mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-04 13:13:25 +03:00
0024727: Convertation of the generic classes to the non-generic. Part 3
1) Generic class "Intf_InterferencePolyhedron" from "Intf" package converted to the non-generic class and moved to the "IntPatch" package. Name of this class was changed to "IntPatch_InterferencePolyhedron". 2) Generic class "MoniTool_Elem" from "MoniTool" package converted to the non-generic class "MoniTool_TransientElem". 3) Generic class "IntWalk_PWalking" from "IntWalk" package converted to the non-generic class. And internal class "TheInt2S" of "IntWalk_PWalking" moved from IntWalk_PWalking.cdl to IntWalk.cdl for correct building. Also several "*.cxx" files of this class merged to one ".cxx". 4) Generic class "Transfer_SimpleBinder" from "Transfer" package converted to the non-generic class and moved to the "TransferBRep" package. Name of this class was changed to "TransferBRep_BinderOfShape". 5) Generic class "Geom2dInt_CurveTool" from "Geom2dInt" package converted to the non-generic class "Geom2dInt_Geom2dCurveTool". 6) Generic class "MAT2d_BisectingLocus" from "MAT2d" package converted to the non-generic class and moved to the "BRepMAT2d" package. Name of this class was changed to "BRepMAT2d_BisectingLocus". 7) Generic class "MAT_Mat" from "MAT" package converted to the non-generic class and moved to the "MAT2d" package. Name of this class was changed to "MAT2d_Mat2d".
This commit is contained in:
@@ -23,11 +23,6 @@ uses
|
||||
|
||||
is
|
||||
|
||||
generic class Mat;
|
||||
--- Purpose: The Algorithm of Computation of the Map of
|
||||
-- bisecting locus.
|
||||
|
||||
|
||||
--------------------------------------------------
|
||||
-- Classes of exploration of the Bisecting Locus.
|
||||
--------------------------------------------------
|
||||
|
@@ -1,108 +0,0 @@
|
||||
-- Created on: 1992-09-22
|
||||
-- Created by: Gilles DEBARBOUILLE
|
||||
-- Copyright (c) 1992-1999 Matra Datavision
|
||||
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
|
||||
--
|
||||
-- This file is part of Open CASCADE Technology software library.
|
||||
--
|
||||
-- This library is free software; you can redistribute it and/or modify it under
|
||||
-- the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
-- by the Free Software Foundation, with special exception defined in the file
|
||||
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
-- distribution for complete text of the license and disclaimer of any warranty.
|
||||
--
|
||||
-- Alternatively, this file may be used under the terms of Open CASCADE
|
||||
-- commercial license or contractual agreement.
|
||||
|
||||
generic class Mat from MAT (Tool as any)
|
||||
|
||||
---Purpose: this class contains the generic algoritm of
|
||||
-- computation of the bisecting locus.
|
||||
|
||||
uses
|
||||
Side from MAT,
|
||||
Bisector from MAT,
|
||||
ListOfEdge from MAT,
|
||||
ListOfBisector from MAT,
|
||||
DataMapOfIntegerBisector from MAT,
|
||||
DataMapOfIntegerInteger from TColStd
|
||||
|
||||
is
|
||||
|
||||
Create
|
||||
---Purpose: Empty construtor.
|
||||
returns Mat from MAT;
|
||||
|
||||
--- Category : Computation.
|
||||
|
||||
CreateMat(me : in out ; aTool : in out Tool)
|
||||
---Purpose: Algoritm of computation of the bisecting locus.
|
||||
is static;
|
||||
|
||||
IsDone(me) returns Boolean from Standard
|
||||
---Purpose: Returns <TRUE> if CreateMat has succeeded.
|
||||
is static;
|
||||
|
||||
LoadBisectorsToRemove(me : in out ;
|
||||
noofbisectorstoremove : in out Integer;
|
||||
distance1 : Real;
|
||||
distance2 : Real;
|
||||
bisector1 : Bisector from MAT;
|
||||
bisector2 : Bisector from MAT;
|
||||
bisector3 : Bisector from MAT;
|
||||
bisector4 : Bisector from MAT)
|
||||
is static private;
|
||||
|
||||
|
||||
Intersect( me : in out ;
|
||||
atool : in out Tool ;
|
||||
aside : Integer ;
|
||||
noofbisectorstoremove: in out Integer ;
|
||||
bisector1 : mutable Bisector from MAT;
|
||||
bisector2 : mutable Bisector from MAT)
|
||||
is static private;
|
||||
|
||||
|
||||
--- Category : Querying.
|
||||
|
||||
Init(me : in out)
|
||||
--- Purpose : Initialize an iterator on the set of the roots
|
||||
-- of the trees of bisectors.
|
||||
is static;
|
||||
|
||||
More(me) returns Boolean
|
||||
--- Purpose : Return False if there is no more roots.
|
||||
is static;
|
||||
|
||||
Next(me : in out)
|
||||
--- Purpose : Move to the next root.
|
||||
is static;
|
||||
|
||||
Bisector(me) returns any Bisector from MAT
|
||||
--- Purpose : Returns the current root.
|
||||
is static;
|
||||
|
||||
SemiInfinite(me) returns Boolean from Standard
|
||||
--- Purpose : Returns True if there are semi_infinite bisectors.
|
||||
-- So there is a tree for each semi_infinte bisector.
|
||||
is static;
|
||||
|
||||
NumberOfBisectors(me) returns Integer from Standard
|
||||
--- Purpose : Returns the total number of bisectors.
