORT Standard_Integer NbP2d() const;
//! Returns the number of 3d points of a TheLine.
Standard_EXPORT Standard_Integer NbP3d() const;
Standard_EXPORT Approx_Status WhatStatus() const;
//! returns the 3d points of the multipoint <MPointIndex>
//! when only 3d points exist.
//! Returns the 3d points of the multipoint <MPointIndex> when only 3d points exist.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt& tabPt) const;
//! returns the 2d points of the multipoint <MPointIndex>
//! when only 2d points exist.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt2d& tabPt2d) const;
//! returns the 3d and 2d points of the multipoint
//! <MPointIndex>.
//! Returns the 2d points of the multipoint <MPointIndex> when only 2d points exist.
Standard_EXPORT void Value (const Standard_Integer MPointIndex,
TColgp_Array1OfPnt2d& tabPt2d) const;
//! returns the 3d and 2d points of the multipoint <MPointIndex>.
Standard_EXPORT void Value (const Standard_Integer MPointIndex, TColgp_Array1OfPnt& tabPt, TColgp_Array1OfPnt2d& tabPt2d) const;
//! returns the 3d points of the multipoint <MPointIndex>
//! when only 3d points exist.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec& tabV) const;
//! Returns the 3d tangency points of the multipoint <MPointIndex> only
//! when 3d points exist.
Standard_EXPORT Standard_Boolean Tangency ( const Standard_Integer MPointIndex,
TColgp_Array1OfVec& tabV) const;
//! returns the 2d tangency points of the multipoint
//! <MPointIndex> only when 2d points exist.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec2d& tabV2d) const;
//! Returns the 2d tangency points of the multipoint <MPointIndex> only
//! when 2d points exist.
Standard_EXPORT Standard_Boolean Tangency ( const Standard_Integer MPointIndex,
TColgp_Array1OfVec2d& tabV2d) const;
//! returns the 3d and 2d points of the multipoint
//! <MPointIndex>.
//! Returns the 3d and 2d points of the multipoint <MPointIndex>.
Standard_EXPORT Standard_Boolean Tangency (const Standard_Integer MPointIndex, TColgp_Array1OfVec& tabV, TColgp_Array1OfVec2d& tabV2d) const;
Standard_EXPORT GeomInt_TheMultiLineOfWLApprox MakeMLBetween (const Standard_Integer Low, const Standard_Integer High, const Standard_Integer NbPointsToInsert) const;
@ -101,44 +121,25 @@ public:
protected:
GeomInt_TheMultiLineOfWLApprox operator=(GeomInt_TheMultiLineOfWLApprox&);
private:
Standard_Address PtrOnmySvSurfaces;
Handle(IntPatch_WLine) myLine;
Standard_Integer indicemin;
Standard_Integer indicemax;
Standard_Integer nbp3d;
Standard_Integer nbp2d;
Standard_Boolean p2donfirst;
Standard_Real Xo;
Standard_Real Ax;
Standard_Real Yo;
Standard_Real Ay;
Standard_Real Zo;
Standard_Real Az;
Standard_Real U1o;
Standard_Real A1u;
Standard_Real V1o;
Standard_Real A1v;
Standard_Real U2o;
Standard_Real A2u;
Standard_Real V2o;
Standard_Real A2v;
const Standard_Address PtrOnmySvSurfaces;
const Handle(IntPatch_WLine) myLine;
const Standard_Integer indicemin;
const Standard_Integer indicemax;
const Standard_Integer nbp3d;
const Standard_Integer nbp2d;
const Standard_Boolean p2donfirst;
const Standard_Real Xo;
const Standard_Real Yo;
const Standard_Real Zo;
const Standard_Real U1o;
const Standard_Real V1o;
const Standard_Real U2o;
const Standard_Real V2o;
};
#endif // _GeomInt_TheMultiLineOfWLApprox_HeaderFile

View File

@ -51,19 +51,22 @@ class AppParCurves_MultiBSpCurve;
struct Approx_Data
{
Approx_Data()
Approx_Data() : myBezierApprox(Standard_True),
Xo(0.0), Yo(0.0), Zo(0.0),
U1o(0.0), V1o(0.0), U2o(0.0), V2o(0.0),
ApproxXYZ(Standard_True),
ApproxU1V1(Standard_True),
ApproxU2V2(Standard_True),
indicemin(0), indicemax(0),
myNbPntMax(30), parametrization(Approx_ChordLength)
{
myMinFactorXYZ = 0.0;
myMinFactorUV = 0.0;
}
Standard_Boolean myBezierApprox;
Standard_Real Xo, Ax, Yo, Ay, Zo, Az,
U1o, A1u, V1o, A1v, U2o, A2u, V2o, A2v;
Standard_Real Xo, Yo, Zo, U1o, V1o, U2o, V2o;
Standard_Boolean ApproxXYZ, ApproxU1V1, ApproxU2V2;
Standard_Integer indicemin, indicemax, nbpntmax;
Standard_Integer indicemin, indicemax, myNbPntMax;
Approx_ParametrizationType parametrization;
Standard_Real myMinFactorXYZ, myMinFactorUV;
};
@ -80,10 +83,15 @@ public:
Standard_EXPORT void Perform (const Handle(IntPatch_WLine)& aLine, const Standard_Boolean ApproxXYZ = Standard_True, const Standard_Boolean ApproxU1V1 = Standard_True, const Standard_Boolean ApproxU2V2 = Standard_True, const Standard_Integer indicemin = 0, const Standard_Integer indicemax = 0);
Standard_EXPORT void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d, const Standard_Integer DegMin, const Standard_Integer DegMax, const Standard_Integer NbIterMax, const Standard_Boolean ApproxWithTangency = Standard_True, const Approx_ParametrizationType Parametrization = Approx_ChordLength);
Standard_EXPORT void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d, const Standard_Boolean RelativeTol, const Standard_Integer DegMin, const Standard_Integer DegMax, const Standard_Integer NbIterMax, const Standard_Integer NbPntMax, const Standard_Boolean ApproxWithTangency = Standard_True, const Approx_ParametrizationType Parametrization = Approx_ChordLength);
Standard_EXPORT
void SetParameters (const Standard_Real Tol3d, const Standard_Real Tol2d,
const Standard_Integer DegMin,
const Standard_Integer DegMax,
const Standard_Integer NbIterMax,
const Standard_Integer NbPntMax = 30,
const Standard_Boolean ApproxWithTangency = Standard_True,
const Approx_ParametrizationType
Parametrization = Approx_ChordLength);
Standard_EXPORT void Perform();
Standard_EXPORT Standard_Real TolReached3d() const;
@ -106,22 +114,12 @@ protected:
private:
Standard_EXPORT Standard_Integer CorrectFinishIdx(const Standard_Integer theMinIdx,
const Standard_Integer theMaxIdx,
const Handle(IntPatch_WLine)& theline);
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& Surf1, const IntSurf_Quadric& Surf2, const Handle(IntPatch_WLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax);
Standard_EXPORT void Perform (const IntSurf_Quadric& Surf1, const Handle(Adaptor3d_HSurface)& Surf2, const Handle(IntPatch_WLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax);
Standard_EXPORT void Perform (const IntSurf_Quadric& Surf1, const Handle(Adaptor3d_HSurface)& Surf2, const Handle(IntPatch_WLine)& aLine, const Standard_Boolean ApproxXYZ, const Standard_Boolean ApproxU1V1, const Standard_Boolean ApproxU2V2, const Standard_Integer indicemin, const Standard_Integer indicemax, const Standard_Boolean isTheQuadFirst);
Standard_EXPORT void UpdateTolReached();
//! Fill data structure for intersection approximation.
Standard_EXPORT void fillData(const Handle(IntPatch_WLine)& theLine,
const Standard_Boolean theApproxXYZ,
const Standard_Boolean theApproxU1V1,
const Standard_Boolean theApproxU2V2);
Standard_EXPORT void fillData(const Handle(IntPatch_WLine)& theLine);
//! Prepare data structure for further computations.
Standard_EXPORT void prepareDS(const Standard_Boolean theApproxXYZ,
@ -141,19 +139,15 @@ private:
GeomInt_TheComputeLineOfWLApprox myComputeLine;
GeomInt_TheComputeLineBezierOfWLApprox myComputeLineBezier;
Approx_MCurvesToBSpCurve myBezToBSpl;
Standard_Boolean myTolReached;
Standard_Boolean myWithTangency;
Standard_Real myTol3d;
Standard_Real myTol2d;
Standard_Boolean myRelativeTol;
Standard_Integer myDegMin;
Standard_Integer myDegMax;
Standard_Integer myNbPntMax;
Standard_Integer myNbIterMax;
Standard_Real myTolReached3d;
Standard_Real myTolReached2d;
Approx_Data myData;
Standard_Real myUVRes1, myUVRes2;
NCollection_Vector<Standard_Integer> myKnots;
};

View File

@ -280,16 +280,14 @@ static Standard_Integer extrema(Draw_Interpretor& di, Standard_Integer n, const
//function : intersect
//purpose :
//=======================================================================
static Standard_Integer intersect(Draw_Interpretor& di, Standard_Integer n, const char** a)
{
if( n < 2)
{
#ifdef OCCT_DEBUG
cout<< "2dintersect curve curve [Tol]"<<endl;
#endif
return 1;
}
Standard_Integer k = 1;
Handle(Geom2d_Curve) C1 = DrawTrSurf::GetCurve2d(a[k++]);
if ( C1.IsNull())
@ -331,6 +329,7 @@ static Standard_Integer intersect(Draw_Interpretor& di, Standard_Integer n, cons
Handle(Geom2d_Curve) S1,S2;
Handle(DrawTrSurf_Curve2d) CD;
for ( i = 1; i <= Intersector.NbSegments(); i++) {
di << "Segment #" << i << " found.\n";
Intersector.Segment(i,S1,S2);
CD = new DrawTrSurf_Curve2d(S1, Draw_bleu, 30);
dout << CD;

View File

@ -450,7 +450,7 @@ void HLRTopoBRep_DSFiller::InsertFace (const Standard_Integer /*FI*/,
//-- cout<<"\nHLRTopoBRep_DSFiller : nbp="<<nbp<<" Tol3d="<<TOL3d<<" Tol2d="<<TOL2d<<endl;
Approx.SetParameters(TOL3d,TOL2d,dmin,dmax,niter,tg);
Approx.SetParameters(TOL3d, TOL2d, dmin, dmax, niter, 30, tg);
Approx.Perform(AppLine,Standard_True,Standard_True,Standard_False,1,nbp);
if (!Approx.IsDone()) {
C = AppC;

View File

@ -94,3 +94,5 @@ IntPatch_TheSurfFunction_0.cxx
IntPatch_WLine.cxx
IntPatch_WLine.hxx
IntPatch_WLine.lxx
IntPatch_WLineTool.cxx
IntPatch_WLineTool.hxx

