1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-02 17:46:22 +03:00

Testing - Remove PLib_JacobiPolynomial_Test.cxx from GTests #463

This commit is contained in:
Pasukhin Dmitry 2025-03-24 17:35:21 +00:00 committed by GitHub
parent 876ccbe977
commit 43b1e47118
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 0 additions and 170 deletions

View File

@ -2,5 +2,4 @@
set(OCCT_TKMath_GTests_FILES_LOCATION "${CMAKE_CURRENT_LIST_DIR}")
set(OCCT_TKMath_GTests_FILES
PLib_JacobiPolynomial_Test.cxx
)

View File

@ -1,169 +0,0 @@
// Copyright (c) 2025 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <PLib_JacobiPolynomial.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array2OfReal.hxx>
#include <gtest/gtest.h>
TEST(PLib_JacobiPolynomialTest, ConstructorAndAccessors)
{
// Test with GeomAbs_C0
PLib_JacobiPolynomial aJacobi1(10, GeomAbs_C0);
EXPECT_EQ(10, aJacobi1.WorkDegree());
EXPECT_EQ(0, aJacobi1.NivConstr());
// Test with GeomAbs_C1
PLib_JacobiPolynomial aJacobi2(20, GeomAbs_C1);
EXPECT_EQ(20, aJacobi2.WorkDegree());
EXPECT_EQ(1, aJacobi2.NivConstr());
// Test with GeomAbs_C2
PLib_JacobiPolynomial aJacobi3(30, GeomAbs_C2);
EXPECT_EQ(30, aJacobi3.WorkDegree());
EXPECT_EQ(2, aJacobi3.NivConstr());
}
TEST(PLib_JacobiPolynomialTest, Weights)
{
PLib_JacobiPolynomial aJacobi(20, GeomAbs_C1);
// Test with 10 Gauss points
Standard_Integer nPoints = 10;
Standard_Integer nDegree = 20;
TColStd_Array2OfReal aWeights(0, nPoints / 2, 0, nDegree);
aJacobi.Weights(nPoints, aWeights);
// Weights should be positive
for (Standard_Integer i = 0; i <= nPoints / 2; i++)
{
for (Standard_Integer j = 0; j <= nDegree; j++)
{
// We don't check exact values, but they should be defined
EXPECT_FALSE(std::isnan(aWeights(i, j)));
}
}
}
TEST(PLib_JacobiPolynomialTest, MaxValue)
{
PLib_JacobiPolynomial aJacobi(15, GeomAbs_C0);
Standard_Integer q = aJacobi.WorkDegree() - 2 * (aJacobi.NivConstr() + 1);
TColStd_Array1OfReal aTabMax(0, q);
aJacobi.MaxValue(aTabMax);
// The maximum values should be positive
for (Standard_Integer i = 0; i <= q; i++)
{
EXPECT_GT(aTabMax(i), 0.0);
}
}
TEST(PLib_JacobiPolynomialTest, D0)
{
PLib_JacobiPolynomial aJacobi(10, GeomAbs_C0);
Standard_Integer q = aJacobi.WorkDegree() - 2 * (aJacobi.NivConstr() + 1);
TColStd_Array1OfReal aBasisValue(0, q);
// Test at u = 0
aJacobi.D0(0.0, aBasisValue);
// Test at u = 0.5
aJacobi.D0(0.5, aBasisValue);
// Test at u = 1.0
aJacobi.D0(1.0, aBasisValue);
// We don't check exact values here, just that the method executes without issues
EXPECT_TRUE(true);
}
TEST(PLib_JacobiPolynomialTest, D1)
{
PLib_JacobiPolynomial aJacobi(12, GeomAbs_C1);
Standard_Integer q = aJacobi.WorkDegree() - 2 * (aJacobi.NivConstr() + 1);
TColStd_Array1OfReal aBasisValue(0, q);
TColStd_Array1OfReal aBasisD1(0, q);
// Test at u = 0.5
aJacobi.D1(0.5, aBasisValue, aBasisD1);
// We don't check exact values here, just that the method executes without issues
EXPECT_TRUE(true);
}
TEST(PLib_JacobiPolynomialTest, D2)
{
PLib_JacobiPolynomial aJacobi(14, GeomAbs_C2);
Standard_Integer q = aJacobi.WorkDegree() - 2 * (aJacobi.NivConstr() + 1);
TColStd_Array1OfReal aBasisValue(0, q);
TColStd_Array1OfReal aBasisD1(0, q);
TColStd_Array1OfReal aBasisD2(0, q);
// Test at u = 0.5
aJacobi.D2(0.5, aBasisValue, aBasisD1, aBasisD2);
// We don't check exact values here, just that the method executes without issues
EXPECT_TRUE(true);
}
TEST(PLib_JacobiPolynomialTest, D3)
{
PLib_JacobiPolynomial aJacobi(16, GeomAbs_C2);
Standard_Integer q = aJacobi.WorkDegree() - 2 * (aJacobi.NivConstr() + 1);
TColStd_Array1OfReal aBasisValue(0, q);
TColStd_Array1OfReal aBasisD1(0, q);
TColStd_Array1OfReal aBasisD2(0, q);
TColStd_Array1OfReal aBasisD3(0, q);
// Test at u = 0.5
aJacobi.D3(0.5, aBasisValue, aBasisD1, aBasisD2, aBasisD3);
// We don't check exact values here, just that the method executes without issues
EXPECT_TRUE(true);
}
TEST(PLib_JacobiPolynomialTest, ReduceDegree)
{
PLib_JacobiPolynomial aJacobi(20, GeomAbs_C1);
Standard_Integer dimension = 3;
Standard_Integer maxDegree = 15;
Standard_Real tolerance = 1.0e-3;
// Create sample JacCoeff array with increasing values
TColStd_Array1OfReal aJacCoeff(1, dimension * (maxDegree + 1));
for (Standard_Integer i = 1; i <= dimension * (maxDegree + 1); i++)
{
aJacCoeff(i) = 0.1 * i;
}
// Initialize output variables
Standard_Integer newDegree = 0;
Standard_Real maxError = 0.0;
// Test the reduce degree functionality
aJacobi
.ReduceDegree(dimension, maxDegree, tolerance, aJacCoeff.ChangeValue(1), newDegree, maxError);
// New degree should be less than or equal to maxDegree
EXPECT_LE(newDegree, maxDegree);
// Max error should be defined
EXPECT_FALSE(std::isnan(maxError));
}