|
||||
is static;
|
||||
|
||||
fields
|
||||
|
||||
thenumberofbisectors : Integer;
|
||||
thenumberofedges : Integer;
|
||||
semiInfinite : Boolean;
|
||||
theedgelist : ListOfEdge from MAT;
|
||||
typeofbisectortoremove: DataMapOfIntegerInteger from TColStd;
|
||||
bisectoronetoremove : DataMapOfIntegerBisector from MAT;
|
||||
bisectortwotoremove : DataMapOfIntegerBisector from MAT;
|
||||
bisectormap : DataMapOfIntegerBisector from MAT;
|
||||
roots : ListOfBisector from MAT;
|
||||
thecurrentindex : Integer;
|
||||
isDone : Boolean;
|
||||
|
||||
end Mat;
|
@@ -1,994 +0,0 @@
|
||||
// Created on: 1992-09-22
|
||||
// Created by: Gilles DEBARBOUILLE
|
||||
// Copyright (c) 1992-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <MAT_Edge.hxx>
|
||||
#include <MAT_ListOfEdge.hxx>
|
||||
#include <MAT_Bisector.hxx>
|
||||
#include <MAT_ListOfBisector.hxx>
|
||||
#include <TColStd_DataMapOfIntegerInteger.hxx>
|
||||
#include <TColStd_Array1OfInteger.hxx>
|
||||
#include <MAT_DataMapOfIntegerBisector.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
//========================================================================
|
||||
// function : MAT_Mat
|
||||
// purpose :
|
||||
//========================================================================
|
||||
|
||||
MAT_Mat::MAT_Mat()
|
||||
{
|
||||
thenumberofbisectors = 0;
|
||||
thenumberofedges = 0;
|
||||
}
|
||||
|
||||
|
||||
//========================================================================
|
||||
// function : CreateMat
|
||||
// purpose : Calcul des lieux Bisecteurs.
|
||||
//
|
||||
// Structure de la carte.
|
||||
// ======================
|
||||
// La carte des lieux bisecteurs se presente sous la forme d un ou plusieurs
|
||||
// arbres de bisectrices.
|
||||
// ( un arbre, si calcul a l interieur du contour, plusieurs sinon).
|
||||
//
|
||||
// Les branches de plus bas niveau de l arbre separent deux elements voisins
|
||||
// du contour.
|
||||
//
|
||||
// Principe de l algorithme.
|
||||
// -------------------------
|
||||
// l arbre est construit des branches les plus basses vers les plus hautes.
|
||||
//
|
||||
// 0 . Calcul des bisectrices entre elements voisins du contour.
|
||||
// 1 . Elimination de certains element du contour => nouveau contour
|
||||
// 2 . Retour en 0.
|
||||
//
|
||||
// Principales etapes de l algorithme.
|
||||
// ===================================
|
||||
//
|
||||
// etape 1: Initialisation de l algorithme .
|
||||
// -----------------------------------------
|
||||
// Recuperation via le tool du nombre d'elements sur le contour
|
||||
// Initialisation de <theedgelist>, un edge correspond a chaque
|
||||
// element du contour.
|
||||
//
|
||||
// etape 2 : Boucle principale.
|
||||
// ----------------------------
|
||||
// 0 - Tant que Nombre d'edge > 1
|
||||
//
|
||||
// 1. Pour chaque edge: construction de la bissectrice entre l edge
|
||||
// et l edge suivante.
|
||||
// La bissectrice est semi_infinie, elle est soit trimmee par le
|
||||
// point commun des deux edges, soit par l intersection de deux
|
||||
// bissectrices antecedentes.
|
||||
//
|
||||
// 2. Intersection des Bisectrices issue du meme edge
|
||||
// => une bisectrice est intersectee avec sa voisine a gauche
|
||||
// et sa voisine a droite.
|
||||
//
|
||||
// 3. Analyse des intersections.
|
||||
// Si pas d'intersection entre deux bisectrices B1 et B2
|
||||
// - Recherche de l intersection la plus basse de B1 avec les
|
||||
// Bisectrices antecedentes a B2 du cote de B1. Soit Bi la
|
||||
// bissectrice intersectee. Toutes les bissectrices constituant la
|
||||
// branche qui relie B2 a Bi sont marquees a effacer
|
||||
// - idem pour B2.
|
||||
//
|
||||
// 4. Suppresion des bisectrices a effacer.
|
||||
// une bisectrise est a effacer :
|
||||
// - Anulation de l intersection dont la bissectrice est issue
|
||||
// => Prolongement des deux bisectrices posterieures.
|
||||
// - Reinsertion des edge correspondant dans <theedgelist>.
|
||||
//
|
||||
// 5. Pour chaque edge, analyse des distances entre les points d inter
|
||||
// section et l edge.
|
||||
// B1 B2 les bisectrices liee a l edge
|
||||
// Soit P0 le point d intersection des bissectrices .
|
||||
// Soit P1 le point d intersection de B1 avec son autre voisine .
|
||||
// Soit P2 le point d intersection de B2 avec son autre voisine .
|
||||
//
|
||||
// si sur B1 le parametre de P0 < parametre de P1 et
|
||||
// si sur B2 le parametre de P0 < parametre de P2
|
||||
// alors suppression de l edge de la liste des edges <theedgelist>.
|
||||
//
|
||||
// rq: le parametre sur une bissectirce est croissant par rapport
|
||||
// a la distance du point courant aux edges.
|
||||
|
||||
// 6. Si aucune edge est elimine alors sortie de la boucle principale.
|
||||
//
|
||||
// 7. Retour en 0.
|
||||
//
|
||||
// etape 3 : Creation des racines des arbres de bisectrices.
|
||||
// ---------------------------------------------------------
|
||||
// Recuperation des bissectrices calculees lors du dernier passage
|
||||
// dans la boucle.