View File

@ -39,7 +39,9 @@
#include <IntSurf_SequenceOfPathPoint.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_NumericError.hxx>
#include <Standard_OutOfRange.hxx>
#include <Standard_TypeMismatch.hxx>
#include <StdFail_NotDone.hxx>
#include <TColStd_Array1OfInteger.hxx>
@ -66,13 +68,16 @@
#include <Bnd_Box2d.hxx>
#include <IntPatch_PointLine.hxx>
static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& Line,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& Quad,
const Handle(Adaptor3d_TopolTool)& PDomain,
const Handle(Adaptor3d_HSurface)& QSurf,
const Standard_Real ArcTol,
IntPatch_SequenceOfLine& Lines);
#include <Extrema_GenLocateExtPS.hxx>
static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& theQuad,
const Handle(Adaptor3d_TopolTool)& thePDomain,
const Handle(Adaptor3d_HSurface)& theQSurf,
const Handle(Adaptor3d_HSurface)& theOtherSurf,
const Standard_Real theArcTol,
IntPatch_SequenceOfLine& theLines);
static
void ComputeTangency (const IntPatch_TheSOnBounds& solrst,
IntSurf_SequenceOfPathPoint& seqpdep,
@ -783,6 +788,10 @@ void IntPatch_ImpPrmIntersection::Perform (const Handle(Adaptor3d_HSurface)& Sur
// <-A
wline = new IntPatch_WLine(thelin,Standard_False,trans1,trans2);
#ifdef OCCT_DEBUG
//wline->Dump(0);
#endif
if ( iwline->HasFirstPoint()
&& iwline->IsTangentAtBegining() == Standard_False)
{
@ -1464,12 +1473,13 @@ void IntPatch_ImpPrmIntersection::Perform (const Handle(Adaptor3d_HSurface)& Sur
const Handle(Adaptor3d_TopolTool)& PDomain = (reversed) ? D1 : D2;
const Handle(Adaptor3d_HSurface)& aQSurf = (reversed) ? Surf2 : Surf1;
const Handle(Adaptor3d_HSurface)& anOtherSurf = (reversed) ? Surf1 : Surf2;
IntPatch_SequenceOfLine dslin;
Standard_Boolean isDecompose = Standard_False;
for(Standard_Integer i = 1; i <= slin.Length(); i++ )
{
if(DecomposeResult(slin(i),reversed,Quad,PDomain,aQSurf,TolArc,dslin))
if(DecomposeResult(slin(i),reversed,Quad,PDomain,aQSurf, anOtherSurf, TolArc,dslin))
{
isDecompose = Standard_True;
}
@ -1624,76 +1634,6 @@ static Standard_Boolean AreSamePoints(const IntSurf_PntOn2S& P1,
return result;
}
static void ForcedPurgePoints(const Handle(IntSurf_LineOn2S)& Result,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& Quad)
{
if(Result->NbPoints() <= 30) return;
Standard_Integer Index = 0, IndexLimF = 8, IndexLimL = 8;
Standard_Real U1 = 0., V1 = 0., U2 = 0., V2 = 0.;
if(IsReversed) {
Result->Value(1).ParametersOnS2(U1,V1);
Result->Value(Result->NbPoints()).ParametersOnS2(U2,V2);
}
else {
Result->Value(1).ParametersOnS1(U1,V1);
Result->Value(Result->NbPoints()).ParametersOnS1(U2,V2);
}
if(Quad.TypeQuadric() == GeomAbs_Cone) {
Standard_Real Uapx = 0., Vapx = 0.;
Quad.Parameters(Quad.Cone().Apex(),Uapx,Vapx);
if(fabs(V1-Vapx) <= 1.e-3)
IndexLimF = 12;
if(fabs(V2-Vapx) <= 1.e-3)
IndexLimL = 12;
}
if(Quad.TypeQuadric() == GeomAbs_Sphere) {
Standard_Real Vapx1 = M_PI/2., Vapx2 = -M_PI/2.;
if(fabs(V1-Vapx1) <= 1.e-3 || fabs(V1-Vapx2) <= 1.e-3)
IndexLimF = 12;
if(fabs(V2-Vapx1) <= 1.e-3 || fabs(V2-Vapx2) <= 1.e-3)
IndexLimL = 12;
}
while(Result->NbPoints() > 2 && Index < IndexLimF) {
Result->RemovePoint(2);
Index++;
}
Index = 0;
while(Result->NbPoints() > 2 && Index < IndexLimL) {
Result->RemovePoint(Result->NbPoints()-1);
Index++;
}
}
// DEBUG FUNCTION !!!
#if 0
static void DumpLine(Handle(IntSurf_LineOn2S)& Line,
Standard_Boolean IsReversed,
Standard_Integer Number)
{
cout << "DUMP LINE" << endl;
Standard_Integer i;
Standard_Real U,V;
for(i = 1; i <= Line->NbPoints(); i++) {
if(i <= Number || i >= (Line->NbPoints()-Number)) {
if(IsReversed)
Line->Value(i).ParametersOnS2(U,V); // S2 - quadric
else
Line->Value(i).ParametersOnS1(U,V); // S1 - quadric
cout << "point p" << i << " " << U << " " << V << endl;
}
}
cout << endl;
}
#endif
// DEBUG FUNCTION !!!
static void SearchVertices(const Handle(IntSurf_LineOn2S)& Line,
const Handle(IntSurf_LineOn2S)& Vertices,
TColStd_Array1OfInteger& PTypes)
@ -2378,19 +2318,23 @@ static Standard_Boolean SplitOnSegments(Handle(IntPatch_WLine)& WLine,
return result;
}
//=======================================================================
//function : DecomposeResult
//purpose : Split <theLine> in the places where it passes through seam edge
// or singularity (apex of cone or pole of sphere).
// This passage is detected by jump of U-parameter
// from point to point.
//=======================================================================
static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
const Standard_Boolean IsReversed,
const IntSurf_Quadric& theQuad,
const Handle(Adaptor3d_TopolTool)& thePDomain,
const Handle(Adaptor3d_HSurface)& theQSurf,
const Handle(Adaptor3d_HSurface)& theQSurf, //quadric
const Handle(Adaptor3d_HSurface)& thePSurf, //parametric
const Standard_Real theArcTol,
IntPatch_SequenceOfLine& theLines)
{
// Split <theLine> in the places where it passes through seam edge or singularity
// (apex of cone or pole of sphere). This passage is detected by jump of U-parameter
// from point to point.
const Standard_Real aDeltaUmax = 0.5*M_PI;
const Standard_Real aDeltaUmax = M_PI_2;
const Standard_Real aTOL3D = 1.e-10,
aTOL2D = Precision::PConfusion(),
aTOL2DS = Precision::PConfusion();
@ -2437,7 +2381,13 @@ static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
// build WLine parts (if any)
Standard_Boolean flNextLine = Standard_True;
Standard_Boolean hasBeenDecomposed = Standard_False;
Standard_Boolean PrePointExist = Standard_False;
enum PrePoint_Type
{
PrePoint_NONE,
PrePoint_SEAM,
PrePoint_POLE
}PrePointExist = PrePoint_NONE;
IntSurf_PntOn2S PrePoint;
while(flNextLine)
{
@ -2449,15 +2399,86 @@ static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
Handle(IntSurf_LineOn2S) sline = new IntSurf_LineOn2S();
//if((Lindex-Findex+1) <= 2 )
if(aLindex <= aFindex)
return hasBeenDecomposed;
if((aLindex <= aFindex) && (PrePointExist != PrePoint_POLE))
{
//break of "while(flNextLine)" cycle
break;
}
if (PrePointExist)
if (PrePointExist == PrePoint_SEAM)
{
sline->Add(PrePoint);
PrePointExist = Standard_False;
}
else if(PrePointExist == PrePoint_POLE)
{
//The last point of the line is the pole of the quadric.
//Therefore, Walking-line has been broken in this point.
//However, new line must start from this point. Here we must
//find its 2D-coordinates.
//For sphere and cone, some intersection point is satisfied to the system
// \cos(U_{q}) = S_{x}(U_{s},V_{s})/F(V_{q})
// \sin(U_{q}) = S_{y}(U_{s},V_{s})/F(V_{q})
//where
// @S_{x}@, @S_{y}@ are X and Y-coordinates of thePSurf;
// @U_{s}@ and @V_{s}@ are UV-parameters on thePSurf;
// @U_{q}@ and @V_{q}@ are UV-parameters on theQSurf;
// @F(V_{q}) @ is some function, which value independs on @U_{q}@
// (form of this function depends on the type of the quadric).
//When we go through the pole, the function @F(V_{q}) @ changes sign.
//Therefore, some cases are possible, when only @\cos(U_{q}) @ or
//only @ \sin(U_{q}) @ change sign.
//Consequently, when the line goes throug the pole, @U_{q}@ can be
//changed on @\pi /2 @ (but not less).
const Standard_Real aPeriod = M_PI_2, aHalfPeriod = M_PI_4;
const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aFindex);
IntSurf_PntOn2S aFirstPoint = PrePoint;
if(!aFirstPoint.IsSame(aRefPt, Precision::Confusion()))
{
Standard_Real aURef = 0.0, aVRef = 0.0;
Standard_Real aUquad = 0.0, aVquad = 0.0;
//Take parameters on quadric
if(IsReversed)
{
aFirstPoint.ParametersOnS2(aUquad, aVquad);
aRefPt.ParametersOnS2(aURef, aVRef);
}
else
{
aFirstPoint.ParametersOnS1(aUquad, aVquad);
aRefPt.ParametersOnS1(aURef, aVRef);
}
{
Standard_Real aDeltaPar = aURef-aUquad;
const Standard_Real anIncr = aPeriod*Sign(1.0, aDeltaPar);
while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
{
aUquad += anIncr;
aDeltaPar = aURef-aUquad;
}
}
aFirstPoint.SetValue(!IsReversed, aUquad, aVquad);
sline->Add(aFirstPoint);
}
else
{
//break of "while(flNextLine)" cycle
break;
}
}
PrePointExist = PrePoint_NONE;
// analyze other points
for(Standard_Integer k = aFindex; k <= aLindex; k++)
{
@ -2517,7 +2538,7 @@ static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
Abs(AnU1 - 2*M_PI) <= Precision::PConfusion())
{
//Modify <PrePoint>
PrePointExist = Standard_True;
PrePointExist = PrePoint_SEAM;
Standard_Real theU1, theV1;
if (!IsReversed)
{
@ -2534,6 +2555,240 @@ static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
theU1, theV1);
}
}
else
{//Check if WLine goes through pole
const Standard_Real aTol = Precision::Confusion();
const Standard_Real aPeriod = M_PI+M_PI, aHalfPeriod = M_PI;
const IntSurf_PntOn2S& aRefPt = aSSLine->Value(aBindex-1);
//Not quadric point
Standard_Real aU0 = 0.0, aV0 = 0.0;
//Quadric point
Standard_Real aUQuadRef = 0.0, aVQuadRef = 0.0;
if(IsReversed)
{
aRefPt.Parameters(aU0, aV0, aUQuadRef, aVQuadRef);
}
else
{
aRefPt.Parameters(aUQuadRef, aVQuadRef, aU0, aV0);
}
//Transforms parametric surface in coordinate-system of the quadric
gp_Trsf aTr;
aTr.SetTransformation(theQuad.Sphere().Position());
//aPQuad is Pole
gp_Pnt aPQuad;
Standard_Real aUquad = 0.0;
Standard_Real aVquad = 0.0;
if(theQuad.TypeQuadric() == GeomAbs_Sphere)
{
aVquad = Sign(M_PI_2, aVQuadRef);
}
else if(theQuad.TypeQuadric() == GeomAbs_Cone)
{
const Standard_Real aRadius = theQuad.Cone().RefRadius();
const Standard_Real aSemiAngle = theQuad.Cone().SemiAngle();
aVquad = -aRadius/sin(aSemiAngle);
}
else
{
Standard_TypeMismatch::Raise( "IntPatch_ImpPrmIntersection.cxx,"
" DecomposeResult(...): "
"Unsupported quadric with Pole");
}
theQSurf->D0(aUquad, aVquad, aPQuad);
Extrema_GenLocateExtPS anExtr(aPQuad, thePSurf->Surface(), aU0, aV0,
Precision::PConfusion(),
Precision::PConfusion());
if(!anExtr.IsDone())
break;
if(anExtr.SquareDistance() < aTol*aTol)
{ //Pole is an intersection point
//(lies in the quadric and the parametric surface)
anExtr.Point().Parameter(aU0, aV0);
gp_Pnt aP0(anExtr.Point().Value());
IntSurf_PntOn2S aNewPoint;
aNewPoint.SetValue(0.5*(aP0.XYZ() + aPQuad.XYZ()), IsReversed, aU0, aV0);
if(!aNewPoint.IsSame(aRefPt, Precision::Confusion()))
{ //Found pole does not exist in the Walking-line
//It must be added there (with correct 2D-parameters)
//2D-parameters of theparametric surface have already been found (aU0, aV0).
//Let find 2D-parameters on the quadric.
//The algorithm depends on the type of the quadric. Here we consider a Sphere only.
//Analogical result can be made for another types (e.g. cone, but formulas will
//be different) in case of need.
//First of all, we need in adjusting thePSurf in the coordinate system of the Sphere
//(in order to make the equation of the sphere maximal simple). However, as it will be
//shown later, thePSurf is used in algorithm in order to get its derivatives. Therefore,
//for improving performance, transformation of these vectors is enough (there is no point
//in transformation of full surface).
gp_Pnt aPtemp;
gp_Vec aVecDu, aVecDv;
thePSurf->D1(aU0, aV0, aPtemp, aVecDu, aVecDv);
//Derivatives of transformed thePSurf
aVecDu.Transform(aTr);
aVecDv.Transform(aTr);
if(theQuad.TypeQuadric() == GeomAbs_Sphere)
{
//The intersection point (including the pole)
//must be satisfied to the following system:
// \left\{\begin{matrix}
// R*\cos (U_{q})*\cos (V_{q})=S_{x}(U_{s},V_{s})
// R*\sin (U_{q})*\cos (V_{q})=S_{y}(U_{s},V_{s})
// R*\sin (V_{q})=S_{z}(U_{s},V_{s})
// \end{matrix}\right,
//where
// R is the radius of the sphere;
// @S_{x}@, @S_{y}@ and @S_{z}@ are X, Y and Z-coordinates of thePSurf;
// @U_{s}@ and @V_{s}@ are equal to aU0 and aV0 corespondingly;
// @U_{q}@ and @V_{q}@ are equal to aUquad and aVquad corespondingly.
//Consequently (from first two equations),
// \left\{\begin{matrix}
// \cos (U_{q}) = \frac{S_{x}(U_{s},V_{s})}{R*\cos (V_{q})}
// \sin (U_{q}) = \frac{S_{y}(U_{s},V_{s})}{R*\cos (V_{q})}
// \end{matrix}\right.
//For pole,
// V_{q}=\pm \pi /2 \Rightarrow \cos (V_{q}) = 0 (denominator is equal to 0).
//Therefore, computation U_{q} directly is impossibly.
//
//Let @V_{q}@ tends to @\pm \pi /2@.
//Then (indeterminate form is evaluated in accordance of L'Hospital rule),
// \cos (U_{q}) = \lim_{V_{q} \to (\pi /2-0)}
// \frac{S_{x}(U_{s},V_{s})}{R*\cos (V_{q})}=
// -\lim_{V_{q} \to (\pi /2-0)}
// \frac{\frac{\partial S_{x}}
// {\partial U_{s}}*\frac{\mathrm{d} U_{s}}
// {\mathrm{d} V_{q}}+\frac{\partial S_{x}}
// {\partial V_{s}}*\frac{\mathrm{d} V_{s}}
// {\mathrm{d} V_{q}}}{R*\sin (V_{q})} =
// -\frac{1}{R}*\frac{\mathrm{d} U_{s}}
// {\mathrm{d} V_{q}}*(\frac{\partial S_{x}}
// {\partial U_{s}}+\frac{\partial S_{x}}
// {\partial V_{s}}*\frac{\mathrm{d} V_{s}}
// {\mathrm{d} U_{s}}) =
// -\frac{1}{R}*\frac{\mathrm{d} V_{s}}
// {\mathrm{d} V_{q}}*(\frac{\partial S_{x}}
// {\partial U_{s}}*\frac{\mathrm{d} U_{s}}
// {\mathrm{d} V_{s}}+\frac{\partial S_{x}}
// {\partial V_{s}}).
//Analogicaly for @\sin (U_{q})@ (@S_{x}@ is substituted to @S_{y}@).
//Let mean, that
// \cos (U_{q}) \left | _{V_{q} \to (-\pi /2+0)} = \cos (U_{q}) \left | _{V_{q} \to (\pi /2-0)}
// \sin (U_{q}) \left | _{V_{q} \to (-\pi /2+0)} = \sin (U_{q}) \left | _{V_{q} \to (\pi /2-0)}
//From the 3rd equation of the system, we obtain
// \frac{\mathrm{d} (R*\sin (V_{q}))}{\mathrm{d} V_{q}} =
// \frac{\mathrm{d} S_{z}(U_{s},V_{s})}{\mathrm{d} V_{q}}
//or
// R*\cos (V_{q}) = \frac{\partial S_{z}}{\partial U_{s}}*
// \frac{\mathrm{d} U_{s}} {\mathrm{d} V_{q}}+\frac{\partial S_{z}}
// {\partial V_{s}}*\frac{\mathrm{d} V_{s}}{\mathrm{d} V_{q}}.
//If @V_{q}=\pm \pi /2@, then
// \frac{\partial S_{z}}{\partial U_{s}}*
// \frac{\mathrm{d} U_{s}} {\mathrm{d} V_{q}}+\frac{\partial S_{z}}
// {\partial V_{s}}*\frac{\mathrm{d} V_{s}}{\mathrm{d} V_{q}} = 0.
//Consequently, if @\frac{\partial S_{z}}{\partial U_{s}} \neq 0 @ then
// \frac{\mathrm{d} U_{s}}{\mathrm{d} V_{s}} =
// -\frac{\frac{\partial S_{z}}{\partial V_{s}}}
// {\frac{\partial S_{z}}{\partial U_{s}}}.
//If @ \frac{\partial S_{z}}{\partial V_{s}} \neq 0 @ then
// \frac{\mathrm{d} V_{s}}{\mathrm{d} U_{s}} =
// -\frac{\frac{\partial S_{z}}{\partial U_{s}}}
// {\frac{\partial S_{z}}{\partial V_{s}}}
//Cases, when @ \frac{\partial S_{z}}{\partial U_{s}} =
//\frac{\partial S_{z}}{\partial V_{s}} = 0 @ are not consider here.
//The reason is written below.
//Vector with {@ \cos (U_{q}) @, @ \sin (U_{q}) @} coordinates.
//Ask to pay attention to the fact that this vector is always normalyzed.
gp_Vec2d aV1;
if(Abs(aVecDu.Z()) > Abs(aVecDv.Z()))
{
//Example of this exception is intersection a plane with a sphere
//when the plane tangents the sphere in some pole (i.e. only one
//intersection point, not line). In this case, U-coordinate of the
//sphere is undefined (can be realy anything). On the other hand,
//in this case there are not any Walking-line to be decomposited.
Standard_NumericError_Raise_if(Abs(aVecDu.Z()) < Precision::PConfusion(),
"IntPatch_ImpPrmIntersection.cxx, DecomposeResult(...): "
"Cannot find UV-coordinate for quadric in the pole");
const Standard_Real aDusDvs = aVecDv.Z()/aVecDu.Z();
aV1.SetCoord( aVecDu.X()*aDusDvs - aVecDv.X(),
aVecDu.Y()*aDusDvs - aVecDv.Y());
}
else
{
//Example of this exception is intersection a plane with a sphere
//when the plane tangents the sphere in some pole (i.e. only one
//intersection point, not line). In this case, U-coordinate of the
//sphere is undefined (can be realy anything). On the other hand,
//in this case there are not any Walking-line to be decomposited.
Standard_NumericError_Raise_if(Abs(aVecDv.Z()) < Precision::PConfusion(),
"IntPatch_ImpPrmIntersection.cxx, DecomposeResult(...): "
"Cannot find UV-coordinate for quadric in the pole");
const Standard_Real aDvsDus = aVecDu.Z()/aVecDv.Z();
aV1.SetCoord( aVecDv.X()*aDvsDus - aVecDu.X(),
aVecDv.Y()*aDvsDus - aVecDu.Y());
}
aV1.Normalize();
if(Abs(aV1.X()) > Abs(aV1.Y()))
aUquad = Sign(asin(aV1.Y()), aVquad);
else
aUquad = Sign(acos(aV1.X()), aVquad);
}
{
//Adjust found U-paramter to previous point of the Walking-line
Standard_Real aDeltaPar = aUQuadRef-aUquad;
const Standard_Real anIncr = aPeriod*Sign(1.0, aDeltaPar);
while((aDeltaPar > aHalfPeriod) || (aDeltaPar < -aHalfPeriod))
{
aUquad += anIncr;
aDeltaPar = aUQuadRef-aUquad;
}
}
aNewPoint.SetValue(!IsReversed, aUquad, aVquad);
sline->Add(aNewPoint);
PrePointExist = PrePoint_POLE;
PrePoint = aNewPoint;
}
}
}
////
break;
}
@ -2572,11 +2827,6 @@ static Standard_Boolean DecomposeResult(const Handle(IntPatch_Line)& theLine,
}
}
if(!hasInternals)
{
ForcedPurgePoints(sline,IsReversed,theQuad);
}
Handle(IntPatch_WLine) wline =
new IntPatch_WLine(sline,Standard_False,
theLine->TransitionOnS1(),theLine->TransitionOnS2());

