1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0025187: Document the algorithm used in the fixes for issues ## 0024915 and 25194

1. Algorithm of orthogonalize of the transformation matrix (in gp_Trsf(2d) classes) has been documented.

2. Algorithm of computation of intersection line in case of two intersected cylinders (implemented in the fix for issue #24915) has been documented. Additionally, I would like to tell about some advantages of new algorithm in compare with old one.

2.1. Both algorithm generates intersection points for Walking-line (WL), which will be approximated to B-spline curve(s) in the future. At that, new algo (in compare with old one) uses another method for step computation. It based on attempts to provide equal steps (if it is possible) along V-direction (instead of U-direction used in old algorithm). It allows obtaining set of points, which are more uniform distributed in compare with old algo (this problem is the main reason why case #24915 was failed). Of course, we will get non-uniform distribution along U-direction. However, it can be compensated by small range (its length is less or equal 2*PI) of U-parameter change, whereas range of V-parameter can be very big.

2.2. More simple estimation of curvature "jump". New algo aims at provide equidistant distribution of points along V-direction. If it requires "jump" of U-parameter then we have "jump" of curvature in this point. This check is implemented in function AddPointIntoWL(...) (see place where SeekAdditionalPoints(...) is called).

However, in OCCT 7.1.0, curvature jumping is analyzed (it was not earlier, when the bug #24915 was fixed) - see fix for issue #27431.

2.3. New algorithm allows obtaining 7D-intersection point immediately. At that, old algorithm computed only 2D-intersection point (on some one surface). After that, it computed 3D-intersection point and, finally, projected(!) 3D-point to the second surface in order to obtain second 2D-intersection point. This second projection results in some problems. One problem is described in the issue #27968 (see message ~0058807). Second problem is the process of cases with singularity (significant improvement in this direction has been made in the fix #27431). Third problem is difficulties in projection itself (e.g. if we project point to a sphere when V-coordinate of the projection is near to PI/2 - projection point is found but not precise; the reason is not singularity but small radius of V-isoline).

Method used in new algorithm allows avoiding these problems. However, at present, it is implemented for case of two cylinders intersection (where most of these problems are not actual).

2.4. Algorithm of search of intersection point on surface boundary(ies) has been changed, too. Old algorithm sought point on boundary irrespective of intersection line. It resulted in problems described in the issue #27252 and related. New algorithm looks for intersection point of intersection line with surface boundary. It requires rectangular domain. However, it is not problem for current OCCT-version.
This commit is contained in:
nbv 2016-11-24 15:07:52 +03:00 committed by apn
parent fcfda0392f
commit 4dba155d8e
3 changed files with 256 additions and 26 deletions