|
||||
//
|
||||
//========================================================================
|
||||
void MAT_Mat::CreateMat(Tool& atool)
|
||||
{
|
||||
|
||||
#ifdef ICONTINUE
|
||||
Standard_Boolean Icontinue;
|
||||
#endif
|
||||
|
||||
Standard_Boolean interrupt = Standard_False;
|
||||
|
||||
Handle(MAT_Edge) edgetoremove;
|
||||
Handle(MAT_Edge) previousedge,currentedge;
|
||||
|
||||
Standard_Integer noofbisectorstoremove;
|
||||
Handle(MAT_Bisector) firstbisector,secondbisector;
|
||||
Handle(MAT_Edge) edge;
|
||||
Standard_Integer intersectionpoint;
|
||||
Standard_Integer beginbisector;
|
||||
Standard_Integer noofbisectors;
|
||||
|
||||
Standard_Integer NbIterBis = 0;
|
||||
Standard_Integer EvenNbIterBis = 10;
|
||||
TColStd_Array1OfInteger EdgeNumbers(1, EvenNbIterBis+1);
|
||||
EdgeNumbers.Init(-1);
|
||||
Standard_Boolean ToNullifyNoofbisectorstoremove = Standard_False;
|
||||
|
||||
Handle(MAT_ListOfBisector) currentbisectorlist;
|
||||
|
||||
Handle(MAT_Bisector) bisectortoremove,lastbisector,currentbisector;
|
||||
Handle(MAT_Bisector) previousbisector;
|
||||
|
||||
Standard_Integer i,j,k,narea,shift,compact,all;
|
||||
Standard_Integer noofedges;
|
||||
Standard_Integer NumberMaxOfIte;
|
||||
Standard_Real toleranceofconfusion;
|
||||
|
||||
noofedges = atool.NumberOfItems();
|
||||
toleranceofconfusion = atool.ToleranceOfConfusion();
|
||||
NumberMaxOfIte = noofedges*noofedges;
|
||||
|
||||
TColStd_Array1OfInteger firstarea(0, noofedges);
|
||||
TColStd_Array1OfInteger lastarea(0, noofedges);
|
||||
TColStd_Array1OfInteger noofarea(0, noofedges);
|
||||
|
||||
Standard_Integer parama[2];
|
||||
Standard_Integer paramb[2];
|
||||
|
||||
// -----------------------------------------
|
||||
// Initialisation et remise a zero des maps.
|
||||
// -----------------------------------------
|
||||
bisectoronetoremove.Clear();
|
||||
bisectortwotoremove.Clear();
|
||||
typeofbisectortoremove.Clear();
|
||||
bisectormap.Clear();
|
||||
|
||||
isDone = Standard_True;
|
||||
noofbisectors = noofedges;
|
||||
beginbisector = 0;
|
||||
|
||||
// --------------------------------------------------------------------
|
||||
// Construction de <theedgelist> un edge correspond a un element simple
|
||||
// du contour.
|
||||
// --------------------------------------------------------------------
|
||||
theedgelist = new MAT_ListOfEdge();
|
||||
|
||||
for(i=0; i<noofedges; i++) {
|
||||
edge = new MAT_Edge();
|
||||
edge->EdgeNumber(i+1);
|
||||
edge->Distance(-1);
|
||||
theedgelist->BackAdd(edge);
|
||||
}
|
||||
|
||||
theedgelist->Loop();
|
||||
|
||||
//---------------------------------------------------
|
||||
// Initialisation des bissectrices issues du contour.
|
||||
//---------------------------------------------------
|
||||
Standard_Real Dist;
|
||||
theedgelist->First();
|
||||
|
||||
for(i=0; i<theedgelist->Number(); i++) {
|
||||
bisectormap.Bind(i,new MAT_Bisector());
|
||||
bisectormap(i)->IndexNumber(i);
|
||||
bisectormap(i)->FirstEdge(theedgelist->Current());
|
||||
bisectormap(i)->FirstVector
|
||||
(atool.TangentBefore(theedgelist->Current()->EdgeNumber()));
|
||||
theedgelist->Next();
|
||||
bisectormap(i)->SecondEdge(theedgelist->Current());
|
||||
bisectormap(i)->IssuePoint
|
||||
(atool.FirstPoint(theedgelist->Current()->EdgeNumber(),Dist));
|
||||
bisectormap(i)->DistIssuePoint(Dist);
|
||||
bisectormap(i)->SecondVector
|
||||
(atool.TangentAfter(theedgelist->Current()->EdgeNumber()));
|
||||
}
|
||||
|
||||
//----------------------------------------------------
|
||||
// Affectation a chaque edge de ses deux bissectrices.
|
||||
//----------------------------------------------------
|
||||
theedgelist->First();
|
||||
|
||||
for(i=0; i<theedgelist->Number(); i++) {
|
||||
theedgelist->Current()->FirstBisector
|
||||
(bisectormap((i-1+noofbisectors)%noofbisectors));
|
||||
theedgelist->Current()->SecondBisector
|
||||
(bisectormap(i));
|
||||
theedgelist->Next();
|
||||
}
|
||||
|
||||
//===========================================================================
|
||||
// Boucle Principale (etape 2)
|
||||
//===========================================================================
|
||||
Standard_Integer NumberOfIte = 0;
|
||||
|
||||
while(theedgelist->Number()>1) {
|
||||
|
||||
|
||||
// ------------------------------------------------------------------
|
||||
// Creation des geometries des bissectrices via le tool. (etape 2.1)
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
for(i=beginbisector; i<noofbisectors; i++) {
|
||||
|
||||
atool.CreateBisector(bisectormap(i));
|
||||
thenumberofbisectors++;
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(bisectormap(i)->BisectorNumber(),1);
|
||||
#ifdef ICONTINUE
|
||||
cin>>Icontinue;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// ---------------------------------------------
|
||||
// Condition de sortie de la boucle principale.
|
||||
// ---------------------------------------------
|
||||
|
||||
// Modified by Sergey KHROMOV - Fri Nov 17 10:28:28 2000 Begin
|
||||
if (theedgelist->Number() < 3)
|
||||
break;
|
||||
// Modified by Sergey KHROMOV - Fri Nov 17 10:28:37 2000 End
|
||||
|
||||
//---------------------------------------------------
|
||||
// boucle 2 Tant qu il y a des bisectrices a effacer.