View File

@ -12,6 +12,7 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntPatch_Intersection.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Adaptor3d_TopolTool.hxx>
@ -20,406 +21,23 @@
#include <IntPatch_GLine.hxx>
#include <IntPatch_ImpImpIntersection.hxx>
#include <IntPatch_ImpPrmIntersection.hxx>
#include <IntPatch_Intersection.hxx>
#include <IntPatch_Line.hxx>
#include <IntPatch_Point.hxx>
#include <IntPatch_PrmPrmIntersection.hxx>
#include <IntPatch_RLine.hxx>
#include <IntPatch_WLine.hxx>
#include <IntPatch_WLineTool.hxx>
#include <IntSurf_Quadric.hxx>
#include <Standard_ConstructionError.hxx>
#include <Standard_DomainError.hxx>
#include <Standard_OutOfRange.hxx>
#include <StdFail_NotDone.hxx>
#include <IntPatch_LineConstructor.hxx>
#include <stdio.h>
#define DEBUG 0
static const Standard_Integer aNbPointsInALine = 200;
//=======================================================================
//function : MinMax
//purpose : Replaces theParMIN = MIN(theParMIN, theParMAX),
// theParMAX = MAX(theParMIN, theParMAX).
//=======================================================================
static inline void MinMax(Standard_Real& theParMIN, Standard_Real& theParMAX)
{
if(theParMIN > theParMAX)
{
const Standard_Real aTmp = theParMAX;
theParMAX = theParMIN;
theParMIN = aTmp;
}
}
//=======================================================================
//function : IsSeam
//purpose : Returns:
// 0 - if interval [theU1, theU2] does not intersect the "seam-edge"
// or if "seam-edge" do not exist;
// 1 - if interval (theU1, theU2) intersect the "seam-edge".
// 2 - if theU1 or/and theU2 lie ON the "seam-edge"
//
//ATTENTION!!!
// If (theU1 == theU2) then this function will return only both 0 or 2.
//=======================================================================
static Standard_Integer IsSeam( const Standard_Real theU1,
const Standard_Real theU2,
const Standard_Real thePeriod)
{
if(IsEqual(thePeriod, 0.0))
return 0;
//If interval [theU1, theU2] intersect seam-edge then there exists an integer
//number N such as
// (theU1 <= T*N <= theU2) <=> (theU1/T <= N <= theU2/T),
//where T is the period.
//I.e. the inerval [theU1/T, theU2/T] must contain at least one
//integer number. In this case, Floor(theU1/T) and Floor(theU2/T)
//return different values or theU1/T is strictly integer number.
//Examples:
// 1. theU1/T==2.8, theU2/T==3.5 => Floor(theU1/T) == 2, Floor(theU2/T) == 3.
// 2. theU1/T==2.0, theU2/T==2.6 => Floor(theU1/T) == Floor(theU2/T) == 2.
const Standard_Real aVal1 = theU1/thePeriod,
aVal2 = theU2/thePeriod;
const Standard_Integer aPar1 = static_cast<Standard_Integer>(Floor(aVal1));
const Standard_Integer aPar2 = static_cast<Standard_Integer>(Floor(aVal2));
if(aPar1 != aPar2)
{//Interval (theU1, theU2] intersects seam-edge
if(IsEqual(aVal2, static_cast<Standard_Real>(aPar2)))
{//aVal2 is an integer number => theU2 lies ON the "seam-edge"
return 2;
}
return 1;
}
//Here, aPar1 == aPar2.
if(IsEqual(aVal1, static_cast<Standard_Real>(aPar1)))
{//aVal1 is an integer number => theU1 lies ON the "seam-edge"
return 2;
}
//If aVal2 is a true integer number then always (aPar1 != aPar2).
return 0;
}
//=======================================================================
//function : IsSeamOrBound
//purpose : Returns TRUE if segment [thePtf, thePtl] intersects "seam-edge"
// (if it exist) or surface boundaries and both thePtf and thePtl do
// not match "seam-edge" or boundaries.
// Point thePtmid lies in this segment. If thePtmid match
// "seam-edge" or boundaries strictly (without any tolerance) then
// the function will return TRUE.
// See comments in function body for detail information.
//=======================================================================
static Standard_Boolean IsSeamOrBound(const IntSurf_PntOn2S& thePtf,
const IntSurf_PntOn2S& thePtl,
const IntSurf_PntOn2S& thePtmid,
const Standard_Real theU1Period,
const Standard_Real theU2Period,
const Standard_Real theV1Period,
const Standard_Real theV2Period,
const Standard_Real theUfSurf1,
const Standard_Real theUlSurf1,
const Standard_Real theVfSurf1,
const Standard_Real theVlSurf1,
const Standard_Real theUfSurf2,
const Standard_Real theUlSurf2,
const Standard_Real theVfSurf2,
const Standard_Real theVlSurf2)
{
Standard_Real aU11 = 0.0, aU12 = 0.0, aV11 = 0.0, aV12 = 0.0;
Standard_Real aU21 = 0.0, aU22 = 0.0, aV21 = 0.0, aV22 = 0.0;
thePtf.Parameters(aU11, aV11, aU12, aV12);
thePtl.Parameters(aU21, aV21, aU22, aV22);
MinMax(aU11, aU21);
MinMax(aV11, aV21);
MinMax(aU12, aU22);
MinMax(aV12, aV22);
if((aU11 - theUfSurf1)*(aU21 - theUfSurf1) < 0.0)
{//Interval [aU11, aU21] intersects theUfSurf1
return Standard_True;
}
if((aU11 - theUlSurf1)*(aU21 - theUlSurf1) < 0.0)
{//Interval [aU11, aU21] intersects theUlSurf1
return Standard_True;
}
if((aV11 - theVfSurf1)*(aV21 - theVfSurf1) < 0.0)
{//Interval [aV11, aV21] intersects theVfSurf1
return Standard_True;
}
if((aV11 - theVlSurf1)*(aV21 - theVlSurf1) < 0.0)
{//Interval [aV11, aV21] intersects theVlSurf1
return Standard_True;
}
if((aU12 - theUfSurf2)*(aU22 - theUfSurf2) < 0.0)
{//Interval [aU12, aU22] intersects theUfSurf2
return Standard_True;
}
if((aU12 - theUlSurf2)*(aU22 - theUlSurf2) < 0.0)
{//Interval [aU12, aU22] intersects theUlSurf2
return Standard_True;
}
if((aV12 - theVfSurf2)*(aV22 - theVfSurf2) < 0.0)
{//Interval [aV12, aV22] intersects theVfSurf2
return Standard_True;
}
if((aV12 - theVlSurf2)*(aV22 - theVlSurf2) < 0.0)
{//Interval [aV12, aV22] intersects theVlSurf2
return Standard_True;
}
if(IsSeam(aU11, aU21, theU1Period))
return Standard_True;
if(IsSeam(aV11, aV21, theV1Period))
return Standard_True;
if(IsSeam(aU12, aU22, theU2Period))
return Standard_True;
if(IsSeam(aV12, aV22, theV2Period))
return Standard_True;
/*
The segment [thePtf, thePtl] does not intersect the boundaries and
the seam-edge of the surfaces.
Nevertheless, following situation is possible:
seam or
bound
|
thePtf * |
|
* thePtmid
thePtl * |
|
This case must be processed, too.
*/
Standard_Real aU1 = 0.0, aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
thePtmid.Parameters(aU1, aV1, aU2, aV2);
if(IsEqual(aU1, theUfSurf1) || IsEqual(aU1, theUlSurf1))
return Standard_True;
if(IsEqual(aU2, theUfSurf2) || IsEqual(aU2, theUlSurf2))
return Standard_True;
if(IsEqual(aV1, theVfSurf1) || IsEqual(aV1, theVlSurf1))
return Standard_True;
if(IsEqual(aV2, theVfSurf2) || IsEqual(aV2, theVlSurf2))
return Standard_True;
if(IsSeam(aU1, aU1, theU1Period))
return Standard_True;
if(IsSeam(aU2, aU2, theU2Period))
return Standard_True;
if(IsSeam(aV1, aV1, theV1Period))
return Standard_True;
if(IsSeam(aV2, aV2, theV2Period))
return Standard_True;
return Standard_False;
}
//=======================================================================
//function : JoinWLines
//purpose : joins all WLines from theSlin to one if it is possible and
// records the result into theSlin again.
// Lines will be kept to be splitted if:
// a) they are separated (has no common points);
// b) resulted line (after joining) go through
// seam-edges or surface boundaries.
//
// In addition, if points in theSPnt lies at least in one of
// the line in theSlin, this point will be deleted.
//=======================================================================
static void JoinWLines(IntPatch_SequenceOfLine& theSlin,
IntPatch_SequenceOfPoint& theSPnt,
const Standard_Real theTol3D,
const Standard_Real theU1Period,
const Standard_Real theU2Period,
const Standard_Real theV1Period,
const Standard_Real theV2Period,
const Standard_Real theUfSurf1,
const Standard_Real theUlSurf1,
const Standard_Real theVfSurf1,
const Standard_Real theVlSurf1,
const Standard_Real theUfSurf2,
const Standard_Real theUlSurf2,
const Standard_Real theVfSurf2,
const Standard_Real theVlSurf2)
{
if(theSlin.Length() == 0)
return;
for(Standard_Integer aNumOfLine1 = 1; aNumOfLine1 <= theSlin.Length(); aNumOfLine1++)
{
Handle(IntPatch_WLine) aWLine1 (Handle(IntPatch_WLine)::DownCast(theSlin.Value(aNumOfLine1)));
if(aWLine1.IsNull())
{//We must have failed to join not-point-lines
return;
}
const Standard_Integer aNbPntsWL1 = aWLine1->NbPnts();
const IntSurf_PntOn2S& aPntFW1 = aWLine1->Point(1);
const IntSurf_PntOn2S& aPntLW1 = aWLine1->Point(aNbPntsWL1);
for(Standard_Integer aNPt = 1; aNPt <= theSPnt.Length(); aNPt++)
{
const IntSurf_PntOn2S aPntCur = theSPnt.Value(aNPt).PntOn2S();
if( aPntCur.IsSame(aPntFW1, Precision::Confusion()) ||
aPntCur.IsSame(aPntLW1, Precision::Confusion()))
{
theSPnt.Remove(aNPt);
aNPt--;
}
}
Standard_Boolean hasBeenRemoved = Standard_False;
for(Standard_Integer aNumOfLine2 = aNumOfLine1 + 1; aNumOfLine2 <= theSlin.Length(); aNumOfLine2++)
{
Handle(IntPatch_WLine) aWLine2 (Handle(IntPatch_WLine)::DownCast(theSlin.Value(aNumOfLine2)));
const Standard_Integer aNbPntsWL2 = aWLine2->NbPnts();
const IntSurf_PntOn2S& aPntFWL1 = aWLine1->Point(1);
const IntSurf_PntOn2S& aPntLWL1 = aWLine1->Point(aNbPntsWL1);
const IntSurf_PntOn2S& aPntFWL2 = aWLine2->Point(1);
const IntSurf_PntOn2S& aPntLWL2 = aWLine2->Point(aNbPntsWL2);
if(aPntFWL1.IsSame(aPntFWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(2);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(2);
if(!IsSeamOrBound(aPt1, aPt2, aPntFWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = 1; aNPt <= aNbPntsWL2; aNPt++)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->InsertBefore(1, aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntFWL1.IsSame(aPntLWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(2);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(aNbPntsWL2-1);
if(!IsSeamOrBound(aPt1, aPt2, aPntFWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = aNbPntsWL2; aNPt >= 1; aNPt--)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->InsertBefore(1, aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntLWL1.IsSame(aPntFWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(aNbPntsWL1-1);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(2);
if(!IsSeamOrBound(aPt1, aPt2, aPntLWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = 1; aNPt <= aNbPntsWL2; aNPt++)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->Add(aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntLWL1.IsSame(aPntLWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(aNbPntsWL1-1);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(aNbPntsWL2-1);
if(!IsSeamOrBound(aPt1, aPt2, aPntLWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = aNbPntsWL2; aNPt >= 1; aNPt--)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->Add(aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
}
if(hasBeenRemoved)
aNumOfLine1--;
}
}
//======================================================================
// function: SequenceOfLine
//======================================================================
@ -1103,7 +721,8 @@ void IntPatch_Intersection::Perform(const Handle(Adaptor3d_HSurface)& theS1,
const Standard_Real TolArc,
const Standard_Real TolTang,
const Standard_Boolean isGeomInt,
const Standard_Boolean theIsReqToKeepRLine)
const Standard_Boolean theIsReqToKeepRLine,
const Standard_Boolean theIsReqToPostWLProc)
{
myTolArc = TolArc;
myTolTang = TolTang;
@ -1336,6 +955,25 @@ void IntPatch_Intersection::Perform(const Handle(Adaptor3d_HSurface)& theS1,
ParamParamPerfom(theS1, theD1, theS2, theD2, TolArc,
TolTang, ListOfPnts, RestrictLine, typs1, typs2);
}
if(!theIsReqToPostWLProc)
return;
for(Standard_Integer i = slin.Lower(); i <= slin.Upper(); i++)
{
Handle(IntPatch_WLine) aWL = Handle(IntPatch_WLine)::DownCast(slin.Value(i));
if(aWL.IsNull())
continue;
Handle(IntPatch_WLine) aRW = IntPatch_WLineTool::ComputePurgedWLine(aWL, theS1, theS2, theD1, theD2);
if(aRW.IsNull())
continue;
slin.InsertAfter(i, aRW);
slin.Remove(i);
}
}
//=======================================================================
@ -1350,7 +988,9 @@ void IntPatch_Intersection::Perform(const Handle(Adaptor3d_HSurface)& theS1,
const Standard_Real TolTang,
IntSurf_ListOfPntOn2S& ListOfPnts,
const Standard_Boolean RestrictLine,
const Standard_Boolean isGeomInt)
const Standard_Boolean isGeomInt,
const Standard_Boolean theIsReqToKeepRLine,
const Standard_Boolean theIsReqToPostWLProc)
{
myTolArc = TolArc;
myTolTang = TolTang;
@ -1547,14 +1187,33 @@ void IntPatch_Intersection::Perform(const Handle(Adaptor3d_HSurface)& theS1,
if(theD1->DomainIsInfinite() || theD2->DomainIsInfinite())
{
GeomGeomPerfom(theS1, theD1, theS2, theD2, TolArc,
TolTang, ListOfPnts, RestrictLine, typs1, typs2);
TolTang, ListOfPnts, RestrictLine, typs1, typs2, theIsReqToKeepRLine);
}
else
{
GeomGeomPerfomTrimSurf(theS1, theD1, theS2, theD2,
TolArc, TolTang, ListOfPnts, RestrictLine, typs1, typs2);
TolArc, TolTang, ListOfPnts, RestrictLine, typs1, typs2, theIsReqToKeepRLine);
}
}
if(!theIsReqToPostWLProc)
return;
for(Standard_Integer i = slin.Lower(); i <= slin.Upper(); i++)
{
Handle(IntPatch_WLine) aWL = Handle(IntPatch_WLine)::DownCast(slin.Value(i));
if(aWL.IsNull())
continue;
Handle(IntPatch_WLine) aRW = IntPatch_WLineTool::ComputePurgedWLine(aWL, theS1, theS2, theD1, theD2);
if(aRW.IsNull())
continue;
slin.InsertAfter(i, aRW);
slin.Remove(i);
}
}
//=======================================================================
@ -1912,15 +1571,19 @@ void IntPatch_Intersection::
spnt.Append(aPoint);
}
JoinWLines( slin, spnt, theTolTang,
theS1->IsUPeriodic()? theS1->UPeriod() : 0.0,
theS2->IsUPeriodic()? theS2->UPeriod() : 0.0,
theS1->IsVPeriodic()? theS1->VPeriod() : 0.0,
theS2->IsVPeriodic()? theS2->VPeriod() : 0.0,
theS1->FirstUParameter(), theS1->LastUParameter(),
theS1->FirstVParameter(), theS1->LastVParameter(),
theS2->FirstUParameter(), theS2->LastUParameter(),
theS2->FirstVParameter(), theS2->LastVParameter());
IntPatch_WLineTool::JoinWLines( slin, spnt, theTolTang,
theS1->IsUPeriodic()? theS1->UPeriod() : 0.0,
theS2->IsUPeriodic()? theS2->UPeriod() : 0.0,
theS1->IsVPeriodic()? theS1->VPeriod() : 0.0,
theS2->IsVPeriodic()? theS2->VPeriod() : 0.0,
theS1->FirstUParameter(),
theS1->LastUParameter(),
theS1->FirstVParameter(),
theS1->LastVParameter(),
theS2->FirstUParameter(),
theS2->LastUParameter(),
theS2->FirstVParameter(),
theS2->LastVParameter());
}
}
}
@ -2000,31 +1663,35 @@ void IntPatch_Intersection::Perform(const Handle(Adaptor3d_HSurface)& S1,
for (; i<=nblm; i++) slin.Append(interpp.Line(i));
}
}
for(Standard_Integer i = slin.Lower(); i <= slin.Upper(); i++)
{
Handle(IntPatch_WLine) aWL = Handle(IntPatch_WLine)::DownCast(slin.Value(i));
if(aWL.IsNull())
continue;
Handle(IntPatch_WLine) aRW = IntPatch_WLineTool::ComputePurgedWLine(aWL, S1, S2, D1, D2);
if(aRW.IsNull())
continue;
slin.InsertAfter(i, aRW);
slin.Remove(i);
}
}
//======================================================================
#include <IntPatch_IType.hxx>
#include <IntPatch_LineConstructor.hxx>
#include <Adaptor2d_HCurve2d.hxx>
#include <Geom_Curve.hxx>
#define MAXR 200
#ifdef DUMPOFIntPatch_Intersection
//void IntPatch_Intersection__MAJ_R(Handle(Adaptor2d_HCurve2d) *R1,
// Handle(Adaptor2d_HCurve2d) *R2,
// int *NR1,
// int *NR2,
// Standard_Integer nbR1,
// Standard_Integer nbR2,
// const IntPatch_Point& VTX)
void IntPatch_Intersection__MAJ_R(Handle(Adaptor2d_HCurve2d) *,
void IntPatch_Intersection__MAJ_R(Handle(Adaptor2d_HCurve2d) *R1,
Handle(Adaptor2d_HCurve2d) *,
int *NR1,
int *,
int *,
Standard_Integer nbR1,
Standard_Integer ,
Standard_Integer ,
const IntPatch_Point& )
const IntPatch_Point& VTX)
{
/*
if(VTX.IsOnDomS1()) {
//-- long unsigned ptr= *((long unsigned *)(((Handle(Standard_Transient) *)(&(VTX.ArcOnS1())))));
@ -2038,18 +1705,17 @@ void IntPatch_Intersection__MAJ_R(Handle(Adaptor2d_HCurve2d) *,
printf("\n R Pas trouvee (IntPatch)\n");
}
*/
}
#endif
//void IntPatch_Intersection::Dump(const Standard_Integer Mode,
void IntPatch_Intersection::Dump(const Standard_Integer ,
const Handle(Adaptor3d_HSurface)& S1,
const Handle(Adaptor3d_TopolTool)& D1,
const Handle(Adaptor3d_HSurface)& S2,
const Handle(Adaptor3d_TopolTool)& D2) const
void IntPatch_Intersection::Dump(const Standard_Integer /*Mode*/,
const Handle(Adaptor3d_HSurface)& /*S1*/,
const Handle(Adaptor3d_TopolTool)& /*D1*/,
const Handle(Adaptor3d_HSurface)& /*S2*/,
const Handle(Adaptor3d_TopolTool)& /*D2*/) const
{
#ifdef DUMPOFIntPatch_Intersection
const int MAXR = 200;
//-- ----------------------------------------------------------------------
//-- construction de la liste des restrictions & vertex
//--
@ -2061,14 +1727,14 @@ void IntPatch_Intersection::Dump(const Standard_Integer ,
NR1[nbR1]=0;
nbR1++;
}
for(D2->Init();D2->More() && nbR2<MAXR; D2->Next()) {
for(D2->Init();D2->More() && nbR2<MAXR; D2->Next()) {
R2[nbR2]=D2->Value();
NR2[nbR2]=0;
nbR2++;
}
printf("\nDUMP_INT: ----empt:%2ud tgte:%2ud oppo:%2ud ---------------------------------",empt,tgte,empt);
Standard_Integer i,j,nbr1,nbr2,nbgl,nbgc,nbge,nbgp,nbgh,nbl,nbr,nbg,nbw,nba;
Standard_Integer i,nbr1,nbr2,nbgl,nbgc,nbge,nbgp,nbgh,nbl,nbr,nbg,nbw,nba;
nbl=nbr=nbg=nbw=nba=nbgl=nbge=nbr1=nbr2=nbgc=nbgp=nbgh=0;
nbl=NbLines();
for(i=1;i<=nbl;i++) {
@ -2151,7 +1817,7 @@ void IntPatch_Intersection::Dump(const Standard_Integer ,
printf("\nDUMP_LC :vtx :%2d r:%2d :%2d :%2d",
nbvw,nbvr,nbva,nbvg);
printf("\n");
printf("\n");
#endif
}

View File

@ -79,14 +79,32 @@ public:
//! When intersection result returns IntPatch_RLine and another
//! IntPatch_Line (not restriction) we (in case of theIsReqToKeepRLine==TRUE)
//! will always keep both lines even if they are coincided.
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Handle(Adaptor3d_HSurface)& S2, const Handle(Adaptor3d_TopolTool)& D2, const Standard_Real TolArc, const Standard_Real TolTang, const Standard_Boolean isGeomInt = Standard_True, const Standard_Boolean theIsReqToKeepRLine = Standard_False);
//! Flag theIsReqToPostWLProc has been enterred only for
//! compatibility with TopOpeBRep package. It shall be deleted
//! after deleting TopOpeBRep.
//! If theIsReqToPostWLProc == FALSE, then we will work with Walking-line
//! obtained after intersection algorithm directly (wothout any post-processing).
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Handle(Adaptor3d_HSurface)& S2, const Handle(Adaptor3d_TopolTool)& D2, const Standard_Real TolArc, const Standard_Real TolTang, const Standard_Boolean isGeomInt = Standard_True, const Standard_Boolean theIsReqToKeepRLine = Standard_False, const Standard_Boolean theIsReqToPostWLProc = Standard_True);
//! If isGeomInt == Standard_False, then method
//! Param-Param intersection will be used.
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Handle(Adaptor3d_HSurface)& S2, const Handle(Adaptor3d_TopolTool)& D2, const Standard_Real TolArc, const Standard_Real TolTang, IntSurf_ListOfPntOn2S& LOfPnts, const Standard_Boolean RestrictLine = Standard_True, const Standard_Boolean isGeomInt = Standard_True);
//! Flag theIsReqToKeepRLine has been enterred only for
//! compatibility with TopOpeBRep package. It shall be deleted
//! after deleting TopOpeBRep.
//! When intersection result returns IntPatch_RLine and another
//! IntPatch_Line (not restriction) we (in case of theIsReqToKeepRLine==TRUE)
//! will always keep both lines even if they are coincided.
//! Flag theIsReqToPostWLProc has been enterred only for
//! compatibility with TopOpeBRep package. It shall be deleted
//! after deleting TopOpeBRep.
//! If theIsReqToPostWLProc == FALSE, then we will work with Walking-line
//! obtained after intersection algorithm directly (wothout any post-processing).
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Handle(Adaptor3d_HSurface)& S2, const Handle(Adaptor3d_TopolTool)& D2, const Standard_Real TolArc, const Standard_Real TolTang, IntSurf_ListOfPntOn2S& LOfPnts, const Standard_Boolean RestrictLine = Standard_True, const Standard_Boolean isGeomInt = Standard_True, const Standard_Boolean theIsReqToKeepRLine = Standard_False, const Standard_Boolean theIsReqToPostWLProc = Standard_True);
//! Perform with start point
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Handle(Adaptor3d_HSurface)& S2, const Handle(Adaptor3d_TopolTool)& D2, const Standard_Real U1, const Standard_Real V1, const Standard_Real U2, const Standard_Real V2, const Standard_Real TolArc, const Standard_Real TolTang);
//! Uses for finding self-intersected surfaces.
Standard_EXPORT void Perform (const Handle(Adaptor3d_HSurface)& S1, const Handle(Adaptor3d_TopolTool)& D1, const Standard_Real TolArc, const Standard_Real TolTang);
//! Returns True if the calculus was succesfull.

