1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-09-18 14:27:39 +03:00

0024002: Overall code and build procedure refactoring -- automatic

Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl":
- WOK-generated header files from inc and sources from drv are moved to src
- CDL files removed
- All packages are converted to nocdlpack
This commit is contained in:
abv
2015-07-12 07:42:38 +03:00
parent 543a996496
commit 42cf5bc1ca
15354 changed files with 623957 additions and 509844 deletions

View File

@@ -1,600 +0,0 @@
-- Created on: 1991-09-10
-- Created by: Michel Chauvat
-- Copyright (c) 1991-1999 Matra Datavision
-- Copyright (c) 1999-2014 OPEN CASCADE SAS
--
-- This file is part of Open CASCADE Technology software library.
--
-- This library is free software; you can redistribute it and/or modify it under
-- the terms of the GNU Lesser General Public License version 2.1 as published
-- by the Free Software Foundation, with special exception defined in the file
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
-- distribution for complete text of the license and disclaimer of any warranty.
--
-- Alternatively, this file may be used under the terms of Open CASCADE
-- commercial license or contractual agreement.
package ElCLib
--- Purpose: Provides functions for basic geometric computations on
-- elementary curves such as conics and lines in 2D and 3D space.
-- This includes:
-- - calculation of a point or derived vector on a 2D or
-- 3D curve where:
-- - the curve is provided by the gp package, or
-- defined in reference form (as in the gp package),
-- and
-- - the point is defined by a parameter,
-- - evaluation of the parameter corresponding to a point
-- on a 2D or 3D curve from gp,
-- - various elementary computations which allow you to
-- position parameterized values within the period of a curve.
-- Notes:
-- - ElCLib stands for Elementary Curves Library.
-- - If the curves provided by the gp package are not
-- explicitly parameterized, they still have an implicit
-- parameterization, analogous to that which they infer
-- for the equivalent Geom or Geom2d curves.
uses gp
is
InPeriod(U, UFirst, ULast : Real) returns Real;
---Purpose: Return a value in the range <UFirst, ULast> by
-- adding or removing the period <ULast - UFirst> to
-- <U>.
AdjustPeriodic(UFirst, ULast, Precision : Real;
U1, U2 : in out Real);
---Purpose: Adjust U1 and U2 in the parametric range UFirst
-- Ulast of a periodic curve, where ULast -
-- UFirst is its period. To do this, this function:
-- - sets U1 in the range [ UFirst, ULast ] by
-- adding/removing the period to/from the value U1, then
-- - sets U2 in the range [ U1, U1 + period ] by
-- adding/removing the period to/from the value U2.
-- Precision is used to test the equalities.
Value (U : Real; L : Lin from gp) returns Pnt from gp;
--- Purpose : For elementary curves (lines, circles and conics) from
-- the gp package, computes the point of parameter U.
-- The result is either:
-- - a gp_Pnt point for a curve in 3D space, or
-- - a gp_Pnt2d point for a curve in 2D space.
Value (U : Real; C : Circ from gp) returns Pnt from gp;
---C++: inline
Value (U : Real; E : Elips from gp) returns Pnt from gp;
---C++: inline
Value (U : Real; H : Hypr from gp) returns Pnt from gp;
---C++: inline
Value (U : Real; Prb : Parab from gp) returns Pnt from gp;
---C++: inline
D1 (U : Real; L : Lin from gp; P : out Pnt from gp; V1 : out Vec from gp);
---Purpose:
-- For elementary curves (lines, circles and conics) from the
-- gp package, computes:
-- - the point P of parameter U, and
-- - the first derivative vector V1 at this point.
-- The results P and V1 are either:
-- - a gp_Pnt point and a gp_Vec vector, for a curve in 3D space, or
-- - a gp_Pnt2d point and a gp_Vec2d vector, for a curve in 2D space.
D1 (U : Real; C : Circ from gp; P : out Pnt from gp; V1 : out Vec from gp);
---C++: inline
D1 (U : Real; E : Elips from gp; P : out Pnt from gp; V1 : out Vec from gp);
---C++: inline
D1 (U : Real; H : Hypr from gp; P : out Pnt from gp; V1 : out Vec from gp);
---C++: inline
D1 (U : Real; Prb : Parab from gp; P : out Pnt from gp;
V1 : out Vec from gp);
---C++: inline
D2 (U : Real; C : Circ from gp; P : out Pnt from gp;
V1, V2 : out Vec from gp);
---Purpose: For elementary curves (circles and conics) from the gp
-- package, computes:
-- - the point P of parameter U, and
-- - the first and second derivative vectors V1 and V2 at this point.