View File

@ -47,6 +47,44 @@ static Standard_Boolean InscribePoint(const Standard_Real theUfTarget,
class ComputationMethods
{
//Every cylinder can be represented by the following equation in parametric form:
// S(U,V) = L + R*cos(U)*Xd+R*sin(U)*Yd+V*Zd,
//where location L, directions Xd, Yd and Zd have type gp_XYZ.
//Intersection points between two cylinders can be found from the following system:
// S1(U1, V1) = S2(U2, V2)
//or
// {X01 + R1*cos(U1)*Xx1 + R1*sin(U1)*Yx1 + V1*Zx1 = X02 + R2*cos(U2)*Xx2 + R2*sin(U2)*Yx2 + V2*Zx2
// {Y01 + R1*cos(U1)*Xy1 + R1*sin(U1)*Yy1 + V1*Zy1 = Y02 + R2*cos(U2)*Xy2 + R2*sin(U2)*Yy2 + V2*Zy2 (1)
// {Z01 + R1*cos(U1)*Xz1 + R1*sin(U1)*Yz1 + V1*Zz1 = Z02 + R2*cos(U2)*Xz2 + R2*sin(U2)*Yz2 + V2*Zz2
//The formula (1) can be rewritten as follows
// {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1
// {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2 (2)
// {C13*V1+C23*V2=A13*cos(U1)+B13*sin(U1)+A23*cos(U2)+B23*sin(U2)+D3
//Hereafter we consider that in system
// {C11*V1+C21*V2=A11*cos(U1)+B11*sin(U1)+A21*cos(U2)+B21*sin(U2)+D1 (3)
// {C12*V1+C22*V2=A12*cos(U1)+B12*sin(U1)+A22*cos(U2)+B22*sin(U2)+D2
//variables V1 and V2 can be found unambiguously, i.e. determinant
// |C11 C21|
// | | != 0
// |C12 C22|
//
//In this case, variables V1 and V2 can be found as follows:
// {V1 = K11*sin(U1)+K21*sin(U2)+L11*cos(U1)+L21*cos(U2)+M1 = K1*cos(U1-FIV1)+L1*cos(U2-PSIV1)+M1 (4)
// {V2 = K12*sin(U1)+K22*sin(U2)+L12*cos(U1)+L22*cos(U2)+M2 = K2*cos(U2-FIV2)+L2*cos(U2-PSIV2)+M2
//Having substituted result of (4) to the 3rd equation of (2), we will obtain equation
// cos(U2-FI2) = B*cos(U1-FI1)+C. (5)
//I.e. when U1 is taken different given values (from domain), correspond U2 value can be computed
//from equation (5). After that, V1 and V2 can be computed from the system (4) (see
//CylCylComputeParameters(...) methods).
//It is important to remark that equation (5) (in general) has two solutions: U2=FI2 +/- f(U1).
//Therefore, we are getting here two intersection lines.
public:
//Stores equations coefficients
struct stCoeffsValue
@ -397,6 +435,10 @@ public:
protected:
//Solves equation (2) (see declaration of ComputationMethods class) in case,
//when V1 or V2 (is set by theSBType argument) is known (corresponds to the boundary
//and equal to theVzad) but U1 is unknown. Computation is made by numeric methods and
//requires initial values (theVInit, theInitU2 and theInitMainVar).
Standard_Boolean
SearchOnVBounds(const SearchBoundType theSBType,
const Standard_Real theVzad,
@ -459,7 +501,7 @@ static inline void MinMax(Standard_Real& theParMIN, Standard_Real& theParMAX)
//=======================================================================
//function : ExtremaLineLine
//purpose : Computes extrema between the given lines. Returns parameters
// on correspond curve.
// on correspond curve (see correspond method for Extrema_ExtElC class).
//=======================================================================
static inline void ExtremaLineLine(const gp_Ax1& theC1,
const gp_Ax1& theC2,
@ -481,8 +523,8 @@ static inline void ExtremaLineLine(const gp_Ax1& theC1,
//=======================================================================
//function : VBoundaryPrecise
//purpose : By default, we shall consider, that V1 and V2 will increase
// if U1 increases. But if it is not, new V1set and/or V2set
//purpose : By default, we shall consider, that V1 and V2 will be increased
// if U1 is increased. But if it is not, new V1set and/or V2set
// must be computed as [V1current - DeltaV1] (analogically
// for V2). This function processes this case.
//=======================================================================
@ -501,6 +543,11 @@ static void VBoundaryPrecise( const math_Matrix& theMatr,
aSyst.SetCol(2, theMatr.Col(2));
aSyst.SetCol(3, theMatr.Col(4));
//We have the system (see comment to StepComputing(...) function)
// {a11*dV1 + a12*dV2 + a14*dU2 = -a13*dU1
// {a21*dV1 + a22*dV2 + a24*dU2 = -a23*dU1
// {a31*dV1 + a32*dV2 + a34*dU2 = -a33*dU1
const Standard_Real aDet = aSyst.Determinant();
aSyst.SetCol(1, theMatr.Col(3));