View File

@ -0,0 +1,953 @@
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <IntPatch_WLineTool.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <Adaptor3d_TopolTool.hxx>
//=======================================================================
//function : MinMax
//purpose : Replaces theParMIN = MIN(theParMIN, theParMAX),
// theParMAX = MAX(theParMIN, theParMAX).
//
// Static subfunction in IsSeamOrBound.
//=======================================================================
static inline void MinMax(Standard_Real& theParMIN, Standard_Real& theParMAX)
{
if(theParMIN > theParMAX)
{
const Standard_Real aTmp = theParMAX;
theParMAX = theParMIN;
theParMIN = aTmp;
}
}
//=========================================================================
// function : FillPointsHash
// purpose : Fill points hash by input data.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static void FillPointsHash(const Handle(IntPatch_WLine) &theWLine,
NCollection_Array1<Standard_Integer> &thePointsHash)
{
// 1 - Delete point.
// 0 - Store point.
// -1 - Vertex point (not delete).
Standard_Integer i, v;
for(i = 1; i <= theWLine->NbPnts(); i++)
thePointsHash.SetValue(i, 0);
for(v = 1; v <= theWLine->NbVertex(); v++)
{
IntPatch_Point aVertex = theWLine->Vertex(v);
Standard_Integer avertexindex = (Standard_Integer)aVertex.ParameterOnLine();
thePointsHash.SetValue(avertexindex, -1);
}
}
//=========================================================================
// function : MakeNewWLine
// purpose : Makes new walking line according to the points hash
// Static subfunction in ComputePurgedWLine and DeleteOuter.
//=========================================================================
static Handle(IntPatch_WLine) MakeNewWLine(const Handle(IntPatch_WLine) &theWLine,
const NCollection_Array1<Standard_Integer> &thePointsHash)
{
Standard_Integer i;
Handle(IntSurf_LineOn2S) aPurgedLineOn2S = new IntSurf_LineOn2S();
Handle(IntPatch_WLine) aLocalWLine = new IntPatch_WLine(aPurgedLineOn2S, Standard_False);
Standard_Integer anOldLineIdx = 1, aVertexIdx = 1;
for(i = 1; i <= thePointsHash.Upper(); i++)
{
if (thePointsHash(i) == 0)
{
// Store this point.
aPurgedLineOn2S->Add(theWLine->Point(i));
anOldLineIdx++;
}
else if (thePointsHash(i) == -1)
{
// Add vertex.
IntPatch_Point aVertex = theWLine->Vertex(aVertexIdx++);
aVertex.SetParameter(anOldLineIdx++);
aLocalWLine->AddVertex(aVertex);
aPurgedLineOn2S->Add(theWLine->Point(i));
}
}
return aLocalWLine;
}
//=========================================================================
// function : MovePoint
// purpose : Move point into surface param space. No interpolation used
// because walking algorithm should care for closeness to the param space.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static void MovePoint(const Handle(Adaptor3d_HSurface) &theS1,
Standard_Real &U1, Standard_Real &V1)
{
if (U1 < theS1->FirstUParameter())
U1 = theS1->FirstUParameter();
if (U1 > theS1->LastUParameter())
U1 = theS1->LastUParameter();
if (V1 < theS1->FirstVParameter())
V1 = theS1->FirstVParameter();
if (V1 > theS1->LastVParameter())
V1 = theS1->LastVParameter();
}
//=========================================================================
// function : DeleteOuterPoints
// purpose : Check and delete out of bounds points on walking line.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static Handle(IntPatch_WLine)
DeleteOuterPoints(const Handle(IntPatch_WLine) &theWLine,
const Handle(Adaptor3d_HSurface) &theS1,
const Handle(Adaptor3d_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2)
{
Standard_Integer i;
NCollection_Array1<Standard_Integer> aDelOuterPointsHash(1, theWLine->NbPnts());
FillPointsHash(theWLine, aDelOuterPointsHash);
if (theS1->IsUPeriodic() || theS1->IsVPeriodic() ||
theS2->IsUPeriodic() || theS2->IsVPeriodic() )
return theWLine;
gp_Pnt2d aPntOnF1, aPntOnF2;
Standard_Real aX1, aY1, aX2, aY2;
// Iterate over points in walking line and delete which are out of bounds.
// Forward.
Standard_Boolean isAllDeleted = Standard_True;
Standard_Boolean aChangedFirst = Standard_False;
Standard_Integer aFirstGeomIdx = 1;
for(i = 1; i <= theWLine->NbPnts(); i++)
{
theWLine->Point(i).Parameters(aX1, aY1, aX2, aY2);
aPntOnF1.SetCoord(aX1, aY1);
aPntOnF2.SetCoord(aX2, aY2);
TopAbs_State aState1 = theDom1->Classify(aPntOnF1, Precision::Confusion());
TopAbs_State aState2 = theDom2->Classify(aPntOnF2, Precision::Confusion());
if (aState1 == TopAbs_OUT ||
aState2 == TopAbs_OUT )
{
aDelOuterPointsHash(i) = 1;
aChangedFirst = Standard_True;
}
else
{
isAllDeleted = Standard_False;
aFirstGeomIdx = Max (i - 1, 1);
if (aDelOuterPointsHash(i) == -1)
aFirstGeomIdx = i; // Use data what lies in (i) point / vertex.
aDelOuterPointsHash(i) = -1;
break;
}
}
if (isAllDeleted)
{
// ALL points are out of bounds:
// case boolean bcut_complex F5 and similar.
return theWLine;
}
// Backward.
Standard_Boolean aChangedLast = Standard_False;
Standard_Integer aLastGeomIdx = theWLine->NbPnts();
for(i = theWLine->NbPnts(); i >= 1; i--)
{
theWLine->Point(i).Parameters(aX1, aY1, aX2, aY2);
aPntOnF1.SetCoord(aX1, aY1);
aPntOnF2.SetCoord(aX2, aY2);
TopAbs_State aState1 = theDom1->Classify(aPntOnF1, Precision::Confusion());
TopAbs_State aState2 = theDom2->Classify(aPntOnF2, Precision::Confusion());
if (aState1 == TopAbs_OUT ||
aState2 == TopAbs_OUT )
{
aDelOuterPointsHash(i) = 1;
aChangedLast = Standard_True; // Move vertex to first good point
}
else
{
aLastGeomIdx = Min (i + 1, theWLine->NbPnts());
if (aDelOuterPointsHash(i) == -1)
aLastGeomIdx = i; // Use data what lies in (i) point / vertex.
aDelOuterPointsHash(i) = -1;
break;
}
}
if (!aChangedFirst && !aChangedLast)
{
// Nothing is done, return input.
return theWLine;
}
// Build new line and modify geometry of necessary vertexes.
Handle(IntPatch_WLine) aLocalWLine = MakeNewWLine(theWLine, aDelOuterPointsHash);
if (aChangedFirst)
{
// Vertex geometry.
IntPatch_Point aVertex = aLocalWLine->Vertex(1);
aVertex.SetValue(theWLine->Point(aFirstGeomIdx).Value());
Standard_Real aU1, aU2, aV1, aV2;
theWLine->Point(aFirstGeomIdx).Parameters(aU1, aV1, aU2, aV2);
MovePoint(theS1, aU1, aV1);
MovePoint(theS2, aU2, aV2);
aVertex.SetParameters(aU1, aV1, aU2, aV2);
aLocalWLine->Replace(1, aVertex);
// Change point in walking line.
aLocalWLine->SetPoint(1, aVertex);
}
if (aChangedLast)
{
// Vertex geometry.
IntPatch_Point aVertex = aLocalWLine->Vertex(aLocalWLine->NbVertex());
aVertex.SetValue(theWLine->Point(aLastGeomIdx).Value());
Standard_Real aU1, aU2, aV1, aV2;
theWLine->Point(aLastGeomIdx).Parameters(aU1, aV1, aU2, aV2);
MovePoint(theS1, aU1, aV1);
MovePoint(theS2, aU2, aV2);
aVertex.SetParameters(aU1, aV1, aU2, aV2);
aLocalWLine->Replace(aLocalWLine->NbVertex(), aVertex);
// Change point in walking line.
aLocalWLine->SetPoint(aLocalWLine->NbPnts(), aVertex);
}
return aLocalWLine;
}
//=========================================================================
// function : IsInsideIn2d
// purpose : Check if aNextPnt lies inside of tube build on aBasePnt and aBaseVec.
// In 2d space. Static subfunction in DeleteByTube.
//=========================================================================
static Standard_Boolean IsInsideIn2d(const gp_Pnt2d& aBasePnt,
const gp_Vec2d& aBaseVec,
const gp_Pnt2d& aNextPnt,
const Standard_Real aSquareMaxDist)
{
gp_Vec2d aVec2d(aBasePnt, aNextPnt);
//d*d = (basevec^(nextpnt-basepnt))**2 / basevec**2
Standard_Real aCross = aVec2d.Crossed(aBaseVec);
Standard_Real aSquareDist = aCross * aCross
/ aBaseVec.SquareMagnitude();
return (aSquareDist <= aSquareMaxDist);
}
//=========================================================================
// function : IsInsideIn3d
// purpose : Check if aNextPnt lies inside of tube build on aBasePnt and aBaseVec.
// In 3d space. Static subfunction in DeleteByTube.
//=========================================================================
static Standard_Boolean IsInsideIn3d(const gp_Pnt& aBasePnt,
const gp_Vec& aBaseVec,
const gp_Pnt& aNextPnt,
const Standard_Real aSquareMaxDist)
{
gp_Vec aVec(aBasePnt, aNextPnt);
//d*d = (basevec^(nextpnt-basepnt))**2 / basevec**2
Standard_Real aSquareDist = aVec.CrossSquareMagnitude(aBaseVec)
/ aBaseVec.SquareMagnitude();
return (aSquareDist <= aSquareMaxDist);
}
static const Standard_Integer aMinNbBadDistr = 15;
static const Standard_Integer aNbSingleBezier = 30;
//=========================================================================
// function : DeleteByTube
// purpose : Check and delete points using tube criteria.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static Handle(IntPatch_WLine)
DeleteByTube(const Handle(IntPatch_WLine) &theWLine,
const Handle(Adaptor3d_HSurface) &theS1,
const Handle(Adaptor3d_HSurface) &theS2)
{
// III: Check points for tube criteria:
// Workaround to handle case of small amount points after purge.
// Test "boolean boptuc_complex B5" and similar.
Standard_Integer aNbPnt = 0 , i;
if (theWLine->NbPnts() <= 2)
return theWLine;
NCollection_Array1<Standard_Integer> aNewPointsHash(1, theWLine->NbPnts());
FillPointsHash(theWLine, aNewPointsHash);
// Inital computations.
Standard_Real UonS1[3], VonS1[3], UonS2[3], VonS2[3];
theWLine->Point(1).ParametersOnS1(UonS1[0], VonS1[0]);
theWLine->Point(2).ParametersOnS1(UonS1[1], VonS1[1]);
theWLine->Point(1).ParametersOnS2(UonS2[0], VonS2[0]);
theWLine->Point(2).ParametersOnS2(UonS2[1], VonS2[1]);
gp_Pnt2d aBase2dPnt1(UonS1[0], VonS1[0]);
gp_Pnt2d aBase2dPnt2(UonS2[0], VonS2[0]);
gp_Vec2d aBase2dVec1(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0]);
gp_Vec2d aBase2dVec2(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0]);
gp_Pnt aBase3dPnt = theWLine->Point(1).Value();
gp_Vec aBase3dVec(theWLine->Point(1).Value(), theWLine->Point(2).Value());
// Choose base tolerance and scale it to pipe algorithm.
const Standard_Real aBaseTolerance = Precision::Approximation();
Standard_Real aResS1Tol = Min(theS1->UResolution(aBaseTolerance),
theS1->VResolution(aBaseTolerance));
Standard_Real aResS2Tol = Min(theS2->UResolution(aBaseTolerance),
theS2->VResolution(aBaseTolerance));
Standard_Real aTol1 = aResS1Tol * aResS1Tol;
Standard_Real aTol2 = aResS2Tol * aResS2Tol;
Standard_Real aTol3d = aBaseTolerance * aBaseTolerance;
const Standard_Real aLimitCoeff = 0.99 * 0.99;
for(i = 3; i <= theWLine->NbPnts(); i++)
{
Standard_Boolean isDeleteState = Standard_False;
theWLine->Point(i).ParametersOnS1(UonS1[2], VonS1[2]);
theWLine->Point(i).ParametersOnS2(UonS2[2], VonS2[2]);
gp_Pnt2d aPnt2dOnS1(UonS1[2], VonS1[2]);
gp_Pnt2d aPnt2dOnS2(UonS2[2], VonS2[2]);
const gp_Pnt& aPnt3d = theWLine->Point(i).Value();
if (aNewPointsHash(i - 1) != - 1 &&
IsInsideIn2d(aBase2dPnt1, aBase2dVec1, aPnt2dOnS1, aTol1) &&
IsInsideIn2d(aBase2dPnt2, aBase2dVec2, aPnt2dOnS2, aTol2) &&
IsInsideIn3d(aBase3dPnt, aBase3dVec, aPnt3d, aTol3d) )
{
// Handle possible uneven parametrization on one of 2d subspaces.
// Delete point only when expected lengths are close to each other (aLimitCoeff).
// Example:
// c2d1 - line
// c3d - line
// c2d2 - geometrically line, but have uneven parametrization -> c2d2 is bspline.
gp_XY aPntOnS1[2]= { gp_XY(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0])
, gp_XY(UonS1[2] - UonS1[1], VonS1[2] - VonS1[1])};
gp_XY aPntOnS2[2]= { gp_XY(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0])
, gp_XY(UonS2[2] - UonS2[1], VonS2[2] - VonS2[1])};
Standard_Real aStepOnS1 = aPntOnS1[0].SquareModulus() / aPntOnS1[1].SquareModulus();
Standard_Real aStepOnS2 = aPntOnS2[0].SquareModulus() / aPntOnS2[1].SquareModulus();
Standard_Real aStepCoeff = Min(aStepOnS1, aStepOnS2) / Max(aStepOnS1, aStepOnS2);
if (aStepCoeff > aLimitCoeff)
{
// Set hash flag to "Delete" state.
isDeleteState = Standard_True;
aNewPointsHash.SetValue(i - 1, 1);
// Change middle point.
UonS1[1] = UonS1[2];
UonS2[1] = UonS2[2];
VonS1[1] = VonS1[2];
VonS2[1] = VonS2[2];
}
}
if (!isDeleteState)
{
// Compute new pipe parameters.
UonS1[0] = UonS1[1];
VonS1[0] = VonS1[1];
UonS2[0] = UonS2[1];
VonS2[0] = VonS2[1];
UonS1[1] = UonS1[2];
VonS1[1] = VonS1[2];
UonS2[1] = UonS2[2];
VonS2[1] = VonS2[2];
aBase2dPnt1.SetCoord(UonS1[0], VonS1[0]);
aBase2dPnt2.SetCoord(UonS2[0], VonS2[0]);
aBase2dVec1.SetCoord(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0]);
aBase2dVec2.SetCoord(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0]);
aBase3dPnt = theWLine->Point(i - 1).Value();
aBase3dVec = gp_Vec(theWLine->Point(i - 1).Value(), theWLine->Point(i).Value());
aNbPnt++;
}
}
// Workaround to handle case of small amount of points after purge.
// Test "boolean boptuc_complex B5" and similar.
// This is possible since there are at least two points.
if (aNewPointsHash(1) == -1 &&
aNewPointsHash(2) == -1 &&
aNbPnt <= 3)
{
// Delete first.
aNewPointsHash(1) = 1;
}
if (aNewPointsHash(theWLine->NbPnts() - 1) == -1 &&
aNewPointsHash(theWLine->NbPnts() ) == -1 &&
aNbPnt <= 3)
{
// Delete last.
aNewPointsHash(theWLine->NbPnts()) = 1;
}
// Purgre when too small amount of points left.
if (aNbPnt <= 2)
{
for(i = aNewPointsHash.Lower(); i <= aNewPointsHash.Upper(); i++)
{
if (aNewPointsHash(i) != -1)
{
aNewPointsHash(i) = 1;
}
}
}
// Handle possible bad distribution of points,
// which are will converted into one single bezier curve (less than 30 points).
// Make distribution more even:
// max step will be nearly to 0.1 of param distance.
if (aNbPnt + 2 > aMinNbBadDistr &&
aNbPnt + 2 < aNbSingleBezier )
{
for(Standard_Integer anIdx = 1; anIdx <= 8; anIdx++)
{
Standard_Integer aHashIdx =
Standard_Integer(anIdx * theWLine->NbPnts() / 9);
//Store this point.
aNewPointsHash(aHashIdx) = 0;
}
}
return MakeNewWLine(theWLine, aNewPointsHash);
}
//=======================================================================
//function : IsSeam
//purpose : Returns:
// 0 - if interval [theU1, theU2] does not intersect the "seam-edge"
// or if "seam-edge" do not exist;
// 1 - if interval (theU1, theU2) intersect the "seam-edge".
// 2 - if theU1 or/and theU2 lie ON the "seam-edge"
//
//ATTENTION!!!
// If (theU1 == theU2) then this function will return only both 0 or 2.
//
// Static subfunction in IsSeamOrBound.
//=======================================================================
static Standard_Integer IsSeam( const Standard_Real theU1,
const Standard_Real theU2,
const Standard_Real thePeriod)
{
if(IsEqual(thePeriod, 0.0))
return 0;
//If interval [theU1, theU2] intersect seam-edge then there exists an integer
//number N such as
// (theU1 <= T*N <= theU2) <=> (theU1/T <= N <= theU2/T),
//where T is the period.
//I.e. the inerval [theU1/T, theU2/T] must contain at least one
//integer number. In this case, Floor(theU1/T) and Floor(theU2/T)
//return different values or theU1/T is strictly integer number.
//Examples:
// 1. theU1/T==2.8, theU2/T==3.5 => Floor(theU1/T) == 2, Floor(theU2/T) == 3.
// 2. theU1/T==2.0, theU2/T==2.6 => Floor(theU1/T) == Floor(theU2/T) == 2.
const Standard_Real aVal1 = theU1/thePeriod,
aVal2 = theU2/thePeriod;
const Standard_Integer aPar1 = static_cast<Standard_Integer>(Floor(aVal1));
const Standard_Integer aPar2 = static_cast<Standard_Integer>(Floor(aVal2));
if(aPar1 != aPar2)
{//Interval (theU1, theU2] intersects seam-edge
if(IsEqual(aVal2, static_cast<Standard_Real>(aPar2)))
{//aVal2 is an integer number => theU2 lies ON the "seam-edge"
return 2;
}
return 1;
}
//Here, aPar1 == aPar2.
if(IsEqual(aVal1, static_cast<Standard_Real>(aPar1)))
{//aVal1 is an integer number => theU1 lies ON the "seam-edge"
return 2;
}
//If aVal2 is a true integer number then always (aPar1 != aPar2).
return 0;
}
//=======================================================================
//function : IsSeamOrBound
//purpose : Returns TRUE if segment [thePtf, thePtl] intersects "seam-edge"
// (if it exist) or surface boundaries and both thePtf and thePtl do
// not match "seam-edge" or boundaries.
// Point thePtmid lies in this segment. If thePtmid match
// "seam-edge" or boundaries strictly (without any tolerance) then
// the function will return TRUE.
// See comments in function body for detail information.
//
// Static subfunction in JoinWLines.
//=======================================================================
static Standard_Boolean IsSeamOrBound(const IntSurf_PntOn2S& thePtf,
const IntSurf_PntOn2S& thePtl,
const IntSurf_PntOn2S& thePtmid,
const Standard_Real theU1Period,
const Standard_Real theU2Period,
const Standard_Real theV1Period,
const Standard_Real theV2Period,
const Standard_Real theUfSurf1,
const Standard_Real theUlSurf1,
const Standard_Real theVfSurf1,
const Standard_Real theVlSurf1,
const Standard_Real theUfSurf2,
const Standard_Real theUlSurf2,
const Standard_Real theVfSurf2,
const Standard_Real theVlSurf2)
{
Standard_Real aU11 = 0.0, aU12 = 0.0, aV11 = 0.0, aV12 = 0.0;
Standard_Real aU21 = 0.0, aU22 = 0.0, aV21 = 0.0, aV22 = 0.0;
thePtf.Parameters(aU11, aV11, aU12, aV12);
thePtl.Parameters(aU21, aV21, aU22, aV22);
MinMax(aU11, aU21);
MinMax(aV11, aV21);
MinMax(aU12, aU22);
MinMax(aV12, aV22);
if((aU11 - theUfSurf1)*(aU21 - theUfSurf1) < 0.0)
{//Interval [aU11, aU21] intersects theUfSurf1
return Standard_True;
}
if((aU11 - theUlSurf1)*(aU21 - theUlSurf1) < 0.0)
{//Interval [aU11, aU21] intersects theUlSurf1
return Standard_True;
}
if((aV11 - theVfSurf1)*(aV21 - theVfSurf1) < 0.0)
{//Interval [aV11, aV21] intersects theVfSurf1
return Standard_True;
}
if((aV11 - theVlSurf1)*(aV21 - theVlSurf1) < 0.0)
{//Interval [aV11, aV21] intersects theVlSurf1
return Standard_True;
}
if((aU12 - theUfSurf2)*(aU22 - theUfSurf2) < 0.0)
{//Interval [aU12, aU22] intersects theUfSurf2
return Standard_True;
}
if((aU12 - theUlSurf2)*(aU22 - theUlSurf2) < 0.0)
{//Interval [aU12, aU22] intersects theUlSurf2
return Standard_True;
}
if((aV12 - theVfSurf2)*(aV22 - theVfSurf2) < 0.0)
{//Interval [aV12, aV22] intersects theVfSurf2
return Standard_True;
}
if((aV12 - theVlSurf2)*(aV22 - theVlSurf2) < 0.0)
{//Interval [aV12, aV22] intersects theVlSurf2
return Standard_True;
}
if(IsSeam(aU11, aU21, theU1Period))
return Standard_True;
if(IsSeam(aV11, aV21, theV1Period))
return Standard_True;
if(IsSeam(aU12, aU22, theU2Period))
return Standard_True;
if(IsSeam(aV12, aV22, theV2Period))
return Standard_True;
/*
The segment [thePtf, thePtl] does not intersect the boundaries and
the seam-edge of the surfaces.
Nevertheless, following situation is possible:
seam or
bound
|
thePtf * |
|
* thePtmid
thePtl * |
|
This case must be processed, too.
*/
Standard_Real aU1 = 0.0, aU2 = 0.0, aV1 = 0.0, aV2 = 0.0;
thePtmid.Parameters(aU1, aV1, aU2, aV2);
if(IsEqual(aU1, theUfSurf1) || IsEqual(aU1, theUlSurf1))
return Standard_True;
if(IsEqual(aU2, theUfSurf2) || IsEqual(aU2, theUlSurf2))
return Standard_True;
if(IsEqual(aV1, theVfSurf1) || IsEqual(aV1, theVlSurf1))
return Standard_True;
if(IsEqual(aV2, theVfSurf2) || IsEqual(aV2, theVlSurf2))
return Standard_True;
if(IsSeam(aU1, aU1, theU1Period))
return Standard_True;
if(IsSeam(aU2, aU2, theU2Period))
return Standard_True;
if(IsSeam(aV1, aV1, theV1Period))
return Standard_True;
if(IsSeam(aV2, aV2, theV2Period))
return Standard_True;
return Standard_False;
}
//=========================================================================
// function : ComputePurgedWLine
// purpose :
//=========================================================================
Handle(IntPatch_WLine) IntPatch_WLineTool::
ComputePurgedWLine(const Handle(IntPatch_WLine) &theWLine,
const Handle(Adaptor3d_HSurface) &theS1,
const Handle(Adaptor3d_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2)
{
Standard_Integer i, k, v, nb, nbvtx;
Handle(IntPatch_WLine) aResult;
nbvtx = theWLine->NbVertex();
nb = theWLine->NbPnts();
if (nb==2)
{
const IntSurf_PntOn2S& p1 = theWLine->Point(1);
const IntSurf_PntOn2S& p2 = theWLine->Point(2);
if(p1.Value().IsEqual(p2.Value(), gp::Resolution()))
return aResult;
}
Handle(IntPatch_WLine) aLocalWLine;
Handle(IntPatch_WLine) aTmpWLine = theWLine;
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
for(i = 1; i <= nb; i++)
aLineOn2S->Add(theWLine->Point(i));
for(v = 1; v <= nbvtx; v++)
aLocalWLine->AddVertex(theWLine->Vertex(v));
// I: Delete equal points
for(i = 1; i <= aLineOn2S->NbPoints(); i++)
{
Standard_Integer aStartIndex = i + 1;
Standard_Integer anEndIndex = i + 5;
nb = aLineOn2S->NbPoints();
anEndIndex = (anEndIndex > nb) ? nb : anEndIndex;
if((aStartIndex > nb) || (anEndIndex <= 1))
continue;
k = aStartIndex;
while(k <= anEndIndex)
{
if(i != k)
{
IntSurf_PntOn2S p1 = aLineOn2S->Value(i);
IntSurf_PntOn2S p2 = aLineOn2S->Value(k);
Standard_Real UV[8];
p1.Parameters(UV[0], UV[1], UV[2], UV[3]);
p2.Parameters(UV[4], UV[5], UV[6], UV[7]);
Standard_Real aMax = Abs(UV[0]);
for(Standard_Integer anIdx = 1; anIdx < 8; anIdx++)
{
if (aMax < Abs(UV[anIdx]))
aMax = Abs(UV[anIdx]);
}
if(p1.Value().IsEqual(p2.Value(), gp::Resolution()) ||
Abs(UV[0] - UV[4]) + Abs(UV[1] - UV[5]) < 1.0e-16 * aMax ||
Abs(UV[2] - UV[6]) + Abs(UV[3] - UV[7]) < 1.0e-16 * aMax )
{
aTmpWLine = aLocalWLine;
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
for(v = 1; v <= aTmpWLine->NbVertex(); v++)
{
IntPatch_Point aVertex = aTmpWLine->Vertex(v);
Standard_Integer avertexindex = (Standard_Integer)aVertex.ParameterOnLine();
if(avertexindex >= k)
{
aVertex.SetParameter(aVertex.ParameterOnLine() - 1.);
}
aLocalWLine->AddVertex(aVertex);
}
aLineOn2S->RemovePoint(k);
anEndIndex--;
continue;
}
}
k++;
}
}
if (aLineOn2S->NbPoints() <= 2)
{
if (aLineOn2S->NbPoints() == 2)
return aLocalWLine;
else
return aResult;
}
// Avoid purge in case of C0 continuity:
// Intersection approximator may produce invalid curve after purge, example:
// bugs modalg_5 bug24731.
// Do not run purger when base number of points is too small.
if (theS1->UContinuity() == GeomAbs_C0 ||
theS1->VContinuity() == GeomAbs_C0 ||
theS2->UContinuity() == GeomAbs_C0 ||
theS2->VContinuity() == GeomAbs_C0 ||
nb < aNbSingleBezier)
{
return aLocalWLine;
}
// II: Delete out of borders points.
Handle(IntPatch_WLine) aLocalWLineOuter =
DeleteOuterPoints(aLocalWLine, theS1, theS2, theDom1, theDom2);
// III: Delete points by tube criteria.
Handle(IntPatch_WLine) aLocalWLineTube =
DeleteByTube(aLocalWLineOuter, theS1, theS2);
if(aLocalWLineTube->NbPnts() > 1)
{
aResult = aLocalWLineTube;
}
return aResult;
}
//=======================================================================
//function : JoinWLines
//purpose :
//=======================================================================
void IntPatch_WLineTool::JoinWLines(IntPatch_SequenceOfLine& theSlin,
IntPatch_SequenceOfPoint& theSPnt,
const Standard_Real theTol3D,
const Standard_Real theU1Period,
const Standard_Real theU2Period,
const Standard_Real theV1Period,
const Standard_Real theV2Period,
const Standard_Real theUfSurf1,
const Standard_Real theUlSurf1,
const Standard_Real theVfSurf1,
const Standard_Real theVlSurf1,
const Standard_Real theUfSurf2,
const Standard_Real theUlSurf2,
const Standard_Real theVfSurf2,
const Standard_Real theVlSurf2)
{
if(theSlin.Length() == 0)
return;
for(Standard_Integer aNumOfLine1 = 1; aNumOfLine1 <= theSlin.Length(); aNumOfLine1++)
{
Handle(IntPatch_WLine) aWLine1 (Handle(IntPatch_WLine)::DownCast(theSlin.Value(aNumOfLine1)));
if(aWLine1.IsNull())
{//We must have failed to join not-point-lines
continue;
}
const Standard_Integer aNbPntsWL1 = aWLine1->NbPnts();
const IntSurf_PntOn2S& aPntFW1 = aWLine1->Point(1);
const IntSurf_PntOn2S& aPntLW1 = aWLine1->Point(aNbPntsWL1);
for(Standard_Integer aNPt = 1; aNPt <= theSPnt.Length(); aNPt++)
{
const IntSurf_PntOn2S aPntCur = theSPnt.Value(aNPt).PntOn2S();
if( aPntCur.IsSame(aPntFW1, Precision::Confusion()) ||
aPntCur.IsSame(aPntLW1, Precision::Confusion()))
{
theSPnt.Remove(aNPt);
aNPt--;
}
}
Standard_Boolean hasBeenRemoved = Standard_False;
for(Standard_Integer aNumOfLine2 = aNumOfLine1 + 1; aNumOfLine2 <= theSlin.Length(); aNumOfLine2++)
{
Handle(IntPatch_WLine) aWLine2 (Handle(IntPatch_WLine)::DownCast(theSlin.Value(aNumOfLine2)));
if(aWLine2.IsNull())
continue;
const Standard_Integer aNbPntsWL2 = aWLine2->NbPnts();
const IntSurf_PntOn2S& aPntFWL1 = aWLine1->Point(1);
const IntSurf_PntOn2S& aPntLWL1 = aWLine1->Point(aNbPntsWL1);
const IntSurf_PntOn2S& aPntFWL2 = aWLine2->Point(1);
const IntSurf_PntOn2S& aPntLWL2 = aWLine2->Point(aNbPntsWL2);
if(aPntFWL1.IsSame(aPntFWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(2);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(2);
if(!IsSeamOrBound(aPt1, aPt2, aPntFWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = 1; aNPt <= aNbPntsWL2; aNPt++)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->InsertBefore(1, aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntFWL1.IsSame(aPntLWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(2);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(aNbPntsWL2-1);
if(!IsSeamOrBound(aPt1, aPt2, aPntFWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = aNbPntsWL2; aNPt >= 1; aNPt--)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->InsertBefore(1, aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntLWL1.IsSame(aPntFWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(aNbPntsWL1-1);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(2);
if(!IsSeamOrBound(aPt1, aPt2, aPntLWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = 1; aNPt <= aNbPntsWL2; aNPt++)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->Add(aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
if(aPntLWL1.IsSame(aPntLWL2, Precision::Confusion()))
{
const IntSurf_PntOn2S& aPt1 = aWLine1->Point(aNbPntsWL1-1);
const IntSurf_PntOn2S& aPt2 = aWLine2->Point(aNbPntsWL2-1);
if(!IsSeamOrBound(aPt1, aPt2, aPntLWL1, theU1Period, theU2Period,
theV1Period, theV2Period, theUfSurf1, theUlSurf1,
theVfSurf1, theVlSurf1, theUfSurf2, theUlSurf2,
theVfSurf2, theVlSurf2))
{
aWLine1->ClearVertexes();
for(Standard_Integer aNPt = aNbPntsWL2; aNPt >= 1; aNPt--)
{
const IntSurf_PntOn2S& aPt = aWLine2->Point(aNPt);
aWLine1->Curve()->Add(aPt);
}
aWLine1->ComputeVertexParameters(theTol3D);
theSlin.Remove(aNumOfLine2);
aNumOfLine2--;
hasBeenRemoved = Standard_True;
continue;
}
}
}
if(hasBeenRemoved)
aNumOfLine1--;
}
}