-- The results, P, V1 and V2, are either:
-- - a gp_Pnt point and two gp_Vec vectors, for a curve in 3D space, or
-- - a gp_Pnt2d point and two gp_Vec2d vectors, for a curve in 2D space.
D2 (U : Real; E : Elips from gp; P : out Pnt from gp;
V1, V2 : out Vec from gp);
---C++: inline
D2 (U : Real; H : Hypr from gp; P : out Pnt from gp;
V1, V2 : out Vec from gp);
---C++: inline
D2 (U : Real; Prb : Parab from gp; P : out Pnt from gp;
V1, V2 : out Vec from gp);
---C++: inline
D3 (U : Real; C : Circ from gp; P : out Pnt from gp;
V1, V2, V3 : out Vec from gp);
---Purpose: For elementary curves (circles, ellipses and hyperbolae)
-- from the gp package, computes:
-- - the point P of parameter U, and
-- - the first, second and third derivative vectors V1, V2
-- and V3 at this point.
-- The results, P, V1, V2 and V3, are either:
-- - a gp_Pnt point and three gp_Vec vectors, for a curve in 3D space, or
-- - a gp_Pnt2d point and three gp_Vec2d vectors, for a curve in 2D space.
D3 (U : Real; E : Elips from gp; P : out Pnt from gp;
V1, V2, V3 : out Vec from gp);
---C++: inline
D3 (U : Real; H : Hypr from gp; P : out Pnt from gp;
V1, V2, V3 : out Vec from gp);
DN (U : Real; L : Lin from gp; N : Integer) returns Vec from gp;
---Purpose:
-- For elementary curves (lines, circles and conics) from
-- the gp package, computes the vector corresponding to
-- the Nth derivative at the point of parameter U. The result is either:
-- - a gp_Vec vector for a curve in 3D space, or
-- - a gp_Vec2d vector for a curve in 2D space.
-- In the following functions N is the order of derivation
-- and should be greater than 0
DN (U : Real; C : Circ from gp; N : Integer) returns Vec from gp;
---C++: inline
DN (U : Real; E : Elips from gp; N : Integer) returns Vec from gp;
---C++: inline
DN (U : Real; H : Hypr from gp; N : Integer) returns Vec from gp;
---C++: inline
DN (U : Real; Prb : Parab from gp; N : Integer) returns Vec from gp;
---C++: inline
Value (U : Real; L : Lin2d from gp) returns Pnt2d from gp;
---C++: inline
Value (U : Real; C : Circ2d from gp) returns Pnt2d from gp;
---C++: inline
Value (U : Real; E : Elips2d from gp) returns Pnt2d from gp;
---C++: inline
Value (U : Real; H : Hypr2d from gp) returns Pnt2d from gp;
---C++: inline
Value (U : Real; Prb : Parab2d from gp) returns Pnt2d from gp;
---C++: inline
D1 (U : Real; L : Lin2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
---C++: inline
D1 (U : Real; C : Circ2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
---C++: inline
D1 (U : Real; E : Elips2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
---C++: inline
D1 (U : Real; H : Hypr2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
---C++: inline
D1 (U : Real; Prb : Parab2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
---C++: inline
D2 (U : Real; C : Circ2d from gp; P : out Pnt2d from gp;
V1, V2 : out Vec2d from gp);
---C++: inline
D2 (U : Real; E : Elips2d from gp; P : out Pnt2d from gp;
V1, V2 : out Vec2d from gp);
---C++: inline
D2 (U : Real; H : Hypr2d from gp; P : out Pnt2d from gp;
V1, V2 : out Vec2d from gp);
---C++: inline
D2 (U : Real; Prb : Parab2d from gp; P : out Pnt2d from gp;
V1, V2 : out Vec2d from gp);
---C++: inline
D3 (U : Real; C : Circ2d from gp; P : out Pnt2d from gp;
V1, V2, V3 : out Vec2d from gp);
---C++: inline
D3 (U : Real; E : Elips2d from gp; P : out Pnt2d from gp;
V1, V2, V3 : out Vec2d from gp);
---C++: inline
D3 (U : Real; H : Hypr2d from gp; P : out Pnt2d from gp;
V1, V2, V3 : out Vec2d from gp);
---C++: inline
--- Purpose :
-- In the following functions N is the order of derivation
-- and should be greater than 0
DN (U : Real; L : Lin2d from gp; N : Integer) returns Vec2d from gp;
---C++: inline
DN (U : Real; C : Circ2d from gp; N : Integer) returns Vec2d from gp;
---C++: inline
DN (U : Real; E : Elips2d from gp; N : Integer) returns Vec2d from gp;
---C++: inline
DN (U : Real; H : Hypr2d from gp; N : Integer) returns Vec2d from gp;
---C++: inline
DN (U : Real; Prb : Parab2d from gp; N : Integer) returns Vec2d from gp;
---C++: inline
LineValue (U : Real; Pos : Ax1 from gp)
returns Pnt from gp;
--- Purpose : Curve evaluation
-- The following basis functions compute the derivatives on
-- elementary curves defined by their geometric characteristics.