@ -511,6 +558,16 @@ static void VBoundaryPrecise( const math_Matrix& theMatr,
const Standard_Real aDet2 = aSyst.Determinant();
//Now,
// dV1 = -dU1*aDet1/aDet
// dV2 = -dU1*aDet2/aDet
//If U1 is increased then dU1 > 0.
//If (aDet1/aDet > 0) then dV1 < 0 and
//V1 will be decreased after increasing U1.
//We have analogical situation with V2-parameter.
if(aDet*aDet1 > 0.0)
{
theV1Set = theV1AfterDecrByDelta;
@ -834,7 +891,8 @@ void ProcessBounds(const Handle(IntPatch_ALine)& alig, //-- ligne coura
//=======================================================================
//function : CyCyAnalyticalIntersect
//purpose :
//purpose : Checks if intersection curve is analytical (line, circle, ellipse)
// and returns these curves.
//=======================================================================
Standard_Boolean CyCyAnalyticalIntersect( const IntSurf_Quadric& Quad1,
const IntSurf_Quadric& Quad2,
@ -1670,7 +1728,7 @@ Standard_Boolean InscribePoint( const Standard_Real theUfTarget,
//=======================================================================
//function : InscribeInterval
//purpose : Adjusts theUfGiven and after that fits theUlGiven to result
//purpose : Adjusts theUfGiven and (after that) adjusts theUlGiven to the result
//=======================================================================
static Standard_Boolean InscribeInterval(const Standard_Real theUfTarget,
const Standard_Real theUlTarget,
@ -1777,6 +1835,8 @@ static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
const Standard_Boolean theFlForce,
const Standard_Boolean theFlBefore = Standard_False)
{
//Check if the point is in the domain or can be inscribed in the domain after adjusting.
gp_Pnt aPt1(theQuad1.Value(thePntOnSurf1.X(), thePntOnSurf1.Y())),
aPt2(theQuad2.Value(thePntOnSurf2.X(), thePntOnSurf2.Y()));
@ -1798,6 +1858,7 @@ static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
if((aV2par - theVlSurf2 > theTol2D) || (theVfSurf2 - aV2par > theTol2D))
return Standard_False;
//Get intersection point and add it in the WL
IntSurf_PntOn2S aPnt;
if(isTheReverse)
@ -1882,6 +1943,7 @@ static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
if((1 < aDeltaStep) && (aDeltaStep < 2000))
{
//Add new points in case of non-uniform distribution of existing points
SeekAdditionalPoints( theQuad1, theQuad2, theLine,
theCoeffs, theWLIndex, aDeltaStep, aNbPnts-2,
aNbPnts-1, theTol2D, thePeriodOfSurf1, isTheReverse);
@ -1893,7 +1955,7 @@ static Standard_Boolean AddPointIntoWL( const IntSurf_Quadric& theQuad1,
//=======================================================================
//function : AddBoundaryPoint
//purpose :
//purpose : Find intersection point on V-boundary.
//=======================================================================
void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
const Standard_Real theU1,
@ -1944,6 +2006,10 @@ void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
continue;
}
//Segment [aVf, aVl] intersects at least one V-boundary (first or last)
// (in general, case is possible, when aVf > aVl).
// Precise intersection point
const Standard_Boolean aRes = SearchOnVBounds(aTS, anArrVzad[anIndex],
(anIDSurf == 0) ? theV2 : theV1,
theU2, theU1,
@ -1951,11 +2017,14 @@ void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
if(!aRes || aUVPoint[anIndex].myU1 >= theU1)
{
//Intersection point is not found or out of the domain
aUVPoint[anIndex].myU1 = RealLast();
continue;
}
else
{
//intersection point is found
Standard_Real &aU1 = aUVPoint[anIndex].myU1,
&aU2 = aUVPoint[anIndex].myU2,
&aV1 = aUVPoint[anIndex].myV1,
@ -1967,10 +2036,12 @@ void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
if(!ComputationMethods::
CylCylComputeParameters(aU1, theWLIndex, myCoeffs, aU2, aV1, aV2))
{
// Found point is wrong
aU1 = RealLast();
continue;
}
//Point on true V-boundary.
if(aTS == SearchV1)
aV1 = anArrVzad[anIndex];
else //if(aTS[anIndex] == SearchV2)
@ -1979,10 +2050,12 @@ void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
}
}
// Sort with acceding U1-parameter.
std::sort(aUVPoint, aUVPoint+aSize);
isTheFound1 = isTheFound2 = Standard_False;