|
||||
//---------------------------------------------------
|
||||
for(;;) {
|
||||
NbIterBis++;
|
||||
|
||||
noofbisectorstoremove = 0;
|
||||
theedgelist->First();
|
||||
|
||||
//--------------------------------------------------------------
|
||||
// Calcul des intersections des bisectrices voisines.(etape 2.2)
|
||||
//--------------------------------------------------------------
|
||||
|
||||
if (NbIterBis <= EvenNbIterBis+1)
|
||||
EdgeNumbers(NbIterBis) = theedgelist->Number();
|
||||
else
|
||||
{
|
||||
for (k = 1; k <= EvenNbIterBis; k++)
|
||||
EdgeNumbers(k) = EdgeNumbers(k+1);
|
||||
EdgeNumbers(EvenNbIterBis+1) = theedgelist->Number();
|
||||
}
|
||||
if (EdgeNumbers(EvenNbIterBis+1) == EdgeNumbers(1))
|
||||
ToNullifyNoofbisectorstoremove = Standard_True;
|
||||
|
||||
for(i=0; i<theedgelist->Number(); i++) {
|
||||
edge = theedgelist->Current();
|
||||
if(edge->Distance() == -1.) {
|
||||
firstbisector = edge->FirstBisector();
|
||||
secondbisector = edge->SecondBisector();
|
||||
edge->Distance(atool.IntersectBisector
|
||||
(firstbisector,secondbisector,intersectionpoint));
|
||||
edge->IntersectionPoint(intersectionpoint);
|
||||
|
||||
if(edge->Distance() == Precision::Infinite()) {
|
||||
if(firstbisector->IndexNumber() >= beginbisector ||
|
||||
secondbisector->IndexNumber() >= beginbisector)
|
||||
Intersect(atool,0,noofbisectorstoremove,
|
||||
firstbisector,secondbisector );
|
||||
}
|
||||
else {
|
||||
if(firstbisector->IndexNumber() >= beginbisector) {
|
||||
Intersect(atool,1,noofbisectorstoremove,
|
||||
firstbisector,secondbisector );
|
||||
}
|
||||
if(secondbisector->IndexNumber() >= beginbisector) {
|
||||
Intersect(atool,2,noofbisectorstoremove,
|
||||
firstbisector,secondbisector );
|
||||
}
|
||||
}
|
||||
}
|
||||
theedgelist->Next();
|
||||
}
|
||||
|
||||
//-------------------------------
|
||||
// Test de sortie de la boucle 2.
|
||||
//-------------------------------
|
||||
|
||||
if (ToNullifyNoofbisectorstoremove)
|
||||
noofbisectorstoremove = 0;
|
||||
if(noofbisectorstoremove == 0) break;
|
||||
|
||||
//---------------------------------------------------
|
||||
// Annulation des bissectrices a effacer. (etape 2.4)
|
||||
//---------------------------------------------------
|
||||
|
||||
for(i=0; i<noofbisectorstoremove; i++) {
|
||||
|
||||
bisectortoremove = bisectoronetoremove(i);
|
||||
|
||||
//---------------------------------------------------------------
|
||||
// Destruction des bisectrices descendantes de <bisectortoremove>
|
||||
// On descend dans l arbre jusqu a ce qu on atteigne
|
||||
// <bisectortwotoremove(i).
|
||||
//---------------------------------------------------------------
|
||||
|
||||
for(;;){
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(bisectortoremove->BisectorNumber(),0);
|
||||
#endif
|
||||
// ----------------------------------
|
||||
// Annulation de <bisectortoremove>.
|
||||
// ----------------------------------
|
||||
thenumberofbisectors--;
|
||||
currentbisectorlist = bisectortoremove->List();
|
||||
currentbisectorlist->First();
|
||||
currentbisector = currentbisectorlist->FirstItem();
|
||||
previousedge = currentbisector->FirstEdge();
|
||||
theedgelist->Init(previousedge);
|
||||
previousedge->Distance(-1.);
|
||||
previousedge->FirstBisector()->SecondParameter(Precision::Infinite());
|
||||
previousedge->SecondBisector()->FirstParameter(Precision::Infinite());
|
||||
|
||||
//------------------------------------------
|
||||
// Annulation des fils de <currentbisector>.
|
||||
//------------------------------------------
|
||||
|
||||
while(currentbisectorlist->More()) {
|
||||
currentbisector = currentbisectorlist->Current();
|
||||
currentedge = currentbisector->SecondEdge();
|
||||
|
||||
//---------------------------------------
|
||||
// Reinsertion de l edge dans le contour.
|
||||
//---------------------------------------
|
||||
theedgelist->LinkAfter(currentedge);
|
||||
theedgelist->Next();
|
||||
|
||||
currentedge->FirstBisector(currentbisector);
|
||||
previousedge->SecondBisector(currentbisector);
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(currentbisector->BisectorNumber(),0);
|
||||
#endif
|
||||
|
||||
//------------------------------------------------------
|
||||
// Annulation de l intersection ie les fils qui
|
||||
// ont generes l intersection sont prolonges a l infini.
|
||||
//------------------------------------------------------
|
||||
|
||||
currentbisector->FirstParameter (Precision::Infinite());
|
||||
currentbisector->SecondParameter(Precision::Infinite());
|
||||
|
||||
atool.TrimBisector(currentbisector);
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(currentbisector->BisectorNumber(),1);
|
||||
#endif
|
||||
currentedge->Distance(-1.);
|
||||
currentedge->FirstBisector()->SecondParameter(Precision::Infinite());
|
||||
currentedge->SecondBisector()->FirstParameter(Precision::Infinite());
|
||||
|
||||
previousedge = currentedge;
|
||||
currentbisectorlist->Next();
|
||||
}
|
||||
|
||||
theedgelist->Unlink();
|
||||
|
||||
//-----------------------------------------------------------
|
||||
// Test de sortie de la boucle d annulation des bissectrices.
|
||||
//-----------------------------------------------------------
|
||||
|
||||
if(bisectortoremove->BisectorNumber() ==
|
||||
bisectortwotoremove(i)->BisectorNumber()) break;
|
||||
|
||||
//-----------------------
|
||||
// Descente dans l arbre.