-- These functions can be called without constructing a conic
-- from package gp. They are called by the previous functions.
-- Example :
-- A circle is defined by its position and its radius.
CircleValue (U : Real; Pos : Ax2 from gp; Radius : Real)
returns Pnt from gp;
EllipseValue (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real)
returns Pnt from gp;
HyperbolaValue (U : Real; Pos : Ax2 from gp;
MajorRadius, MinorRadius : Real)
returns Pnt from gp;
ParabolaValue (U : Real; Pos : Ax2 from gp; Focal : Real)
returns Pnt from gp;
LineD1 (U : Real; Pos : Ax1 from gp; P : out Pnt from gp;
V1 : out Vec from gp);
CircleD1 (U : Real; Pos : Ax2 from gp; Radius : Real; P : out Pnt from gp;
V1 : out Vec from gp);
EllipseD1 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1 : out Vec from gp);
HyperbolaD1 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1 : out Vec from gp);
ParabolaD1 (U : Real; Pos : Ax2 from gp; Focal : Real; P : out Pnt from gp;
V1 : out Vec from gp);
CircleD2 (U : Real; Pos : Ax2 from gp; Radius : Real;
P : out Pnt from gp; V1, V2 : out Vec from gp);
EllipseD2 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1, V2 : out Vec from gp);
HyperbolaD2 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1, V2 : out Vec from gp);
ParabolaD2 (U : Real; Pos : Ax2 from gp; Focal : Real;
P : out Pnt from gp; V1, V2 : out Vec from gp);
CircleD3 (U : Real; Pos : Ax2 from gp; Radius : Real;
P : out Pnt from gp; V1, V2, V3 : out Vec from gp);
EllipseD3 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1, V2, V3 : out Vec from gp);
HyperbolaD3 (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : out Pnt from gp; V1, V2, V3 : out Vec from gp);
LineDN (U : Real; Pos : Ax1 from gp; N : Integer)
returns Vec from gp;
--- Purpose :
-- In the following functions N is the order of derivation
-- and should be greater than 0
CircleDN (U : Real; Pos : Ax2 from gp; Radius : Real; N : Integer)
returns Vec from gp;
EllipseDN (U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
N : Integer)
returns Vec from gp;
HyperbolaDN (
U : Real; Pos : Ax2 from gp; MajorRadius, MinorRadius : Real; N : Integer)
returns Vec from gp;
ParabolaDN (U : Real; Pos : Ax2 from gp; Focal : Real; N : Integer)
returns Vec from gp;
LineValue (U : Real; Pos : Ax2d from gp)
returns Pnt2d from gp;
CircleValue (U : Real; Pos : Ax22d from gp; Radius : Real)
returns Pnt2d from gp;
EllipseValue (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real)
returns Pnt2d from gp;
HyperbolaValue (U : Real; Pos : Ax22d from gp;
MajorRadius, MinorRadius : Real)
returns Pnt2d from gp;
ParabolaValue (U : Real; Pos : Ax22d from gp; Focal : Real)
returns Pnt2d from gp;
LineD1 (U : Real; Pos : Ax2d from gp; P : out Pnt2d from gp;
V1 : out Vec2d from gp);
CircleD1 (U : Real; Pos : Ax22d from gp; Radius : Real;
P : out Pnt2d from gp; V1 : out Vec2d from gp);
EllipseD1 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1 : out Vec2d from gp);
HyperbolaD1 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1 : out Vec2d from gp);
ParabolaD1 (U : Real; Pos : Ax22d from gp; Focal : Real;
P : out Pnt2d from gp; V1 : out Vec2d from gp);