View File

@ -0,0 +1,81 @@
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _IntPatch_WLineTool_HeaderFile
#define _IntPatch_WLineTool_HeaderFile
#include <Standard_Boolean.hxx>
#include <Standard_Macro.hxx>
#include <IntPatch_WLine.hxx>
#include <IntPatch_SequenceOfLine.hxx>
class TopoDS_Face;
class GeomAdaptor_HSurface;
class GeomInt_LineConstructor;
class IntTools_Context;
class Adaptor3d_TopolTool;
class Adaptor3d_HSurface;
//! IntPatch_WLineTool provides set of static methods related to walking lines.
class IntPatch_WLineTool
{
public:
DEFINE_STANDARD_ALLOC
//! I
//! Removes equal points (leave one of equal points) from theWLine
//! and recompute vertex parameters.
//!
//! II
//! Removes point out of borders in case of non periodic surfaces.
//!
//! III
//! Removes exceed points using tube criteria:
//! delete 7D point if it lies near to expected lines in 2d and 3d.
//! Each task (2d, 2d, 3d) have its own tolerance and checked separately.
//!
//! Returns new WLine or null WLine if the number
//! of the points is less than 2.
Standard_EXPORT static
Handle(IntPatch_WLine) ComputePurgedWLine(const Handle(IntPatch_WLine) &theWLine,
const Handle(Adaptor3d_HSurface) &theS1,
const Handle(Adaptor3d_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2);
//! Joins all WLines from theSlin to one if it is possible and records
//! the result into theSlin again. Lines will be kept to be splitted if:
//! a) they are separated (has no common points);
//! b) resulted line (after joining) go through seam-edges or surface boundaries.
//!
//! In addition, if points in theSPnt lies at least in one of the line in theSlin,
//! this point will be deleted.
Standard_EXPORT static void JoinWLines(IntPatch_SequenceOfLine& theSlin,
IntPatch_SequenceOfPoint& theSPnt,
const Standard_Real theTol3D,
const Standard_Real theU1Period,
const Standard_Real theU2Period,
const Standard_Real theV1Period,
const Standard_Real theV2Period,
const Standard_Real theUfSurf1,
const Standard_Real theUlSurf1,
const Standard_Real theVfSurf1,
const Standard_Real theVlSurf1,
const Standard_Real theUfSurf2,
const Standard_Real theUlSurf2,
const Standard_Real theVfSurf2,
const Standard_Real theVlSurf2);
};
#endif

View File

@ -852,6 +852,33 @@ Standard_Boolean IntTools_Context::IsVertexOnLine
(aPCFirst.Distance(aPOncurve.Value()) < Precision::Confusion()))
aT = aFirst;
}
else
{
// Local search may fail. Try to use more precise algo.
Extrema_ExtPC anExt(aPv, aGAC, 1.e-10);
Standard_Real aMinDist = RealLast();
Standard_Integer aMinIdx = -1;
for (Standard_Integer anIdx = 1; anIdx <= anExt.NbExt(); anIdx++)
{
if ( anExt.IsMin(anIdx) &&
anExt.SquareDistance(anIdx) < aMinDist )
{
aMinDist = anExt.SquareDistance(anIdx);
aMinIdx = anIdx;
}
}
if (aMinIdx != -1)
{
const Extrema_POnCurv& aPOncurve = anExt.Point(aMinIdx);
aT = aPOncurve.Parameter();
if((aT > (aLast + aFirst) * 0.5) ||
(aPv.Distance(aPOncurve.Value()) > aTolSum) ||
(aPCFirst.Distance(aPOncurve.Value()) < Precision::Confusion()))
aT = aFirst;
}
}
}
//
return Standard_True;
@ -877,6 +904,32 @@ Standard_Boolean IntTools_Context::IsVertexOnLine
(aPCLast.Distance(aPOncurve.Value()) < Precision::Confusion()))
aT = aLast;
}
else
{
// Local search may fail. Try to use more precise algo.
Extrema_ExtPC anExt(aPv, aGAC, 1.e-10);
Standard_Real aMinDist = RealLast();
Standard_Integer aMinIdx = -1;
for (Standard_Integer anIdx = 1; anIdx <= anExt.NbExt(); anIdx++)
{
if ( anExt.IsMin(anIdx) &&
anExt.SquareDistance(anIdx) < aMinDist )
{
aMinDist = anExt.SquareDistance(anIdx);
aMinIdx = anIdx;
}
}
if (aMinIdx != -1)
{
const Extrema_POnCurv& aPOncurve = anExt.Point(aMinIdx);
aT = aPOncurve.Parameter();
if((aT < (aLast + aFirst) * 0.5) ||
(aPv.Distance(aPOncurve.Value()) > aTolSum) ||
(aPCLast.Distance(aPOncurve.Value()) < Precision::Confusion()))
aT = aLast;
}
}
}
//
return Standard_True;