|
||||
//-----------------------
|
||||
|
||||
if(typeofbisectortoremove(i) == 1)
|
||||
bisectortoremove = bisectortoremove->FirstBisector();
|
||||
else
|
||||
bisectortoremove = bisectortoremove->LastBisector();
|
||||
|
||||
} //----------------------------------------------------
|
||||
// Fin boucle d annulation des bissectrices issue de
|
||||
// <bisectoronetoremove(i)>.
|
||||
//----------------------------------------------------
|
||||
|
||||
} //------------------------------------------
|
||||
// Fin boucle d annulation des bissectrices.
|
||||
//-------------------------------------------
|
||||
|
||||
#ifdef ICONTINUE
|
||||
cin>>Icontinue;
|
||||
#endif
|
||||
} //--------------
|
||||
// Fin Boucle 2.
|
||||
//--------------
|
||||
|
||||
// ----------------------------------------------------------------------
|
||||
// Analyse des parametres des intersections sur les bisectrices de chaque
|
||||
// edge et determination des portions de contour a supprimees. (etape 2.5)
|
||||
// ----------------------------------------------------------------------
|
||||
|
||||
theedgelist->First();
|
||||
|
||||
currentbisector = theedgelist->Current()->FirstBisector();
|
||||
if (currentbisector->FirstParameter() == Precision::Infinite() &&
|
||||
currentbisector->SecondParameter() == Precision::Infinite()) {
|
||||
parama[0] = -1;
|
||||
paramb[0] = -1;
|
||||
}
|
||||
else if(currentbisector->FirstParameter() == Precision::Infinite()) {
|
||||
parama[0] = -1;
|
||||
paramb[0] = 1;
|
||||
}
|
||||
else if(currentbisector->SecondParameter() == Precision::Infinite()) {
|
||||
paramb[0] = -1;
|
||||
parama[0] = 1;
|
||||
}
|
||||
else if (atool.Distance(currentbisector,
|
||||
currentbisector->FirstParameter(),
|
||||
currentbisector->SecondParameter())
|
||||
> toleranceofconfusion) {
|
||||
if((currentbisector->FirstParameter() -
|
||||
currentbisector->SecondParameter())
|
||||
*currentbisector->Sense() > 0.) {
|
||||
parama[0] = -1;
|
||||
paramb[0] = 1;
|
||||
}
|
||||
else {
|
||||
paramb[0] = -1;
|
||||
parama[0] = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
parama[0] = 1;
|
||||
paramb[0] = 1;
|
||||
}
|
||||
|
||||
narea = -1;
|
||||
|
||||
for(i=0; i<theedgelist->Number(); i++) {
|
||||
currentbisector = theedgelist->Current()->SecondBisector();
|
||||
if (currentbisector->FirstParameter() == Precision::Infinite() &&
|
||||
currentbisector->SecondParameter() == Precision::Infinite()) {
|
||||
parama[1] = -1;
|
||||
paramb[1] = -1;
|
||||
}
|
||||
else if(currentbisector->FirstParameter() == Precision::Infinite()) {
|
||||
parama[1] = -1;
|
||||
paramb[1] = 1;
|
||||
}
|
||||
else if(currentbisector->SecondParameter() == Precision::Infinite()) {
|
||||
paramb[1] = -1;
|
||||
parama[1] = 1;
|
||||
}
|
||||
else if (atool.Distance(currentbisector,
|
||||
currentbisector->FirstParameter(),
|
||||
currentbisector->SecondParameter())
|
||||
> toleranceofconfusion) {
|
||||
if((currentbisector->FirstParameter() -
|
||||
currentbisector->SecondParameter())
|
||||
*currentbisector->Sense() > 0.) {
|
||||
parama[1] = -1;
|
||||
paramb[1] = 1;
|
||||
}
|
||||
else {
|
||||
paramb[1] = -1;
|
||||
parama[1] = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
parama[1] = 1;
|
||||
paramb[1] = 1;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------
|
||||
// Test si l edge est a enlever du contour
|
||||
// Construction des portions de contour a eliminer.
|
||||
//
|
||||
// narea : nombre de portions continues du contour a eliminer.
|
||||
// firstarea[i] : indice premier edge de la portion i.
|
||||
// lastarea[i] : indice dernier edge de la portion i.
|
||||
//-----------------------------------------------------------------
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
cout <<" Test sur les parametres pour elimination"<<endl;
|
||||
cout << " Edge number :"<<theedgelist->Current()->EdgeNumber()<<endl;
|
||||
#endif
|
||||
|
||||
if(paramb[0] > 0 && parama[1] > 0) {
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
cout <<" A ELIMINER "<<endl;
|
||||
#endif
|
||||
if(narea < 0) {
|
||||
firstarea(++narea) = theedgelist->Index();
|
||||
lastarea(narea) = firstarea(narea);
|
||||
noofarea(narea) = 1;
|
||||
}
|
||||
else {
|
||||
if(theedgelist->Index() == lastarea(narea)+1) {
|
||||
lastarea(narea)++;
|
||||
noofarea(narea)++;
|
||||
}
|
||||
else {
|
||||
firstarea(++narea) = theedgelist->Index();
|
||||
lastarea(narea) = firstarea(narea);
|
||||
noofarea(narea) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
parama[0] = parama[1];
|
||||
paramb[0] = paramb[1];
|
||||
theedgelist->Next();
|
||||
|
||||
}
|
||||
|
||||
compact = 0;
|
||||
if(narea > 0) {
|
||||
if(lastarea(narea) == theedgelist->Number() && firstarea(0) == 1) {
|
||||
firstarea(0) = firstarea(narea);
|
||||
noofarea(0) = noofarea(0)+noofarea(narea);
|
||||
compact = noofarea(narea);
|
||||
narea--;
|
||||
}
|
||||
}
|
||||
|
||||
narea++;
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Sortie de la boucle principale si il n y a pas d edge a eliminer.