//Adding found points on boundary in the WLine.
for(Standard_Integer i = 0; i < aSize; i++)
{
if(aUVPoint[i].myU1 == RealLast())
@ -2011,7 +2084,10 @@ void WorkWithBoundaries::AddBoundaryPoint(const Handle(IntPatch_WLine)& theWL,
//=======================================================================
//function : SeekAdditionalPoints
//purpose :
//purpose : Inserts additional intersection points between neighbor points.
// This action is bone with several iterations. During every iteration,
// new point is inserted in middle of every interval.
// The process will be finished if NbPoints >= theMinNbPoints.
//=======================================================================
static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
const IntSurf_Quadric& theQuad2,
@ -2145,20 +2221,38 @@ static void SeekAdditionalPoints( const IntSurf_Quadric& theQuad1,
Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
Standard_Real theU1l[]) const
{
//All comments to this method is related to the comment
//to ComputationMethods class
//So, we have the equation
// cos(U2-FI2)=B*cos(U1-FI1)+C
//Evidently,
// -1 <= B*cos(U1-FI1)+C <= 1
if(myCoeffs.mB > 0.0)
{
// -(1+C)/B <= cos(U1-FI1) <= (1-C)/B
if(myCoeffs.mB + Abs(myCoeffs.mC) < -1.0)
{//There is NOT intersection
{
//(1-C)/B < -1 or -(1+C)/B > 1 ==> No solution
return Standard_False;
}
else if(myCoeffs.mB + Abs(myCoeffs.mC) <= 1.0)
{//U=[0;2*PI]+aFI1
{
//(1-C)/B >= 1 and -(1+C)/B <= -1 ==> U=[0;2*PI]+aFI1
theU1f[0] = myCoeffs.mFI1;
theU1l[0] = myPeriod + myCoeffs.mFI1;
}
else if((1 + myCoeffs.mC <= myCoeffs.mB) &&
(myCoeffs.mB <= 1 - myCoeffs.mC))
{
//(1-C)/B >= 1 and -(1+C)/B >= -1 ==>
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
//where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB)
Standard_Real anArg = -(myCoeffs.mC + 1) / myCoeffs.mB;
if(anArg > 1.0)
anArg = 1.0;
@ -2166,7 +2260,6 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
anArg = -1.0;
const Standard_Real aDAngle = acos(anArg);
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1)
theU1f[0] = myCoeffs.mFI1;
theU1l[0] = aDAngle + myCoeffs.mFI1;
theU1f[1] = myPeriod - aDAngle + myCoeffs.mFI1;
@ -2175,6 +2268,9 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
else if((1 - myCoeffs.mC <= myCoeffs.mB) &&
(myCoeffs.mB <= 1 + myCoeffs.mC))
{
//(1-C)/B <= 1 and -(1+C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1
//where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
Standard_Real anArg = (1 - myCoeffs.mC) / myCoeffs.mB;
if(anArg > 1.0)
anArg = 1.0;
@ -2182,13 +2278,17 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
anArg = -1.0;
const Standard_Real aDAngle = acos(anArg);
//U=[aDAngle;2*PI-aDAngle]+aFI1
theU1f[0] = aDAngle + myCoeffs.mFI1;
theU1l[0] = myPeriod - aDAngle + myCoeffs.mFI1;
}
else if(myCoeffs.mB - Abs(myCoeffs.mC) >= 1.0)
{
//(1-C)/B <= 1 and -(1+C)/B >= -1 ==>
//(U=[aDAngle1;aDAngle2]+aFI1) ||
//(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
//where aDAngle1 = acos((1 - myCoeffs.mC) / myCoeffs.mB),
// aDAngle2 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
Standard_Real anArg1 = (1 - myCoeffs.mC) / myCoeffs.mB,
anArg2 = -(myCoeffs.mC + 1) / myCoeffs.mB;
if(anArg1 > 1.0)
@ -2217,18 +2317,27 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
}
else if(myCoeffs.mB < 0.0)
{
// (1-C)/B <= cos(U1-FI1) <= -(1+C)/B
if(myCoeffs.mB + Abs(myCoeffs.mC) > 1.0)
{//There is NOT intersection
{
// -(1+C)/B < -1 or (1-C)/B > 1 ==> No solutions
return Standard_False;
}
else if(-myCoeffs.mB + Abs(myCoeffs.mC) <= 1.0)
{//U=[0;2*PI]+aFI1
{
// -(1+C)/B >= 1 and (1-C)/B <= -1 ==> U=[0;2*PI]+aFI1
theU1f[0] = myCoeffs.mFI1;
theU1l[0] = myPeriod + myCoeffs.mFI1;
}
else if((-myCoeffs.mC - 1 <= myCoeffs.mB) &&
( myCoeffs.mB <= myCoeffs.mC - 1))
{
// -(1+C)/B >= 1 and (1-C)/B >= -1 ==>
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1),
//where aDAngle = acos((1 - myCoeffs.mC) / myCoeffs.mB)
Standard_Real anArg = (1 - myCoeffs.mC) / myCoeffs.mB;
if(anArg > 1.0)
anArg = 1.0;
@ -2236,8 +2345,6 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
anArg = -1.0;
const Standard_Real aDAngle = acos(anArg);