View File

@ -108,20 +108,17 @@
#include <GeomAdaptor.hxx>
#include <GeomInt_IntSS.hxx>
#include <IntTools_WLineTool.hxx>
#include <IntPatch_WLineTool.hxx>
#ifdef OCCT_DEBUG_DUMPWLINE
static
void DumpWLine(const Handle(IntPatch_WLine)& aWLine);
#endif
//
//#ifdef OCCT_DEBUG_DUMPWLINE
//static
// void DumpWLine(const Handle(IntPatch_WLine)& aWLine);
//#endif
////
static
void TolR3d(const TopoDS_Face& ,
const TopoDS_Face& ,
Standard_Real& );
static
Handle(Geom_Curve) MakeBSpline (const Handle(IntPatch_WLine)&,
const Standard_Integer,
const Standard_Integer);
static
void Parameters(const Handle(GeomAdaptor_HSurface)&,
@ -871,17 +868,11 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
typl = L->ArcType();
//
if(typl==IntPatch_Walking) {
Handle(IntPatch_Line) anewL;
//
Handle(IntPatch_WLine) aWLine (Handle(IntPatch_WLine)::DownCast(L));
anewL = IntTools_WLineTool::ComputePurgedWLine(aWLine, myHS1, myHS2, dom1, dom2);
if(anewL.IsNull()) {
if(aWLine.IsNull()) {
return;
}
L = anewL;
//Handle(IntPatch_WLine) aWLineX (Handle(IntPatch_WLine)::DownCast(L));
//DumpWLine(aWLineX);
L = aWLine;
//
if(!myListOfPnts.IsEmpty()) {
@ -1378,14 +1369,14 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
Handle(Geom2d_BSplineCurve) H2;
if(myApprox1) {
H1 = IntTools_WLineTool::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
H1 = GeomInt_IntSS::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
}
if(myApprox2) {
H2 = IntTools_WLineTool::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
H2 = GeomInt_IntSS::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
}
//
mySeqOfCurve.Append(IntTools_Curve(MakeBSpline(WL,1,WL->NbPnts()), H1, H2));
mySeqOfCurve.Append(IntTools_Curve(GeomInt_IntSS::MakeBSpline(WL,1,WL->NbPnts()), H1, H2));
}
} // if (!myApprox)
@ -1394,7 +1385,7 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
//
Standard_Real tol2d = myTolApprox;
//
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_True);
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, 30, Standard_True);
aNbParts=myLConstruct.NbParts();
for (i=1; i<=aNbParts; i++) {
@ -1410,14 +1401,14 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
Handle(Geom2d_BSplineCurve) H2;
if(myApprox1) {
H1 = IntTools_WLineTool::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
H1 = GeomInt_IntSS::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
}
if(myApprox2) {
H2 = IntTools_WLineTool::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
H2 = GeomInt_IntSS::MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
}
//
mySeqOfCurve.Append(IntTools_Curve(MakeBSpline(WL,1,WL->NbPnts()), H1, H2));
mySeqOfCurve.Append(IntTools_Curve(GeomInt_IntSS::MakeBSpline(WL,1,WL->NbPnts()), H1, H2));
}
else {
@ -1528,14 +1519,14 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
}
//
if(myApprox1) {
H1 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
H1 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
}
//
if(myApprox2) {
H2 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
H2 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
}
//
aBSp=MakeBSpline(WL, ifprm, ilprm);
aBSp=GeomInt_IntSS::MakeBSpline(WL, ifprm, ilprm);
IntTools_Curve aIC(aBSp, H1, H2);
mySeqOfCurve.Append(aIC);
}// for (i=1; i<=aNbParts; ++i) {
@ -1578,17 +1569,18 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
}
if(myHS1 == myHS2) {
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_False, aParType);
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, 30, Standard_False, aParType);
rejectSurface = Standard_True;
}
else {
if(reApprox && !rejectSurface)
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_False, aParType);
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, 30, Standard_False, aParType);
else {
Standard_Integer iDegMax, iDegMin, iNbIter;
//
ApproxParameters(myHS1, myHS2, iDegMin, iDegMax, iNbIter);
theapp3d.SetParameters(myTolApprox, tol2d, iDegMin, iDegMax, iNbIter, Standard_True, aParType);
theapp3d.SetParameters(myTolApprox, tol2d, iDegMin, iDegMax,
iNbIter, 30, Standard_True, aParType);
}
}
//
@ -1654,7 +1646,8 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
if ((typs1==GeomAbs_BezierSurface || typs1==GeomAbs_BSplineSurface) &&
(typs2==GeomAbs_BezierSurface || typs2==GeomAbs_BSplineSurface)) {
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_True, aParType);
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, 30,
Standard_True, aParType);
Standard_Boolean bUseSurfaces;
bUseSurfaces = IntTools_WLineTool::NotUseSurfacesForApprox(myFace1, myFace2, WL, ifprm, ilprm);
@ -1662,7 +1655,8 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
// ######
rejectSurface = Standard_True;
// ######
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_False, aParType);
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, 30,
Standard_False, aParType);
}
}
}
@ -1674,14 +1668,14 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
Handle(Geom2d_BSplineCurve) H1;
Handle(Geom2d_BSplineCurve) H2;
//
Handle(Geom_Curve) aBSp=MakeBSpline(WL,ifprm, ilprm);
Handle(Geom_Curve) aBSp=GeomInt_IntSS::MakeBSpline(WL,ifprm, ilprm);
//
if(myApprox1) {
H1 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
H1 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
}
//
if(myApprox2) {
H2 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
H2 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
}
//
IntTools_Curve aIC(aBSp, H1, H2);
@ -1884,15 +1878,15 @@ void IntTools_FaceFace::MakeCurve(const Standard_Integer Index,
Handle(Geom2d_BSplineCurve) H1, H2;
bPCurvesOk = Standard_True;
//
Handle(Geom_Curve) aBSp=MakeBSpline(WL,ifprm, ilprm);
Handle(Geom_Curve) aBSp=GeomInt_IntSS::MakeBSpline(WL,ifprm, ilprm);
if(myApprox1) {
H1 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
H1 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
bPCurvesOk = CheckPCurve(H1, myFace1);
}
if(myApprox2) {
H2 = IntTools_WLineTool::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
H2 = GeomInt_IntSS::MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
bPCurvesOk = bPCurvesOk && CheckPCurve(H2, myFace2);
}
//

View File

@ -13,26 +13,25 @@
#include <IntTools_WLineTool.hxx>
#include <Adaptor3d_TopolTool.hxx>
#include <BRep_Tool.hxx>
#include <Extrema_ExtCC.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <GeomInt_LineConstructor.hxx>
#include <GeomInt.hxx>
#include <Geom2dAPI_InterCurveCurve.hxx>
#include <Geom2d_Circle.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomInt.hxx>
#include <GeomInt_LineConstructor.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Surface.hxx>
#include <gp_Circ.hxx>
#include <IntTools_Context.hxx>
#include <Precision.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
#include <TColStd_Array1OfListOfInteger.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColgp_SequenceOfPnt2d.hxx>
/////////////////////// NotUseSurfacesForApprox /////////////////////////
@ -228,38 +227,6 @@ Standard_Boolean IntTools_WLineTool::NotUseSurfacesForApprox(const TopoDS_Face&
/////////////////////// end of NotUseSurfacesForApprox //////////////////
//=======================================================================
//function : MakeBSpline2d
//purpose :
//=======================================================================
Handle(Geom2d_BSplineCurve) IntTools_WLineTool::
MakeBSpline2d(const Handle(IntPatch_WLine)& theWLine,
const Standard_Integer ideb,
const Standard_Integer ifin,
const Standard_Boolean onFirst)
{
Standard_Integer i, nbpnt = ifin-ideb+1;
TColgp_Array1OfPnt2d poles(1,nbpnt);
TColStd_Array1OfReal knots(1,nbpnt);
TColStd_Array1OfInteger mults(1,nbpnt);
Standard_Integer ipidebm1;
for(i = 1, ipidebm1 = i+ideb-1; i <= nbpnt; ipidebm1++, i++) {
Standard_Real U, V;
if(onFirst)
theWLine->Point(ipidebm1).ParametersOnS1(U, V);
else
theWLine->Point(ipidebm1).ParametersOnS2(U, V);
poles(i).SetCoord(U, V);
mults(i) = 1;
knots(i) = i-1;
}
mults(1) = mults(nbpnt) = 2;
return new Geom2d_BSplineCurve(poles,knots,mults,1);
}
/////////////////////// DecompositionOfWLine ////////////////////////////
//=======================================================================
@ -767,7 +734,6 @@ Standard_Boolean IntTools_WLineTool::
Standard_Real& theReachedTol3d,
const Handle(IntTools_Context)& aContext)
{
Standard_Boolean bRet, bAvoidLineConstructor;
Standard_Integer aNbPnts, aNbParts;
//
@ -1492,558 +1458,4 @@ Standard_Boolean IntTools_WLineTool::
return Standard_True;
}
///////////////////// end of DecompositionOfWLine ///////////////////////
/////////////////////// ComputePurgedWLine //////////////////////////////
//=========================================================================
// function : FillPointsHash
// purpose : Fill points hash by input data.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static void FillPointsHash(const Handle(IntPatch_WLine) &theWLine,
NCollection_Array1<Standard_Integer> &thePointsHash)
{
// 1 - Delete point.
// 0 - Store point.
// -1 - Vertex point (not delete).
Standard_Integer i, v;
for(i = 1; i <= theWLine->NbPnts(); i++)
thePointsHash.SetValue(i, 0);
for(v = 1; v <= theWLine->NbVertex(); v++)
{
IntPatch_Point aVertex = theWLine->Vertex(v);
Standard_Integer avertexindex = (Standard_Integer)aVertex.ParameterOnLine();
thePointsHash.SetValue(avertexindex, -1);
}
}
//=========================================================================
// function : MakeNewWLine
// purpose : Makes new walking line according to the points hash
// Static subfunction in ComputePurgedWLine and DeleteOuter.
//=========================================================================
static Handle(IntPatch_WLine) MakeNewWLine(const Handle(IntPatch_WLine) &theWLine,
const NCollection_Array1<Standard_Integer> &thePointsHash)
{
Standard_Integer i;
Handle(IntSurf_LineOn2S) aPurgedLineOn2S = new IntSurf_LineOn2S();
Handle(IntPatch_WLine) aLocalWLine = new IntPatch_WLine(aPurgedLineOn2S, Standard_False);
Standard_Integer anOldLineIdx = 1, aVertexIdx = 1;
for(i = 1; i <= thePointsHash.Upper(); i++)
{
if (thePointsHash(i) == 0)
{
// Store this point.
aPurgedLineOn2S->Add(theWLine->Point(i));
anOldLineIdx++;
}
else if (thePointsHash(i) == -1)
{
// Add vertex.
IntPatch_Point aVertex = theWLine->Vertex(aVertexIdx++);
aVertex.SetParameter(anOldLineIdx++);
aLocalWLine->AddVertex(aVertex);
aPurgedLineOn2S->Add(theWLine->Point(i));
}
}
return aLocalWLine;
}
//=========================================================================
// function : MovePoint
// purpose : Move point into surface param space. No interpolation used
// because walking algorithm should care for closeness to the param space.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static void MovePoint(const Handle(GeomAdaptor_HSurface) &theS1,
Standard_Real &U1, Standard_Real &V1)
{
if (U1 < theS1->FirstUParameter())
U1 = theS1->FirstUParameter();
if (U1 > theS1->LastUParameter())
U1 = theS1->LastUParameter();
if (V1 < theS1->FirstVParameter())
V1 = theS1->FirstVParameter();
if (V1 > theS1->LastVParameter())
V1 = theS1->LastVParameter();
}
//=========================================================================
// function : DeleteOuterPoints
// purpose : Check and delete out of bounds points on walking line.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static Handle(IntPatch_WLine)
DeleteOuterPoints(const Handle(IntPatch_WLine) &theWLine,
const Handle(GeomAdaptor_HSurface) &theS1,
const Handle(GeomAdaptor_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2)
{
Standard_Integer i;
NCollection_Array1<Standard_Integer> aDelOuterPointsHash(1, theWLine->NbPnts());
FillPointsHash(theWLine, aDelOuterPointsHash);
if (theS1->IsUPeriodic() || theS1->IsVPeriodic() ||
theS2->IsUPeriodic() || theS2->IsVPeriodic() )
return theWLine;
gp_Pnt2d aPntOnF1, aPntOnF2;
Standard_Real aX1, aY1, aX2, aY2;
// Iterate over points in walking line and delete which are out of bounds.
// Forward.
Standard_Boolean isAllDeleted = Standard_True;
Standard_Boolean aChangedFirst = Standard_False;
Standard_Integer aFirstGeomIdx = 1;
for(i = 1; i <= theWLine->NbPnts(); i++)
{
theWLine->Point(i).Parameters(aX1, aY1, aX2, aY2);
aPntOnF1.SetCoord(aX1, aY1);
aPntOnF2.SetCoord(aX2, aY2);
TopAbs_State aState1 = theDom1->Classify(aPntOnF1, Precision::Confusion());
TopAbs_State aState2 = theDom2->Classify(aPntOnF2, Precision::Confusion());
if (aState1 == TopAbs_OUT ||
aState2 == TopAbs_OUT )
{
aDelOuterPointsHash(i) = 1;
aChangedFirst = Standard_True;
}
else
{
isAllDeleted = Standard_False;
aFirstGeomIdx = Max (i - 1, 1);
if (aDelOuterPointsHash(i) == -1)
aFirstGeomIdx = i; // Use data what lies in (i) point / vertex.
aDelOuterPointsHash(i) = -1;
break;
}
}
if (isAllDeleted)
{
// ALL points are out of bounds:
// case boolean bcut_complex F5 and similar.
return theWLine;
}
// Backward.
Standard_Boolean aChangedLast = Standard_False;
Standard_Integer aLastGeomIdx = theWLine->NbPnts();
for(i = theWLine->NbPnts(); i >= 1; i--)
{
theWLine->Point(i).Parameters(aX1, aY1, aX2, aY2);
aPntOnF1.SetCoord(aX1, aY1);
aPntOnF2.SetCoord(aX2, aY2);
TopAbs_State aState1 = theDom1->Classify(aPntOnF1, Precision::Confusion());
TopAbs_State aState2 = theDom2->Classify(aPntOnF2, Precision::Confusion());
if (aState1 == TopAbs_OUT ||
aState2 == TopAbs_OUT )
{
aDelOuterPointsHash(i) = 1;
aChangedLast = Standard_True; // Move vertex to first good point
}
else
{
aLastGeomIdx = Min (i + 1, theWLine->NbPnts());
if (aDelOuterPointsHash(i) == -1)
aLastGeomIdx = i; // Use data what lies in (i) point / vertex.
aDelOuterPointsHash(i) = -1;
break;
}
}
if (!aChangedFirst && !aChangedLast)
{
// Nothing is done, return input.
return theWLine;
}
// Build new line and modify geometry of necessary vertexes.
Handle(IntPatch_WLine) aLocalWLine = MakeNewWLine(theWLine, aDelOuterPointsHash);
if (aChangedFirst)
{
// Vertex geometry.
IntPatch_Point aVertex = aLocalWLine->Vertex(1);
aVertex.SetValue(theWLine->Point(aFirstGeomIdx).Value());
Standard_Real aU1, aU2, aV1, aV2;
theWLine->Point(aFirstGeomIdx).Parameters(aU1, aV1, aU2, aV2);
MovePoint(theS1, aU1, aV1);
MovePoint(theS2, aU2, aV2);
aVertex.SetParameters(aU1, aV1, aU2, aV2);
aLocalWLine->Replace(1, aVertex);
// Change point in walking line.
aLocalWLine->SetPoint(1, aVertex);
}
if (aChangedLast)
{
// Vertex geometry.
IntPatch_Point aVertex = aLocalWLine->Vertex(aLocalWLine->NbVertex());
aVertex.SetValue(theWLine->Point(aLastGeomIdx).Value());
Standard_Real aU1, aU2, aV1, aV2;
theWLine->Point(aLastGeomIdx).Parameters(aU1, aV1, aU2, aV2);
MovePoint(theS1, aU1, aV1);
MovePoint(theS2, aU2, aV2);
aVertex.SetParameters(aU1, aV1, aU2, aV2);
aLocalWLine->Replace(aLocalWLine->NbVertex(), aVertex);
// Change point in walking line.
aLocalWLine->SetPoint(aLocalWLine->NbPnts(), aVertex);
}
return aLocalWLine;
}
//=========================================================================
// function : IsInsideIn2d
// purpose : Check if aNextPnt lies inside of tube build on aBasePnt and aBaseVec.
// In 2d space. Static subfunction in DeleteByTube.
//=========================================================================
static Standard_Boolean IsInsideIn2d(const gp_Pnt2d& aBasePnt,
const gp_Vec2d& aBaseVec,
const gp_Pnt2d& aNextPnt,
const Standard_Real aSquareMaxDist)
{
gp_Vec2d aVec2d(aBasePnt, aNextPnt);
//d*d = (basevec^(nextpnt-basepnt))**2 / basevec**2
Standard_Real aCross = aVec2d.Crossed(aBaseVec);
Standard_Real aSquareDist = aCross * aCross
/ aBaseVec.SquareMagnitude();
return (aSquareDist <= aSquareMaxDist);
}
//=========================================================================
// function : IsInsideIn3d
// purpose : Check if aNextPnt lies inside of tube build on aBasePnt and aBaseVec.
// In 3d space. Static subfunction in DeleteByTube.
//=========================================================================
static Standard_Boolean IsInsideIn3d(const gp_Pnt& aBasePnt,
const gp_Vec& aBaseVec,
const gp_Pnt& aNextPnt,
const Standard_Real aSquareMaxDist)
{
gp_Vec aVec(aBasePnt, aNextPnt);
//d*d = (basevec^(nextpnt-basepnt))**2 / basevec**2
Standard_Real aSquareDist = aVec.CrossSquareMagnitude(aBaseVec)
/ aBaseVec.SquareMagnitude();
return (aSquareDist <= aSquareMaxDist);
}
static const Standard_Integer aMinNbBadDistr = 15;
static const Standard_Integer aNbSingleBezier = 30;
//=========================================================================
// function : DeleteByTube
// purpose : Check and delete points using tube criteria.
// Static subfunction in ComputePurgedWLine.
//=========================================================================
static Handle(IntPatch_WLine)
DeleteByTube(const Handle(IntPatch_WLine) &theWLine,
const Handle(GeomAdaptor_HSurface) &theS1,
const Handle(GeomAdaptor_HSurface) &theS2)
{
// III: Check points for tube criteria:
// Workaround to handle case of small amount points after purge.
// Test "boolean boptuc_complex B5" and similar.
Standard_Integer aNbPnt = 0 , i;
if (theWLine->NbPnts() <= 2)
return theWLine;
NCollection_Array1<Standard_Integer> aNewPointsHash(1, theWLine->NbPnts());
FillPointsHash(theWLine, aNewPointsHash);
// Inital computations.
Standard_Real UonS1[3], VonS1[3], UonS2[3], VonS2[3];
theWLine->Point(1).ParametersOnS1(UonS1[0], VonS1[0]);
theWLine->Point(2).ParametersOnS1(UonS1[1], VonS1[1]);
theWLine->Point(1).ParametersOnS2(UonS2[0], VonS2[0]);
theWLine->Point(2).ParametersOnS2(UonS2[1], VonS2[1]);
gp_Pnt2d aBase2dPnt1(UonS1[0], VonS1[0]);
gp_Pnt2d aBase2dPnt2(UonS2[0], VonS2[0]);
gp_Vec2d aBase2dVec1(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0]);
gp_Vec2d aBase2dVec2(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0]);
gp_Pnt aBase3dPnt = theWLine->Point(1).Value();
gp_Vec aBase3dVec(theWLine->Point(1).Value(), theWLine->Point(2).Value());
// Choose base tolerance and scale it to pipe algorithm.
const Standard_Real aBaseTolerance = Precision::Approximation();
Standard_Real aResS1Tol = Min(theS1->UResolution(aBaseTolerance),
theS1->VResolution(aBaseTolerance));
Standard_Real aResS2Tol = Min(theS2->UResolution(aBaseTolerance),
theS2->VResolution(aBaseTolerance));
Standard_Real aTol1 = aResS1Tol * aResS1Tol;
Standard_Real aTol2 = aResS2Tol * aResS2Tol;
Standard_Real aTol3d = aBaseTolerance * aBaseTolerance;
const Standard_Real aLimitCoeff = 0.99 * 0.99;
for(i = 3; i <= theWLine->NbPnts(); i++)
{
Standard_Boolean isDeleteState = Standard_False;
theWLine->Point(i).ParametersOnS1(UonS1[2], VonS1[2]);
theWLine->Point(i).ParametersOnS2(UonS2[2], VonS2[2]);
gp_Pnt2d aPnt2dOnS1(UonS1[2], VonS1[2]);
gp_Pnt2d aPnt2dOnS2(UonS2[2], VonS2[2]);
const gp_Pnt& aPnt3d = theWLine->Point(i).Value();
if (aNewPointsHash(i - 1) != - 1 &&
IsInsideIn2d(aBase2dPnt1, aBase2dVec1, aPnt2dOnS1, aTol1) &&
IsInsideIn2d(aBase2dPnt2, aBase2dVec2, aPnt2dOnS2, aTol2) &&
IsInsideIn3d(aBase3dPnt, aBase3dVec, aPnt3d, aTol3d) )
{
// Handle possible uneven parametrization on one of 2d subspaces.
// Delete point only when expected lengths are close to each other (aLimitCoeff).
// Example:
// c2d1 - line
// c3d - line
// c2d2 - geometrically line, but have uneven parametrization -> c2d2 is bspline.
gp_XY aPntOnS1[2]= { gp_XY(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0])
, gp_XY(UonS1[2] - UonS1[1], VonS1[2] - VonS1[1])};
gp_XY aPntOnS2[2]= { gp_XY(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0])
, gp_XY(UonS2[2] - UonS2[1], VonS2[2] - VonS2[1])};
Standard_Real aStepOnS1 = aPntOnS1[0].SquareModulus() / aPntOnS1[1].SquareModulus();
Standard_Real aStepOnS2 = aPntOnS2[0].SquareModulus() / aPntOnS2[1].SquareModulus();
Standard_Real aStepCoeff = Min(aStepOnS1, aStepOnS2) / Max(aStepOnS1, aStepOnS2);
if (aStepCoeff > aLimitCoeff)
{
// Set hash flag to "Delete" state.
isDeleteState = Standard_True;
aNewPointsHash.SetValue(i - 1, 1);
// Change middle point.
UonS1[1] = UonS1[2];
UonS2[1] = UonS2[2];
VonS1[1] = VonS1[2];
VonS2[1] = VonS2[2];
}
}
if (!isDeleteState)
{
// Compute new pipe parameters.
UonS1[0] = UonS1[1];
VonS1[0] = VonS1[1];
UonS2[0] = UonS2[1];
VonS2[0] = VonS2[1];
UonS1[1] = UonS1[2];
VonS1[1] = VonS1[2];
UonS2[1] = UonS2[2];
VonS2[1] = VonS2[2];
aBase2dPnt1.SetCoord(UonS1[0], VonS1[0]);
aBase2dPnt2.SetCoord(UonS2[0], VonS2[0]);
aBase2dVec1.SetCoord(UonS1[1] - UonS1[0], VonS1[1] - VonS1[0]);
aBase2dVec2.SetCoord(UonS2[1] - UonS2[0], VonS2[1] - VonS2[0]);
aBase3dPnt = theWLine->Point(i - 1).Value();
aBase3dVec = gp_Vec(theWLine->Point(i - 1).Value(), theWLine->Point(i).Value());
aNbPnt++;
}
}
// Workaround to handle case of small amount of points after purge.
// Test "boolean boptuc_complex B5" and similar.
// This is possible since there are at least two points.
if (aNewPointsHash(1) == -1 &&
aNewPointsHash(2) == -1 &&
aNbPnt <= 3)
{
// Delete first.
aNewPointsHash(1) = 1;
}
if (aNewPointsHash(theWLine->NbPnts() - 1) == -1 &&
aNewPointsHash(theWLine->NbPnts() ) == -1 &&
aNbPnt <= 3)
{
// Delete last.
aNewPointsHash(theWLine->NbPnts()) = 1;
}
// Purgre when too small amount of points left.
if (aNbPnt <= 2)
{
for(i = aNewPointsHash.Lower(); i <= aNewPointsHash.Upper(); i++)
{
if (aNewPointsHash(i) != -1)
{
aNewPointsHash(i) = 1;
}
}
}
// Handle possible bad distribution of points,
// which are will converted into one single bezier curve (less than 30 points).
// Make distribution more even:
// max step will be nearly to 0.1 of param distance.
if (aNbPnt + 2 > aMinNbBadDistr &&
aNbPnt + 2 < aNbSingleBezier )
{
for(Standard_Integer anIdx = 1; anIdx <= 8; anIdx++)
{
Standard_Integer aHashIdx =
Standard_Integer(anIdx * theWLine->NbPnts() / 9);
//Store this point.
aNewPointsHash(aHashIdx) = 0;
}
}
return MakeNewWLine(theWLine, aNewPointsHash);
}
//=========================================================================
// function : ComputePurgedWLine
// purpose :
//=========================================================================
Handle(IntPatch_WLine) IntTools_WLineTool::
ComputePurgedWLine(const Handle(IntPatch_WLine) &theWLine,
const Handle(GeomAdaptor_HSurface) &theS1,
const Handle(GeomAdaptor_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2)
{
Standard_Integer i, k, v, nb, nbvtx;
Handle(IntPatch_WLine) aResult;
nbvtx = theWLine->NbVertex();
nb = theWLine->NbPnts();
if (nb==2)
{
const IntSurf_PntOn2S& p1 = theWLine->Point(1);
const IntSurf_PntOn2S& p2 = theWLine->Point(2);
if(p1.Value().IsEqual(p2.Value(), gp::Resolution()))
return aResult;
}
Handle(IntPatch_WLine) aLocalWLine;
Handle(IntPatch_WLine) aTmpWLine = theWLine;
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
for(i = 1; i <= nb; i++)
aLineOn2S->Add(theWLine->Point(i));
for(v = 1; v <= nbvtx; v++)
aLocalWLine->AddVertex(theWLine->Vertex(v));
// I: Delete equal points
for(i = 1; i <= aLineOn2S->NbPoints(); i++)
{
Standard_Integer aStartIndex = i + 1;
Standard_Integer anEndIndex = i + 5;
nb = aLineOn2S->NbPoints();
anEndIndex = (anEndIndex > nb) ? nb : anEndIndex;
if((aStartIndex > nb) || (anEndIndex <= 1))
continue;
k = aStartIndex;
while(k <= anEndIndex)
{
if(i != k)
{
IntSurf_PntOn2S p1 = aLineOn2S->Value(i);
IntSurf_PntOn2S p2 = aLineOn2S->Value(k);
Standard_Real UV[8];
p1.Parameters(UV[0], UV[1], UV[2], UV[3]);
p2.Parameters(UV[4], UV[5], UV[6], UV[7]);
Standard_Real aMax = Abs(UV[0]);
for(Standard_Integer anIdx = 1; anIdx < 8; anIdx++)
{
if (aMax < Abs(UV[anIdx]))
aMax = Abs(UV[anIdx]);
}
if(p1.Value().IsEqual(p2.Value(), gp::Resolution()) ||
Abs(UV[0] - UV[4]) + Abs(UV[1] - UV[5]) < 1.0e-16 * aMax ||
Abs(UV[2] - UV[6]) + Abs(UV[3] - UV[7]) < 1.0e-16 * aMax )
{
aTmpWLine = aLocalWLine;
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
for(v = 1; v <= aTmpWLine->NbVertex(); v++)
{
IntPatch_Point aVertex = aTmpWLine->Vertex(v);
Standard_Integer avertexindex = (Standard_Integer)aVertex.ParameterOnLine();
if(avertexindex >= k)
{
aVertex.SetParameter(aVertex.ParameterOnLine() - 1.);
}
aLocalWLine->AddVertex(aVertex);
}
aLineOn2S->RemovePoint(k);
anEndIndex--;
continue;
}
}
k++;
}
}
if (aLineOn2S->NbPoints() <= 2)
{
if (aLineOn2S->NbPoints() == 2)
return aLocalWLine;
else
return aResult;
}
// Avoid purge in case of C0 continuity:
// Intersection approximator may produce invalid curve after purge, example:
// bugs modalg_5 bug24731.
// Do not run purger when base number of points is too small.
if (theS1->UContinuity() == GeomAbs_C0 ||
theS1->VContinuity() == GeomAbs_C0 ||
theS2->UContinuity() == GeomAbs_C0 ||
theS2->VContinuity() == GeomAbs_C0 ||
nb < aNbSingleBezier)
{
return aLocalWLine;
}
// II: Delete out of borders points.
Handle(IntPatch_WLine) aLocalWLineOuter =
DeleteOuterPoints(aLocalWLine, theS1, theS2, theDom1, theDom2);
/// III: Delete points by tube criteria.
Handle(IntPatch_WLine) aLocalWLineTube =
DeleteByTube(aLocalWLineOuter, theS1, theS2);
if(aLocalWLineTube->NbPnts() > 1)
{
aResult = aLocalWLineTube;
}
return aResult;
}
/////////////////////// end of ComputePurgedWLine ///////////////////////
///////////////////// end of DecompositionOfWLine ///////////////////////