|
||||
// (etape 2.6)
|
||||
//------------------------------------------------------------------
|
||||
if(narea == 0) {
|
||||
interrupt = Standard_True;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------
|
||||
// Elimination des edges a enlever du contour
|
||||
// => Mise a jour du nouveau contour.
|
||||
// => Creation des bissectrices entre les nouvelles edges voisines.
|
||||
//----------------------------------------------------------------
|
||||
|
||||
beginbisector = noofbisectors;
|
||||
shift = 0;
|
||||
all = 0;
|
||||
if(narea == 1 && noofarea(0) == theedgelist->Number()) all = 1;
|
||||
|
||||
for(i=0; i<narea; i++) {
|
||||
if(i == 1)shift = shift-compact;
|
||||
theedgelist->First();
|
||||
edgetoremove = theedgelist->Brackets(firstarea(i)-shift);
|
||||
|
||||
edgetoremove->FirstBisector()->EndPoint(edgetoremove
|
||||
->IntersectionPoint());
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(edgetoremove->FirstBisector()->BisectorNumber(),0);
|
||||
#endif
|
||||
|
||||
edgetoremove->FirstBisector()->FirstParameter
|
||||
(edgetoremove->FirstBisector()->SecondParameter());
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
if(atool.TrimBisector(edgetoremove->FirstBisector()))
|
||||
atool.Dump(edgetoremove->FirstBisector()->BisectorNumber(),1);
|
||||
#else
|
||||
atool.TrimBisector(edgetoremove->FirstBisector());
|
||||
#endif
|
||||
|
||||
bisectormap.Bind(noofbisectors,new MAT_Bisector());
|
||||
bisectormap(noofbisectors)->IndexNumber(noofbisectors);
|
||||
bisectormap(noofbisectors)->DistIssuePoint(edgetoremove->Distance());
|
||||
bisectormap(noofbisectors)->IssuePoint(edgetoremove
|
||||
->IntersectionPoint());
|
||||
bisectormap(noofbisectors)->FirstEdge(theedgelist->PreviousItem());
|
||||
bisectormap(noofbisectors)->AddBisector(edgetoremove
|
||||
->FirstBisector());
|
||||
|
||||
for(j=0; j<noofarea(i); j++) {
|
||||
theedgelist->Unlink();
|
||||
theedgelist->Next();
|
||||
shift++;
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
cout<<" Suppression de l'arete : "<<edgetoremove->EdgeNumber()<<endl;
|
||||
#endif
|
||||
|
||||
if(all == 0 || j+1 != noofarea(i)) {
|
||||
bisectormap(noofbisectors)->AddBisector(edgetoremove
|
||||
->SecondBisector());
|
||||
}
|
||||
edgetoremove->SecondBisector()->EndPoint(edgetoremove
|
||||
->IntersectionPoint());
|
||||
|
||||
#ifdef DEBUG_Mat
|
||||
atool.Dump(edgetoremove->SecondBisector()->BisectorNumber(),0);
|
||||
#endif
|
||||
|
||||
edgetoremove->SecondBisector()->SecondParameter
|
||||
(edgetoremove->SecondBisector()->FirstParameter());
|
||||
#ifdef DEBUG_Mat
|
||||
if(atool.TrimBisector(edgetoremove->SecondBisector()))
|
||||
atool.Dump(edgetoremove->SecondBisector()->BisectorNumber(),1);
|
||||
#else
|
||||
atool.TrimBisector(edgetoremove->SecondBisector());
|
||||
#endif
|
||||
edgetoremove = theedgelist->Current();
|
||||
}
|
||||
bisectormap(noofbisectors)->SecondEdge(theedgelist->Current());
|
||||
|
||||
theedgelist->PreviousItem()
|
||||
->SecondBisector(bisectormap(noofbisectors));
|
||||
theedgelist->Current()->FirstBisector(bisectormap(noofbisectors));
|
||||
|
||||
bisectormap(noofbisectors)->FirstVector
|
||||
(atool.Tangent
|
||||
(bisectormap(noofbisectors)->FirstBisector()
|
||||
->BisectorNumber()));
|
||||
|
||||
bisectormap(noofbisectors)->SecondVector
|
||||
(atool.Tangent
|
||||
(bisectormap(noofbisectors)->LastBisector()
|
||||
->BisectorNumber()));
|
||||
|
||||
noofbisectors++;
|
||||
|
||||
theedgelist->PreviousItem()->Distance(-1);
|
||||
theedgelist->Current()->Distance(-1);
|
||||
|
||||
theedgelist->PreviousItem()->FirstBisector()
|
||||
->SecondParameter(Precision::Infinite());
|
||||
theedgelist->Current()->SecondBisector()->FirstParameter(Precision::Infinite());
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------
|
||||
// Test sur le nombre d iterations :
|
||||
// A chaque iteration est elimine un element du contour qui ne sera plus
|
||||
// reinsere par la suite => le nombre d iterartions doit etre < au nombre
|
||||
// d elements.
|
||||
// Le nombre d iteration maximum est fixe a numberofedges*numberofedges.
|
||||
//-----------------------------------------------------------------------
|
||||
if (NumberOfIte > NumberMaxOfIte) {
|
||||
isDone = Standard_False; //Echec calcul de la carte.
|
||||
break;
|
||||
}
|
||||
NumberOfIte++;
|
||||
|
||||
} //===============================================
|
||||
// Fin Boucle Principale.
|
||||
//===============================================
|
||||
|
||||
//----------
|
||||
// etape 3.
|
||||
//----------
|
||||
|
||||
|
||||
//----------------------------------------------
|
||||
// interupt = True => bissectrices semi_infinies.
|
||||
//----------------------------------------------
|
||||
|
||||
if(interrupt)
|
||||
semiInfinite = Standard_True;
|
||||
else {
|
||||
semiInfinite = Standard_False;
|
||||
|
||||
//------------------------------------------------------------------
|
||||
// Si le nombre d edge > 1 => le nombre d edge = 2
|
||||
// (cf test sortie boucle principale)
|
||||
// Les deux dernieres bisectrices separent les memes edges .