//(U=[0;aDAngle]+aFI1) || (U=[2*PI-aDAngle;2*PI]+aFI1)
theU1f[0] = myCoeffs.mFI1;
theU1l[0] = aDAngle + myCoeffs.mFI1;
theU1f[1] = myPeriod - aDAngle + myCoeffs.mFI1;
@ -2246,6 +2353,9 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
else if((myCoeffs.mC - 1 <= myCoeffs.mB) &&
(myCoeffs.mB <= -myCoeffs.mB - 1))
{
// -(1+C)/B <= 1 and (1-C)/B <= -1 ==> U=[aDAngle;2*PI-aDAngle]+aFI1,
//where aDAngle = acos(-(myCoeffs.mC + 1) / myCoeffs.mB).
Standard_Real anArg = -(myCoeffs.mC + 1) / myCoeffs.mB;
if(anArg > 1.0)
anArg = 1.0;
@ -2253,13 +2363,16 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
anArg = -1.0;
const Standard_Real aDAngle = acos(anArg);
//U=[aDAngle;2*PI-aDAngle]+aFI1
theU1f[0] = aDAngle + myCoeffs.mFI1;
theU1l[0] = myPeriod - aDAngle + myCoeffs.mFI1;
}
else if(-myCoeffs.mB - Abs(myCoeffs.mC) >= 1.0)
{
// -(1+C)/B <= 1 and (1-C)/B >= -1 ==>
//(U=[aDAngle1;aDAngle2]+aFI1) || (U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1),
//where aDAngle1 = acos(-(myCoeffs.mC + 1) / myCoeffs.mB),
// aDAngle2 = acos((1 - myCoeffs.mC) / myCoeffs.mB)
Standard_Real anArg1 = -(myCoeffs.mC + 1) / myCoeffs.mB,
anArg2 = (1 - myCoeffs.mC) / myCoeffs.mB;
if(anArg1 > 1.0)
@ -2273,9 +2386,6 @@ Standard_Boolean WorkWithBoundaries::BoundariesComputing(Standard_Real theU1f[],
anArg2 = -1.0;
const Standard_Real aDAngle1 = acos(anArg1), aDAngle2 = acos(anArg2);
//(U=[aDAngle1;aDAngle2]+aFI1) ||
//(U=[2*PI-aDAngle2;2*PI-aDAngle1]+aFI1)
theU1f[0] = aDAngle1 + myCoeffs.mFI1;
theU1l[0] = aDAngle2 + myCoeffs.mFI1;
theU1f[1] = myPeriod - aDAngle2 + myCoeffs.mFI1;
@ -2528,6 +2638,8 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
}
}
//Here, intersection line is not an analytical curve(line, circle, ellipsis etc.)
Standard_Real aUSurf1f = 0.0, //const
aUSurf1l = 0.0,
aVSurf1f = 0.0,
@ -2576,7 +2688,9 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
return IntPatch_ImpImpIntersection::IntStatus_InfiniteSectionCurve;
}
//Boundaries
//Boundaries (it is good idea to use Bnd_Range in the future, instead of aU1f and aU1l)
//Intersection result can include two non-connected regions
//(see WorkWithBoundaries::BoundariesComputing(...) method).
const Standard_Integer aNbOfBoundaries = 2;
Standard_Real aU1f[aNbOfBoundaries] = {-Precision::Infinite(), -Precision::Infinite()};
Standard_Real aU1l[aNbOfBoundaries] = {Precision::Infinite(), Precision::Infinite()};
@ -2584,6 +2698,10 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
if(!aBoundWork.BoundariesComputing(aU1f, aU1l))
return IntPatch_ImpImpIntersection::IntStatus_OK;
//The main idea of the algorithm is to change U1-parameter
//(U-parameter of aCyl1) from aU1f to aU1l with some step
//(step is adaptive) and to obtain set of intersection points.
for(Standard_Integer i = 0; i < aNbOfBoundaries; i++)
{
if(Precision::IsInfinite(aU1f[i]) && Precision::IsInfinite(aU1l[i]))
@ -2606,7 +2724,14 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
}
}
//Critical points
//Critical points are the value of U1-parameter in the points
//where WL must be decomposed.
//When U1 goes through critical points its value is set up to this
//parameter forcefully and the intersection point is added in the line.
//After that, the WL is broken (next U1 value will be correspond to the new WL).
//See CriticalPointsComputing(...) function to get detail information about this array.
const Standard_Integer aNbCritPointsMax = 12;
Standard_Real anU1crit[aNbCritPointsMax] = {Precision::Infinite(),
Precision::Infinite(),
@ -2621,6 +2746,11 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
Precision::Infinite(),
Precision::Infinite()};
//This list of critical points is not full because it does not contain any points
//which intersection line goes through V-bounds of cylinders in.
//They are computed by numerical methods on - line (during algorithm working).
//The moment is caught, when intersection line goes through V-bounds of any cylinder.
Standard_Integer aNbCritPoints = aNbCritPointsMax;
CriticalPointsComputing(anEquationCoeffs, aUSurf1f, aUSurf1l, aUSurf2f, aUSurf2l,
aPeriod, theTol2D, aNbCritPoints, anU1crit);