View File

@ -38,33 +38,6 @@ public:
const Standard_Integer ifprm,
const Standard_Integer ilprm);
//! I
//! Removes equal points (leave one of equal points) from theWLine
//! and recompute vertex parameters.
//!
//! II
//! Removes point out of borders in case of non periodic surfaces.
//!
//! III
//! Removes exceed points using tube criteria:
//! delete 7D point if it lies near to expected lines in 2d and 3d.
//! Each task (2d, 2d, 3d) have its own tolerance and checked separately.
//!
//! Returns new WLine or null WLine if the number
//! of the points is less than 2.
Standard_EXPORT static
Handle(IntPatch_WLine) ComputePurgedWLine(const Handle(IntPatch_WLine) &theWLine,
const Handle(GeomAdaptor_HSurface) &theS1,
const Handle(GeomAdaptor_HSurface) &theS2,
const Handle(Adaptor3d_TopolTool) &theDom1,
const Handle(Adaptor3d_TopolTool) &theDom2);
Standard_EXPORT static
Handle(Geom2d_BSplineCurve) MakeBSpline2d(const Handle(IntPatch_WLine) &theWLine,
const Standard_Integer ideb,
const Standard_Integer ifin,
const Standard_Boolean onFirst);
Standard_EXPORT static
Standard_Boolean DecompositionOfWLine(const Handle(IntPatch_WLine)& theWLine,
const Handle(GeomAdaptor_HSurface)& theSurface1,

View File

@ -258,23 +258,47 @@ static void Function_SetUVBounds(Standard_Real& myU1,
nbp = Max(nbp, 3);
Step = (W2 - W1) / (nbp - 1);
Standard_Boolean isclandper = (!(myCurve->IsClosed()) && !(myCurve->IsPeriodic()));
for(Standard_Real par = W1 + Step; par <= W2; par += Step) {
Standard_Boolean isFirst = Standard_True;
for(Standard_Real par = W1 + Step; par <= W2; par += Step)
{
if(!isclandper) par += Step;
P = myCurve->Value(par);
ElSLib::Parameters( Cone, P, U, V);
U += Delta;
d = U - U1;
if(d > M_PI) {
if(d > M_PI)
{
if( ( (IsEqual(U,(2*M_PI),1.e-10) && (U1 >= 0. && U1 <= M_PI)) &&
(IsEqual(U,Ul,1.e-10) && !IsEqual(Uf,0.,1.e-10)) ) && isclandper ) U = 0.;
else Delta -= 2*M_PI;
(IsEqual(U,Ul,1.e-10) && !IsEqual(Uf,0.,1.e-10)) ) && isclandper )
U = 0.0;
else
{
// Protection against first-last point on seam.
if (isFirst)
U1 = 2*M_PI;
else if (par + Step >= W2)
U = 0.0;
else
Delta -= 2*M_PI;
}
U += Delta;
d = U - U1;
}
else if(d < -M_PI) {
else if(d < -M_PI)
{
if( ( (IsEqual(U,0.,1.e-10) && (U1 >= M_PI && U1 <= (2*M_PI))) &&
(IsEqual(U,Ul,1.e-10) && !IsEqual(Uf,(2*M_PI),1.e-10)) ) && isclandper ) U = 2*M_PI;
else Delta += 2*M_PI;
(IsEqual(U,Ul,1.e-10) && !IsEqual(Uf,(2*M_PI),1.e-10)) ) && isclandper )
U = 2*M_PI;
else
{
// Protection against first-last point on seam.
if (isFirst)
U1 = 0.0;
else if (par + Step >= W2)
U = 2*M_PI;
else
Delta += 2*M_PI;
}
U += Delta;
d = U - U1;
}
@ -282,7 +306,8 @@ static void Function_SetUVBounds(Standard_Real& myU1,
if(U < myU1) {myU1 = U; pmin = par;}
if(U > myU2) {myU2 = U; pmax = par;}
U1 = U;
}
isFirst = Standard_False;
} // for(Standard_Real par = W1 + Step; par <= W2; par += Step)
if(!(Abs(pmin - W1) <= Precision::PConfusion() || Abs(pmin - W2) <= Precision::PConfusion()) ) myU1 -= dmax*.5;
if(!(Abs(pmax - W1) <= Precision::PConfusion() || Abs(pmax - W2) <= Precision::PConfusion()) ) myU2 += dmax*.5;

View File

@ -19,6 +19,7 @@ QABugs_16.cxx
QABugs_17.cxx
QABugs_18.cxx
QABugs_19.cxx
QABugs_20.cxx
QABugs_MyText.cxx
QABugs_MyText.hxx
QABugs_PresentableObject.cxx

View File

@ -35,6 +35,7 @@ void QABugs::Commands(Draw_Interpretor& theCommands) {
QABugs::Commands_17(theCommands);
QABugs::Commands_18(theCommands);
QABugs::Commands_19(theCommands);
QABugs::Commands_20(theCommands);
return;
}

View File

@ -73,6 +73,7 @@ public:
Standard_EXPORT static void Commands_19 (Draw_Interpretor& DI);
Standard_EXPORT static void Commands_20 (Draw_Interpretor& DI);

1251
src/QABugs/QABugs_20.cxx Normal file

File diff suppressed because it is too large Load Diff

View File

@ -286,17 +286,15 @@ static Standard_Integer BUC60652(Draw_Interpretor& di, Standard_Integer argc, co
static Standard_Integer defNbPntMax = 30;
static Standard_Real defTol3d = 1.e-7;
static Standard_Real defTol2d = 1.e-7;
static Standard_Boolean defRelativeTol=Standard_True;
Standard_Integer NbPntMax = defNbPntMax;
Standard_Real Toler3d =defTol3d;
Standard_Real Toler2d = defTol2d;
Standard_Boolean RelativeTol= defRelativeTol;
// //== // ksection : operateur section appelant BRepAlgo_BooleanOperation
//== // ksection : operateur section appelant BRepAlgo_BooleanOperations
//=======================================================================
Standard_Integer ksection(Draw_Interpretor& di, Standard_Integer n, const char ** a) {
if (n < 8) {
di << "Usage : " << a[0] << " resultat shell1 shell2 NbPntMax Toler3d Toler2d RelativeTol" << "\n";
di << "Usage : " << a[0] << " resultat shell1 shell2 NbPntMax Toler3d Toler2d" << "\n";
return -1;
}
// a[1]= resultat
@ -305,20 +303,18 @@ Standard_Integer ksection(Draw_Interpretor& di, Standard_Integer n, const char *
// a[4]= NbPntMax
// a[5]= Toler3d
// a[6]= Toler2d
// a[7]= RelativeTol
TopoDS_Shape s1 = DBRep::Get(a[2],TopAbs_SHELL);
TopoDS_Shape s2 = DBRep::Get(a[3],TopAbs_SHELL);
if (s1.IsNull() || s2.IsNull()) return 1;
NbPntMax=Draw::Atoi(a[4]);
Toler3d=Draw::Atof(a[5]);
Toler2d=Draw::Atof(a[6]);
RelativeTol=Draw::Atoi(a[7]);
di << "BRepAlgo_BooleanOperations myalgo\n";
BRepAlgo_BooleanOperations myalgo;
myalgo.Shapes(s1, s2);
myalgo.SetApproxParameters(NbPntMax,Toler3d,Toler2d,RelativeTol);
myalgo.SetApproxParameters(NbPntMax,Toler3d,Toler2d);
TopoDS_Shape res; res = myalgo.Section();
DBRep::Set(a[1],res);
return 0;
@ -1816,10 +1812,10 @@ void QABugs::Commands_3(Draw_Interpretor& theCommands) {
theCommands.Add("BUC60609","BUC60609 shape name [U V]",__FILE__,BUC60609,group);
theCommands.Add("BUC60632","BUC60632 mode length",__FILE__,BUC60632,group);
theCommands.Add("BUC60652","BUC60652 face",__FILE__,BUC60652,group);
theCommands.Add("ksection","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d RelativeTol",__FILE__,ksection,group);
theCommands.Add("BUC60682","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d RelativeTol",__FILE__,ksection,group);
theCommands.Add("BUC60669","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d RelativeTol",__FILE__,ksection,group);
theCommands.Add("PRO19626","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d RelativeTol",__FILE__,ksection,group);
theCommands.Add("ksection","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d",__FILE__,ksection,group);
theCommands.Add("BUC60682","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d",__FILE__,ksection,group);
theCommands.Add("BUC60669","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d",__FILE__,ksection,group);
theCommands.Add("PRO19626","ksection resultat shell1 shell2 NbPntMax Toler3d Toler2d",__FILE__,ksection,group);
theCommands.Add("BUC60574","BUC60574 ",__FILE__,BUC60574,group);
theCommands.Add("BUC60699","BUC60699 ",__FILE__,BUC60699,group);

View File

@ -217,7 +217,7 @@ void ShapeAlgo_AlgoContainer::ApproxBSplineCurve (const Handle(Geom_BSplineCurve
}
GeomInt_WLApprox theapp3d;
Standard_Real Tol = Precision::Approximation();
theapp3d.SetParameters(Tol, Tol, 4, 8, 0, Standard_True);
theapp3d.SetParameters(Tol, Tol, 4, 8, 0, 30, Standard_True);
Handle(IntPatch_WLine) WL = new IntPatch_WLine(R, Standard_False);
Standard_Integer indicemin = 1;
Standard_Integer indicemax = jpole;
@ -349,7 +349,7 @@ void ShapeAlgo_AlgoContainer::ApproxBSplineCurve (const Handle(Geom2d_BSplineCur
}
GeomInt_WLApprox theapp3d;
Standard_Real Tol = Precision::PApproximation();
theapp3d.SetParameters(Tol, Tol, 4, 8, 0, Standard_True);
theapp3d.SetParameters(Tol, Tol, 4, 8, 0, 30, Standard_True);
Handle(IntPatch_WLine) WL = new IntPatch_WLine(R, Standard_False);
Standard_Integer indicemin = 1;
Standard_Integer indicemax = jpole;

View File

@ -217,7 +217,8 @@ void TopOpeBRep_FacesIntersector::Perform(const TopoDS_Shape& F1,const TopoDS_Sh
myIntersector.SetTolerances(myTol1,myTol2,MaxUV,Deflection);
myIntersector.Perform(mySurface1,myDomain1,mySurface2,myDomain2,
myTol1,myTol2,Standard_True,Standard_True);
myTol1,myTol2,Standard_True,Standard_True,
Standard_False);
#ifdef OCCT_DEBUG
if (TopOpeBRepTool_GettraceKRO()) KRO_DSFILLER_INTFF.Stop();

View File

@ -318,8 +318,7 @@ Standard_Boolean TopOpeBRepTool_CurveTool::MakeCurves
Standard_Boolean CompPC1 = myGeomTool.CompPC1();
Standard_Boolean CompPC2 = myGeomTool.CompPC2();
Standard_Real tol3d,tol2d;
Standard_Boolean RelativeTol;
myGeomTool.GetTolerances(tol3d,tol2d,RelativeTol);
myGeomTool.GetTolerances(tol3d,tol2d);
Standard_Integer NbPntMax = myGeomTool.NbPntMax();
#ifdef OCCT_DEBUG
@ -599,7 +598,7 @@ Standard_Boolean TopOpeBRepTool_CurveTool::MakeCurves
Handle(BRepApprox_ApproxLine) AL;
AL = new BRepApprox_ApproxLine(HC3D,HPC1,HPC2);
Approx.SetParameters(tol3d,tol2d,RelativeTol,degmin,degmax,nitmax,NbPntMax,withtangency,
Approx.SetParameters(tol3d,tol2d,degmin,degmax,nitmax,NbPntMax,withtangency,
parametrization);
if (CompC3D && CompPC1 && BAS1.GetType() == GeomAbs_Plane) {