|
||||
// Soit elles sont confondues si calcul a l interieur, soit elles
|
||||
// sont semi-Infinies (exemple : contour compose seulement de deux
|
||||
// arcs de cercles).
|
||||
//------------------------------------------------------------------
|
||||
|
||||
if(theedgelist->Number() > 1) { //Now this branch is never reachable
|
||||
//because the case edgenumber = 2 is processed in the main loop
|
||||
theedgelist->First();
|
||||
edge = theedgelist->Current();
|
||||
if(edge->FirstBisector()->IndexNumber() == noofbisectors-1) {
|
||||
// Modified by skv - Tue Sep 13 12:13:28 2005 IDEM Begin
|
||||
if (atool.TrimBisector(edge->SecondBisector(),
|
||||
edge->FirstBisector()->IssuePoint())) {
|
||||
if (edge->SecondBisector()->EndPoint() == 0)
|
||||
edge->SecondBisector()->EndPoint(edge->FirstBisector()->IssuePoint());
|
||||
bisectormap(noofbisectors-1)->AddBisector(edge->SecondBisector());
|
||||
} else
|
||||
semiInfinite = Standard_True;
|
||||
// Modified by skv - Tue Sep 13 12:13:28 2005 IDEM End
|
||||
}
|
||||
else {
|
||||
// Modified by skv - Tue Sep 13 12:13:28 2005 IDEM Begin
|
||||
if (atool.TrimBisector(edge->FirstBisector(),
|
||||
edge->SecondBisector()->IssuePoint())) {
|
||||
if (edge->FirstBisector()->EndPoint() == 0)
|
||||
edge->FirstBisector()->EndPoint(edge->SecondBisector()->IssuePoint());
|
||||
bisectormap(noofbisectors-1)->AddBisector(edge->FirstBisector());
|
||||
} else
|
||||
semiInfinite = Standard_True;
|
||||
// Modified by skv - Tue Sep 13 12:13:28 2005 IDEM End
|
||||
}
|
||||
if (!semiInfinite) {
|
||||
thenumberofbisectors--;
|
||||
bisectormap(noofbisectors-1)->SecondEdge(edge);
|
||||
bisectormap(noofbisectors-1)->BisectorNumber(-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(semiInfinite) {
|
||||
beginbisector = noofbisectors;
|
||||
theedgelist->First();
|
||||
for(i=0; i<theedgelist->Number(); i++) {
|
||||
edge = theedgelist->Current();
|
||||
bisectormap.Bind(noofbisectors,edge->SecondBisector());
|
||||
noofbisectors++;
|
||||
theedgelist->Next();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//---------------------------
|
||||
// Recuperations des racines.
|
||||
//---------------------------
|
||||
|
||||
roots = new MAT_ListOfBisector;
|
||||
|
||||
if (bisectormap(noofbisectors-1)->BisectorNumber() == -1) {
|
||||
roots = bisectormap(noofbisectors-1)->List();
|
||||
roots->First();
|
||||
roots->Current()->FirstEdge()
|
||||
->Distance(bisectormap(noofbisectors-1)->DistIssuePoint());
|
||||
}
|
||||
else {
|
||||
for (i=beginbisector;i<noofbisectors;i++) {
|
||||
roots->BackAdd(bisectormap(i));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : LoadBisectorsToRemove
|
||||
// purpose : Chargement des bisectrices a effacer.
|
||||
//========================================================================
|
||||
void MAT_Mat::LoadBisectorsToRemove
|
||||
( Standard_Integer& noofbisectorstoremove,
|
||||
const Standard_Real distance1,
|
||||
const Standard_Real distance2,
|
||||
const Handle(MAT_Bisector)& firstbisectortoremove1,
|
||||
const Handle(MAT_Bisector)& firstbisectortoremove2,
|
||||
const Handle(MAT_Bisector)& lastbisectortoremove1,
|
||||
const Handle(MAT_Bisector)& lastbisectortoremove2 )
|
||||
{
|
||||
|
||||
Standard_Integer found,index;
|
||||
Handle(MAT_Bisector) firstbisectortoremove[2];
|
||||
Handle(MAT_Bisector) lastbisectortoremove[2];
|
||||
|
||||
firstbisectortoremove[0] = firstbisectortoremove1;
|
||||
firstbisectortoremove[1] = firstbisectortoremove2;
|
||||
lastbisectortoremove[0] = lastbisectortoremove1;
|
||||
lastbisectortoremove[1] = lastbisectortoremove2;
|
||||
|
||||
if (distance1 < Precision::Infinite() &&
|
||||
distance2 == Precision::Infinite() ) index = 0;
|
||||
else if(distance2 < Precision::Infinite() &&
|
||||
distance1 == Precision::Infinite() ) index = 1;
|
||||
else index = -1;
|
||||
|
||||
if(index != -1) {
|
||||
found = noofbisectorstoremove;
|
||||
for(int j=0; j<noofbisectorstoremove; j++) {
|
||||
if(bisectoronetoremove(j)->BisectorNumber() ==
|
||||
firstbisectortoremove[index]->BisectorNumber()) {
|
||||
found = j;
|
||||
if(bisectortwotoremove(j)->BisectorNumber() <
|
||||
lastbisectortoremove[index]->BisectorNumber())found = -1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(found != -1) {
|
||||
#ifdef DEBUG_Mat
|
||||
cout<<" first last bisector to remove :"<<
|
||||
firstbisectortoremove[index]->BisectorNumber()<<" "<<
|
||||
lastbisectortoremove[index]->BisectorNumber()<<endl;
|
||||
#endif
|
||||
bisectoronetoremove.Bind(found,firstbisectortoremove[index]);
|
||||
bisectortwotoremove.Bind(found,lastbisectortoremove[index]);
|
||||
typeofbisectortoremove.Bind(found,index+1);
|
||||
|
||||
if(found == noofbisectorstoremove)noofbisectorstoremove++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : Intersect
|
||||
// purpose : Si <aside=0> Intersection de <firstbisector> avec les
|
||||
// descendants de <secondbisector> les plus a gauche
|
||||
// (ie secondbisector->FirstBisector()->FirstBisector...)