@ -2629,13 +2759,19 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
enum WLFStatus
{
// No points have been added in WL
WLFStatus_Absent = 0,
// WL contains at least one point
WLFStatus_Exist = 1,
// WL has been finished in some critical point
// We should start new line
WLFStatus_Broken = 2
};
for(Standard_Integer aCurInterval = 0; aCurInterval < aNbOfBoundaries; aCurInterval++)
{
//Process every continuous region
if(Precision::IsInfinite(aU1f[aCurInterval]) && Precision::IsInfinite(aU1l[aCurInterval]))
continue;
@ -2656,6 +2792,10 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
while(anUf < anUl)
{
//Change value of U-parameter on the 1st surface from anUf to anUl
//(anUf will be modified in the cycle body).
//Step is computed adaptively (see comments below).
Standard_Real aU2[aNbWLines], aV1[aNbWLines], aV2[aNbWLines];
WLFStatus aWLFindStatus[aNbWLines];
Standard_Real aV1Prev[aNbWLines], aV2Prev[aNbWLines];
@ -2675,9 +2815,9 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
anUexpect[i] = anUf;
}
Standard_Real aCriticalDelta[aNbCritPointsMax] = {0};
Standard_Real aCriticalDelta[aNbCritPointsMax];
for(Standard_Integer aCritPID = 0; aCritPID < aNbCritPoints; aCritPID++)
{ //We are not intersted in elements of aCriticalDelta array
{ //We are not interested in elements of aCriticalDelta array
//if their index is greater than or equal to aNbCritPoints
aCriticalDelta[aCritPID] = anUf - anU1crit[aCritPID];
@ -2685,13 +2825,19 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
Standard_Real anU1 = anUf;
Standard_Boolean isFirst = Standard_True;
while(anU1 <= anUl)
{
//Change value of U-parameter on the 1st surface from anUf to anUl
//(anUf will be modified in the cycle body). However, this cycle
//can be broken if WL goes though some critical point.
//Step is computed adaptively (see comments below).
for(Standard_Integer i = 0; i < aNbCritPoints; i++)
{
if((anU1 - anU1crit[i])*aCriticalDelta[i] < 0.0)
{
//WL has gone through i-th critical point
anU1 = anU1crit[i];
for(Standard_Integer j = 0; j < aNbWLines; j++)
@ -2875,6 +3021,7 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
}
}
// True if the current point already in the domain
const Standard_Boolean isInscribe =
((aUSurf2f-aU2[i]) <= theTol2D) && ((aU2[i]-aUSurf2l) <= theTol2D) &&
((aVSurf1f - aV1[i]) <= theTol2D) && ((aV1[i] - aVSurf1l) <= theTol2D) &&
@ -3048,6 +3195,11 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
if(!isAdded)
{
//Before breaking WL, we must complete it correctly
//(e.g. to prolong to the surface boundary).
//Therefore, we take the point last added in some WL
//(have maximal U1-parameter) and try to add it in
//the current WL.
Standard_Real anUmaxAdded = RealFirst();
{
@ -3099,6 +3251,12 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
//Step computing
{
//Step of aU1-parameter is computed adaptively. The algorithm
//aims to provide given aDeltaV1 and aDeltaV2 values (if it is
//possible because the intersection line can go along V-isoline)
//in every iteration. It allows avoiding "flying" intersection
//points too far each from other (see issue #24915).
const Standard_Real aDeltaV1 = aRangeS1.Delta()/IntToReal(aNbPoints),
aDeltaV2 = aRangeS2.Delta()/IntToReal(aNbPoints);
@ -3135,6 +3293,22 @@ IntPatch_ImpImpIntersection::IntStatus IntCyCy(const IntSurf_Quadric& theQuad1,
anEquationCoeffs.mVecA2*aCosU2 + anEquationCoeffs.mVecB2*aSinU2 +
anEquationCoeffs.mVecD);
//The main idea is in solving of linearized system (2)
//(see description to ComputationMethods class) in order to find new U1-value
//to provide new value V1 or V2, which differs from current one by aDeltaV1 or
//aDeltaV2 respectively.
//While linearizing, following Taylor formulas are used:
// cos(x0+dx) = cos(x0) - sin(x0)*dx
// sin(x0+dx) = sin(x0) + cos(x0)*dx
//Consequently cos(U1), cos(U2), sin(U1) and sin(U2) in the system (2)
//must be substituted by corresponding values.
//ATTENTION!!!
//The solution is approximate. More over, all requirements to the
//linearization must be satisfied in order to obtain quality result.
if(!StepComputing(aMatr, aV1[i], aV2[i], aDeltaV1, aDeltaV2, aStepTmp))
{
//To avoid cycling-up