View File

@ -33,7 +33,6 @@ TopOpeBRepTool_GeomTool::TopOpeBRepTool_GeomTool
myCompPC2(CompPC2),
myTol3d(Precision::Approximation()),
myTol2d(Precision::PApproximation()),
myRelativeTol(Standard_True),
myNbPntMax(30)
{
}
@ -133,34 +132,6 @@ void TopOpeBRepTool_GeomTool::SetTolerances
{
myTol3d = tol3d;
myTol2d = tol2d;
myRelativeTol = Standard_True;
}
//=======================================================================
//function : GetTolerances
//purpose :
//=======================================================================
void TopOpeBRepTool_GeomTool::GetTolerances
(Standard_Real& tol3d, Standard_Real& tol2d, Standard_Boolean& relative) const
{
tol3d = myTol3d;
tol2d = myTol2d;
relative = myRelativeTol;
}
//=======================================================================
//function : SetTolerances
//purpose :
//=======================================================================
void TopOpeBRepTool_GeomTool::SetTolerances
(const Standard_Real tol3d, const Standard_Real tol2d, const Standard_Boolean relative)
{
myTol3d = tol3d;
myTol2d = tol2d;
myRelativeTol = relative;
}
//=======================================================================

View File

@ -63,10 +63,6 @@ public:
Standard_EXPORT void SetTolerances (const Standard_Real tol3d, const Standard_Real tol2d);
Standard_EXPORT void GetTolerances (Standard_Real& tol3d, Standard_Real& tol2d, Standard_Boolean& relative) const;
Standard_EXPORT void SetTolerances (const Standard_Real tol3d, const Standard_Real tol2d, const Standard_Boolean relative);
Standard_EXPORT Standard_Integer NbPntMax() const;
Standard_EXPORT void SetNbPntMax (const Standard_Integer NbPntMax);
@ -98,7 +94,6 @@ private:
Standard_Real myTol3d;
Standard_Real myTol2d;
Standard_Boolean myRelativeTol;
Standard_Integer myNbPntMax;

View File

@ -11,4 +11,4 @@ mkevol result s
updatevol s_7 0 10 1 20 2 10
buildevol
set square 11500.5
set square 12023.4

View File

@ -1,3 +1,5 @@
puts "TODO OCC26932 Linux: Faulty shapes in variables faulty_1 to faulty"
beziercurve w1 5 0 0 0 20 0 0 20 5 0 25 10 0 10 20 0
mkedge w1 w1
polyline w2 10 20 0 0 0 0

View File

@ -4,6 +4,8 @@
## Comment : From CV tests serie page 25/26
## ===========================================
puts "TODO #OCC26740 ALL: Faulty shapes in variables faulty_1 to faulty_"
restore [locate_data_file CCV_1_h1_gsk.rle] s
explode s E
blend result s 30 s_14

View File

@ -5,7 +5,7 @@ restore [locate_data_file buc60290b.rle] sol2
bcommon result sol2 sol1
set square 667287
set square 685602
if { [regexp {Windows} [dversion]] } {
if { [regexp {64} [dversion]] } {
#set square 804392

View File

@ -1,3 +1,5 @@
puts "TODO #OCC26777 ALL: Error : The length of the resulting shape is"
restore [locate_data_file GEN758_nofog.rle] a
explode a
bsection result a_1 a_2

View File

@ -1,3 +1,5 @@
puts "TODO #OCC26814 ALL: Error : The length of the resulting shape is"
restore [locate_data_file lh3d_px1.brep] a
plane p 0 0 0 1 0 0
mkface f p

View File

@ -34,5 +34,5 @@ mkface f6 con_f6 0 6.2831853071795862 0 1000000
# make volume operation
mkvolume result f1 f2 f3 f4 f5 f6
set square 3.67285e+006
set square 5.1932e+006

View File

@ -39,4 +39,4 @@ mkface f7 con_f7 0 6.2831853071795862 0 1000000
# make volume operation
mkvolume result f1 f2 f3 f4 f5 f6 f7
set square 4.20797e+006
set square 6.22995e+006

View File

@ -1,8 +1,6 @@
# test script on make volume operation
# cone cylinder plane
puts "TODO OCC26020 ALL: Faulty shapes in variables faulty_1 to faulty_"
# planar face
plane pln_f1 2.3537565147188571e-015 -592.35294118000002 1.1044592656221142e-015 0.90529096719956037 4.7161388709779336e-017 0.42479202523927467
erase pln_f1
@ -41,5 +39,5 @@ mkface f7 cyl_f7 0 6.2831853071795862 -1000000 1000000
# make volume operation
mkvolume result f1 f2 f3 f4 f5 f6 f7
set square 1.71122e+013
set square 9.42987e+007

View File

@ -2,6 +2,8 @@
# cone cylinder plane
# Error status: 102
puts "TODO OCC26020 ALL: Error : is WRONG because number of "
# conical face
cone con_f1 -59.814698440000001 384.36473473000001 127 0.41716766026590824 -0.90882954575006414 -5.4874902763032048e-016 89.995898744693349 0
erase con_f1
@ -24,3 +26,6 @@ mkface f4 cyl_f4 0 6.2831853071795862 -1000000 1000000
# make volume operation
mkvolume result f1 f2 f3 f4
checknbshapes result -vertex 6 -edge 11 -wire 11 -face 8 -shell 4 -solid 2 -compsolid 0 -compound 1 -shape 43

View File

@ -66,5 +66,5 @@ copy r_1 result
# An exception was caught Standard_ConstructionError:
# ** Exception ** Standard_ConstructionError:
set square 1.59518e+07
set square 2.15333e+007
set 2dviewer 0

View File

@ -33,5 +33,5 @@ if { $MaxFaceTolerance > 1 || $MaxEdgeTolerance > 1 || $MaxVertexTolerance > 1 }
puts "Tolerance of shape is less then 1.0"
}
set square 4.21741e+007
set square 3.87049e+007
set 2dviewer 0

View File

@ -50,5 +50,5 @@ if { $MaxFaceTolerance > 1 || $MaxEdgeTolerance > 1 || $MaxVertexTolerance > 1 }
} else {
puts "Tolerance of shape is less then 1.0"
}
set square 4.03996e+007
set square 3.71909e+007
set 2dviewer 0

View File

@ -66,5 +66,5 @@ if { $MaxFaceTolerance > 2 || $MaxEdgeTolerance > 2 || $MaxVertexTolerance > 2 }
} else {
puts "Tolerance of shape is less then 2.0"
}
set square 1.74934e+007
set square 1.341e+007
set 2dviewer 0

View File

@ -1,5 +1,4 @@
puts "TODO OCC11111 ALL: Error : is WRONG because number of "
puts "TODO OCC11111 ALL: Error : The square of result shape is"
puts "============"
puts "OCC10160"
puts "============"

View File

@ -2,7 +2,11 @@ puts "================"
puts "OCC1255"
puts "================"
puts ""
# Exception in command 'section'
###############################################
## Exception in command 'section'
###############################################
puts "TODO #OCC26815 ALL: Error : The length of result shape is"
restore [locate_data_file OCC1255.brep] a
checkshape a

View File

@ -7,6 +7,8 @@ puts ""
# (This script tests new topology)
###############################################
puts "TODO #OCC26815 ALL: Error : The length of result shape is"
restore [locate_data_file OCC1255.brep] a
checkshape a

View File

@ -1,6 +1,3 @@
puts "TODO OCC21564 ALL: The square of result shape is"
puts "TODO OCC21564 ALL: Error : is WRONG because number of "
puts "============"
puts "OCC22557"
puts "============"
@ -24,7 +21,7 @@ puts "Start boolean operation ..."
bopcut result
puts "Finish boolean operation ..."
set square 0.172993
set square 0.172994
checknbshapes result -vertex 192 -edge 288 -wire 98 -face 98 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 679

View File

@ -1,4 +1,7 @@
puts "TODO OCC25925 ALL: Faulty shapes in variables faulty_1 to"
puts "TODO OCC25925 ALL: ERROR. offsetperform operation not done."
puts "TODO OCC25925 ALL: Faulty OCC5805 : result is not Closed shape"
puts "TODO OCC25925 ALL: Tcl Exception: Error : command \\\"nbshapes result\\\" gives an empty result"
puts "TODO OCC25925 ALL: TEST INCOMPLETE"
puts "============"
puts "OCC5805"

View File

@ -1,5 +1,6 @@
puts "TODO OCC25925 ALL: Faulty shapes in variables faulty_1 to faulty_"
puts "TODO OCC25925 ALL: Error : is WRONG because number of"
puts "TODO OCC25925 ALL: ERROR. offsetperform operation not done."
puts "TODO OCC25925 ALL: Tcl Exception: Error : command \\\"nbshapes result\\\" gives an empty result"
puts "TODO OCC25925 ALL: TEST INCOMPLETE"
puts "============"
puts "OCC5805"

View File

@ -30,7 +30,7 @@ set distance -0.1
catch { OFFSETSHAPE $distance {s_3} $calcul $type }
set square 1470.32
set square 1485.75
checknbshapes result -vertex 4 -edge 6 -wire 6 -face 5 -shell 1 -solid 1 -compsolid 0 -compound 0 -shape 23

View File

@ -1,5 +1,6 @@
puts "TODO OCC12345 ALL: Faulty shapes in variables faulty_1 to faulty_"
puts "TODO OCC12345 ALL: Error : The square of result shape is"
puts "TODO OCC00000 ALL: Faulty OCC602: function BLEND works wrongly"
puts "TODO OCC00000 ALL: Tcl Exception: result is not a topological shape!!!"
puts "TODO OCC00000 ALL: TEST INCOMPLETE"
puts "========================"
puts " OCC602 "

View File

@ -5,7 +5,8 @@ puts ""
###########################################################
# Wrong pcurve of the section curve
###########################################################
set MaxTol 1.05e-6
set MaxTol 3.0e-5
set NbCurv_OK 1
restore [locate_data_file bug24585_b1.brep] b1
@ -50,4 +51,18 @@ if {${delta_l} != 0} {
puts "Error: Bad value. U_end = [dval U_end], Ulast = [dval U1l_exp]."
} else {
puts "OK: Good value. U_end matches with Ulast of surface."
}
}
puts ""
puts "Check if tangents in first and last point of line have the same directions"
#See bug#26752
cvalue c_1 U1 xx yy zz dx1 dy1 dz1
cvalue c_1 U2 xx yy zz dx2 dy2 dz2
set DP [dval dx1*dx2+dy1*dy2+dz1*dz2]
if {${DP} < 0} {
puts "Error: Tangents are reversed. Bug 26752 is reproduced."
} else {
puts "OK: Tangents are not reversed."
}

View File

@ -1,10 +1,4 @@
puts "TODO OCC25929 ALL: Error: Tolerance is too big!"
puts "TODO OCC21564 Linux: Error : T=0.464646\tD=0.000326627"
puts "TODO OCC21564 Linux: Error : T=0.464646\tD=0.00032747"
puts "TODO OCC21564 Windows: Error : T=0.464646\tD=0.000326671"
puts "TODO OCC21564 Windows: Error : T=0.464646\tD=0.000327516"
puts "TODO OCC26927 ALL: Error: Tolerance is too big!"
puts "========="
puts "CR24915"
@ -30,8 +24,8 @@ bbuild r
checkshape r
# 2. geometry
set MaxTol 5.0e-7
set log [bopcurves b1 b2]
set MaxTol 1.0e-7
set log [bopcurves b1 b2 -2d]
if { ! [regexp {Tolerance Reached=+([-0-9.+eE]+)\n+([-0-9.+eE]+)} ${log} full Toler NbCurv] } {
puts "Error: Cannot find tolerance value in output of bopcurve command"
@ -41,18 +35,6 @@ if {${Toler} > ${MaxTol}} {
puts "Error: Tolerance is too big!"
}
mksurface s1 b1
mksurface s2 b2
set Tolerance 2.0e-5
set WarnTol 1.0e-7
for {set i 1} {$i <= ${NbCurv}} {incr i} {
bounds c_$i U1 U2
xdistcs c_$i s1 U1 U2 100 $Tolerance $WarnTol
xdistcs c_$i s2 U1 U2 100 $Tolerance $WarnTol
}
smallview
donly b2 c_2
fit

View File

@ -1,5 +1,3 @@
puts "TODO OCC26417 ALL: Faulty shapes in variables faulty_1"
puts "================"
puts "OCC25319"
puts "================"
@ -15,5 +13,5 @@ bcommon result b1 b2
set square 1690.81
checknbshapes result -vertex 19 -edge 30 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 78
checknbshapes result -vertex 20 -edge 31 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 80
set 2dviewer 1

View File

@ -1,5 +1,3 @@
puts "TODO OCC26417 ALL: Faulty shapes in variables faulty_1"
puts "================"
puts "OCC25319"
puts "================"
@ -18,5 +16,5 @@ bcommon result b1 b2
set square 1690.81
checknbshapes result -vertex 19 -edge 30 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 78
checknbshapes result -vertex 20 -edge 31 -wire 13 -face 13 -shell 1 -solid 1 -compsolid 0 -compound 1 -shape 80
set 2dviewer 1

View File

@ -5,6 +5,8 @@ puts ""
###############################################
# Wrong result obtained by General Fuse operator.
###############################################
puts "TODO #OCC26816 ALL: Error : Result done by General Fuse operator is WRONG because number of"
puts "TODO #OCC26816 ALL: Faulty shapes in variables faulty_1 to faulty_"
restore [locate_data_file bug25715_p02c3s1.brep] b1
restore [locate_data_file bug25838_p02c3s2.brep] b2

View File

@ -0,0 +1,21 @@
puts "============"
puts "OCC26431"
puts "============"
puts ""
###############################
## Can't cut a sphere from a cylinder
###############################
restore [locate_data_file bug26431_Body.brep] b1
restore [locate_data_file bug26431_Sphere.brep] b2
explode b1 f
explode b2 f
set log [bopcurves b1_3 b2_1 -2d]
regexp {Tolerance Reached=+([-0-9.+eE]+)\n+([-0-9.+eE]+)} ${log} full Tolerance_Reached NbCurv
set expected_Tolerance_Reached 6.1899285293702062e-006
set tol_abs_Tolerance_Reached 1.0e-7
set tol_rel_Tolerance_Reached 0.0
checkreal "Tolerance Reached" ${Tolerance_Reached} ${expected_Tolerance_Reached} ${tol_abs_Tolerance_Reached} ${tol_rel_Tolerance_Reached}

View File

@ -0,0 +1,28 @@
puts "============"
puts "OCC26431"
puts "============"
puts ""
###############################
## Can't cut a sphere from a cylinder
###############################
restore [locate_data_file bug26431_Body.brep] b1
restore [locate_data_file bug26431_Sphere.brep] b2
explode b1 f
explode b2 f
bsection result b1_3 b2_1
set log [checksection result]
if { [string compare -nocase $log " nb alone Vertices : 0\n\n"] } {
puts "ERROR: the section is not closed"
} else {
puts "The section is OK"
}
smallview
donly result
fit
set only_screen_axo 1

View File

@ -0,0 +1,68 @@
puts "============"
puts "OCC26431"
puts "============"
puts ""
###############################
## Can't cut a sphere from a cylinder
###############################
restore [locate_data_file bug26431_Body.brep] b1
restore [locate_data_file bug26431_Sphere.brep] b2
bop b1 b2
bopcut result
checkshape result
decho off
dlog reset
dlog on
bopargcheck result #F
set info [dlog get]
dlog reset
dlog off
decho on
set MessageList {
"Faulties for FIRST shape found : 9"
"Shapes are not suppotrted by BOP: NO"
"Self-Intersections : NO"
"Check for SI has been aborted : NO"
"Too small edges : NO"
"Bad faces : NO"
"Too close vertices : DISABLED"
"Too close edges : DISABLED"
"Shapes with Continuity C0 : YES Cases\\(9\\) Total shapes\\(9\\)"
"Invalid Curve on Surface : NO"
"Faulties for SECOND shape found : 0"
}
for {set i 1} {$i <= 11} {incr i} {
set str [ lindex ${MessageList} [expr $i - 1] ]
if { [regexp ${str} ${info}] == 1 } {
puts "OK : There is #$i message"
} else {
puts "Error : There is not #$i message"
puts $str
}
}
set square 14.4399
set nbshapes_expected "
Number of shapes in shape
VERTEX : 7
EDGE : 20
WIRE : 7
FACE : 6
SHELL : 1
SOLID : 1
COMPSOLID : 0
COMPOUND : 1
SHAPE : 43
"
checknbshapes result -ref ${nbshapes_expected} -t -m "solid construction"
set 3dviewer 1

View File

@ -0,0 +1,58 @@
puts "============"
puts "OCC26675"
puts "============"
puts ""
###############################
## 0026675: Eliminate normalization of coordinates in ApproxInt package
###############################
set GoodNbCurv 1
pload QAcommands
OCC26675_1 ss
intersect res ss_1 ss_2
set che [whatis res]
set ind [string first "3d curve" $che]
if {${ind} >= 0} {
#Only variable "res" exists
renamevar res res_1
}
set ic 1
set AllowRepeate 1
while { $AllowRepeate != 0 } {
set che [whatis res_$ic]
set ind [string first "3d curve" $che]
if {${ind} < 0} {
set AllowRepeate 0
} else {
display res_$ic
bounds res_$ic U1 U2
dval U1
dval U2
if {[dval U2-U1] < 1.0e-20} {
puts "Error: Wrong curve's range!"
}
xdistcs res_$ic ss_1 U1 U2 10 4.6e-6
xdistcs res_$ic ss_2 U1 U2 10 4.3e-6
incr ic
}
}
if {[expr {$ic - 1}] == $GoodNbCurv} {
puts "OK: Curve Number is good!"
} else {
puts "Error: Curve Number is bad!"
}
smallview
fit
set only_screen_axo 1

View File

@ -1,8 +1,4 @@
#E6----------------------------------------------
#puts "TODO OCC22803 ALL: Faulty shapes in variables faulty_1 to faulty_"
puts "TODO OCC26426 ALL: Error: The tolerance of the resulting shape is too big "
ptorus pt 25 24 90
profile pr o 20 18 5 p 0 -1 0 1 0 0 l 10 t 0 30 \
t -7 0
@ -12,5 +8,4 @@ nexplode f f
depouille result f 0 0 1 f_5 3 0 0 35 0 0 1 \
f_6 3 0 0 35 0 0 1
# square is different according to issue 25111, the result is visually good but invalid (bad orientation of subshape), that's why the area may occur negative
set square 10782.8

View File

@ -1,11 +1,13 @@
puts "TODO OCC23068 ALL: Error : The offset is not valid"
puts "TODO OCC26556 ALL: ERROR. offsetperform operation not done."
# Original bug : hkg60144
# Date : 17Juillet98
# Date : July, 17 1998
puts "TODO OCC23068 Linux: Error : The offset is not valid"
puts "TODO OCC23068 Linux: ERROR. offsetperform operation not done."
puts "TODO OCC23068 Linux: Error : The volume of the resulting shape is"
restore [locate_data_file CHE900_hkg60iob.rle] s
explode s f
offsetshape result s -5 s_1
set volume 0
set volume 2.12817e+006

View File

@ -1,6 +1,5 @@
puts "TODO OCC26577 All: Error : is WRONG because number of EDGE entities in shape"
puts "TODO OCC26577 All: Error : is WRONG because number of SHELL entities in shape"
puts "TODO OCC26577 All: Faulty shapes in variables faulty_1 to faulty"
restore [locate_data_file bug26663_test_offset_L6.brep] s
OFFSETSHAPE ${off_param} {} ${calcul} ${type}
checknbshapes result -ref [lrange [nbshapes s] 8 19]