|
||||
// Intersection de <secondbisector> avec les
|
||||
// descendants de <firstbisector> les plus a droite
|
||||
// (ie firstbisector->LastBisector()->LastBisector...)
|
||||
//
|
||||
// Si <aside=1> Intersection de <firstbisector> avec ses
|
||||
// descendants les plus a gauche et les plus a droite.
|
||||
//
|
||||
// Si <aside=2> Intersection de <secondbisector> avec ses
|
||||
// descendants les plus a gauche et les plus a droite.
|
||||
//========================================================================v
|
||||
void MAT_Mat::Intersect( Tool& atool,
|
||||
const Standard_Integer aside,
|
||||
Standard_Integer& noofbisectortoremove,
|
||||
const Handle(MAT_Bisector)& firstbisector,
|
||||
const Handle(MAT_Bisector)& secondbisector)
|
||||
{
|
||||
Standard_Integer bisectornumber;
|
||||
Standard_Real distant,saveparameter;
|
||||
Standard_Real distance[2];
|
||||
Standard_Integer intersectionpoint;
|
||||
Handle(MAT_Bisector) lastbisector,previousbisector;
|
||||
Handle(MAT_Bisector) firstbisectortoremove[2];
|
||||
Handle(MAT_Bisector) lastbisectortoremove[2];
|
||||
|
||||
distance[0] = Precision::Infinite();
|
||||
distance[1] = Precision::Infinite();
|
||||
|
||||
for(bisectornumber = 0; bisectornumber<2; bisectornumber++) {
|
||||
if(aside == 0) {
|
||||
if(bisectornumber == 0)
|
||||
firstbisectortoremove[bisectornumber] = secondbisector;
|
||||
else
|
||||
firstbisectortoremove[bisectornumber] = firstbisector;
|
||||
}
|
||||
else if(aside == 1) {
|
||||
firstbisectortoremove[bisectornumber] = firstbisector;
|
||||
}
|
||||
else {
|
||||
firstbisectortoremove[bisectornumber] = secondbisector;
|
||||
}
|
||||
|
||||
lastbisector = firstbisectortoremove[bisectornumber];
|
||||
|
||||
if(aside == 0) {
|
||||
previousbisector = firstbisectortoremove[bisectornumber];
|
||||
}
|
||||
else {
|
||||
if(firstbisectortoremove[bisectornumber]->List()->IsEmpty())continue;
|
||||
|
||||
if(bisectornumber == 0)
|
||||
previousbisector = firstbisectortoremove[bisectornumber]
|
||||
->FirstBisector();
|
||||
else
|
||||
previousbisector = firstbisectortoremove[bisectornumber]
|
||||
->LastBisector();
|
||||
}
|
||||
|
||||
distant = distance[bisectornumber];
|
||||
while(!previousbisector->List()->IsEmpty()) {
|
||||
|
||||
if(bisectornumber == 0)
|
||||
previousbisector = previousbisector->FirstBisector();
|
||||
else
|
||||
previousbisector = previousbisector->LastBisector();
|
||||
|
||||
if(aside == 1 || (aside == 0 && bisectornumber == 0)) {
|
||||
saveparameter = previousbisector->FirstParameter();
|
||||
distant = atool.IntersectBisector
|
||||
(firstbisector,previousbisector,intersectionpoint);
|
||||
previousbisector->FirstParameter(saveparameter);
|
||||
}
|
||||
else {
|
||||
saveparameter = previousbisector->SecondParameter();
|
||||
distant = atool.IntersectBisector
|
||||
(previousbisector,secondbisector,intersectionpoint);
|
||||
previousbisector->SecondParameter(saveparameter);
|
||||
}
|
||||
|
||||
if(distant < Precision::Infinite()) {
|
||||
distance[bisectornumber] = distant;
|
||||
lastbisectortoremove[bisectornumber] = lastbisector;
|
||||
}
|
||||
|
||||
lastbisector = previousbisector;
|
||||
}
|
||||
}
|
||||
|
||||
//---------------------------------------
|
||||
// Chargement des bissectrices a effacer.
|
||||
//---------------------------------------
|
||||
|
||||
LoadBisectorsToRemove(noofbisectortoremove,
|
||||
distance[0],distance[1],
|
||||
firstbisectortoremove[0],firstbisectortoremove[1],
|
||||
lastbisectortoremove[0] ,lastbisectortoremove[1]);
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : Init
|
||||
// purpose :
|
||||
//========================================================================
|
||||
void MAT_Mat::Init()
|
||||
{
|
||||
roots->First();
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : More
|
||||
// purpose :
|
||||
//========================================================================
|
||||
Standard_Boolean MAT_Mat::More() const
|
||||
{
|
||||
return roots->More();
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : Next
|
||||
// purpose :
|
||||
//========================================================================
|
||||
void MAT_Mat::Next()
|
||||
{
|
||||
roots->Next();
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : Bisector
|
||||
// purpose :
|
||||
//========================================================================
|
||||
Handle(MAT_Bisector) MAT_Mat::Bisector() const
|
||||
{
|
||||
return roots->Current();
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : NumberOfBisectors
|
||||
// purpose :
|
||||
//========================================================================
|
||||
Standard_Integer MAT_Mat::NumberOfBisectors() const
|
||||
{
|
||||
return thenumberofbisectors;
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : SemiInfinite
|
||||
// purpose :
|
||||
//========================================================================
|
||||
Standard_Boolean MAT_Mat::SemiInfinite() const
|
||||
{
|
||||
return semiInfinite;
|
||||
}
|
||||
|
||||
//========================================================================
|
||||
// function : IsDone
|
||||
// purpose :
|
||||
//========================================================================
|
||||
Standard_Boolean MAT_Mat::IsDone() const
|
||||
{
|
||||
return isDone;
|
||||
}
|
||||
|
Reference in New Issue
Block a user