View File

@ -774,9 +774,57 @@ Standard_Boolean gp_Trsf::GetRotation (gp_XYZ& theAxis,
//=======================================================================
//function : Orthogonalize
//purpose :
//ATTENTION!!!
// Orthogonalization is not equivalent transformation. Therefore,
// transformation with source matrix and with orthogonalized matrix can
// lead to different results for one shape. Consequently, source matrix must
// be close to orthogonalized matrix for reducing these differences.
//=======================================================================
void gp_Trsf::Orthogonalize()
{
//Matrix M is called orthogonal if and only if
// M*Transpose(M) == E
//where E is identity matrix.
//Set of all rows (as of all columns) of matrix M (for gp_Trsf class) is
//orthonormal basis. If this condition is not satisfied then the basis can be
//orthonormalized in accordance with below described algorithm.
//In 3D-space, we have the linear span of three basis vectors: V1, V2 and V3.
//Correspond orthonormalized basis is formed by vectors Vn1, Vn2 and Vn3.
//In this case,
// Vn_{i}*Vn_{j} = (i == j)? 1 : 0.
//The algorithm includes following steps:
//1. Normalize V1 vector:
// V1n=V1/|V1|;
//
//2. Let
// V2n=V2-m*V1n.
//
//After multiplication two parts of this equation by V1n,
//we will have following equation:
// 0=V2*V1n-m <==> m=V2*V1n.
//
//Consequently,
// V2n=V2-(V2*V1n)*V1n.
//3. Let
// V3n=V3-m1*V1n-m2*V2n.
//
//After multiplication two parts of this equation by V1n,
//we will have following equation:
// 0=V3*V1n-m1 <==> m1=V3*V1n.
//
//After multiplication two parts of main equation by V2n,
//we will have following equation:
// 0=V3*V2n-m2 <==> m2=V3*V2n.
//
//In conclusion,
// V3n=V3-(V3*V1n)*V1n-(V3*V2n)*V2n.
gp_Mat aTM(matrix);
gp_XYZ aV1 = aTM.Column(1);

View File

@ -549,9 +549,17 @@ void gp_Trsf2d::SetValues(const Standard_Real a11,
//=======================================================================
//function : Orthogonalize
//purpose :
//ATTENTION!!!
// Orthogonalization is not equivalent transformation.Therefore, transformation with
// source matrix and with orthogonalized matrix can lead to different results for
// one shape. Consequently, source matrix must be close to orthogonalized
// matrix for reducing these differences.
//=======================================================================
void gp_Trsf2d::Orthogonalize()
{
//See correspond comment in gp_Trsf::Orthogonalize() method in order to make this
//algorithm clear.
gp_Mat2d aTM(matrix);
gp_XY aV1 = aTM.Column(1);