CircleD2 (U : Real; Pos : Ax22d from gp; Radius : Real;
P : out Pnt2d from gp; V1, V2 : out Vec2d from gp);
EllipseD2 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1, V2 : out Vec2d from gp);
HyperbolaD2 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1, V2 : out Vec2d from gp);
ParabolaD2 (U : Real; Pos : Ax22d from gp; Focal : Real;
P : out Pnt2d from gp; V1, V2 : out Vec2d from gp);
CircleD3 (U : Real; Pos : Ax22d from gp; Radius : Real;
P : out Pnt2d from gp; V1, V2, V3 : out Vec2d from gp);
EllipseD3 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1, V2, V3 : out Vec2d from gp);
HyperbolaD3 (U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : out Pnt2d from gp; V1, V2, V3 : out Vec2d from gp);
--- Purpose :
-- In the following functions N is the order of derivation
-- and should be greater than 0
LineDN (U : Real; Pos : Ax2d from gp; N : Integer)
returns Vec2d from gp;
CircleDN (U : Real; Pos : Ax22d from gp; Radius : Real; N : Integer)
returns Vec2d from gp;
EllipseDN (
U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
N : Integer)
returns Vec2d from gp;
HyperbolaDN (
U : Real; Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
N : Integer)
returns Vec2d from gp;
ParabolaDN (U : Real; Pos : Ax22d from gp; Focal : Real; N : Integer)
returns Vec2d from gp;
--- Purpose :
-- The following functions compute the parametric value corresponding
-- to a given point on a elementary curve. The point should be on the
-- curve.
Parameter (L : Lin from gp; P : Pnt from gp) returns Real;
---Purpose:
-- Computes the parameter value of the point P on the given curve.
-- Note: In its local coordinate system, the parametric
-- equation of the curve is given by the following:
-- - for the line L: P(U) = Po + U*Vo
-- where Po is the origin and Vo the unit vector of its positioning axis.
-- - for the circle C: X(U) = Radius*Cos(U), Y(U) = Radius*Sin(U)
-- - for the ellipse E: X(U) = MajorRadius*Cos(U). Y(U) = MinorRadius*Sin(U)
-- - for the hyperbola H: X(U) = MajorRadius*Ch(U), Y(U) = MinorRadius*Sh(U)
-- - for the parabola Prb:
-- X(U) = U**2 / (2*p)
-- Y(U) = U
-- where p is the distance between the focus and the directrix.
-- Warning
-- The point P must be on the curve. These functions are
-- not protected, however, and if point P is not on the
-- curve, an exception may be raised.
Parameter (L : Lin2d from gp; P : Pnt2d from gp) returns Real;
---C++: inline
--- Purpose : parametrization
-- P (U) = L.Location() + U * L.Direction()
Parameter (C : Circ from gp; P : Pnt from gp) returns Real;
---C++: inline
Parameter (C : Circ2d from gp; P : Pnt2d from gp) returns Real;
---C++: inline
--- Purpose : parametrization
-- In the local coordinate system of the circle
-- X (U) = Radius * Cos (U)
-- Y (U) = Radius * Sin (U)
Parameter (E : Elips from gp; P : Pnt from gp) returns Real;
---C++: inline
Parameter (E : Elips2d from gp; P : Pnt2d from gp) returns Real;
---C++: inline
--- Purpose : parametrization
-- In the local coordinate system of the Ellipse
-- X (U) = MajorRadius * Cos (U)
-- Y (U) = MinorRadius * Sin (U)
Parameter (H : Hypr from gp; P : Pnt from gp) returns Real;
---C++: inline
Parameter (H : Hypr2d from gp; P : Pnt2d from gp) returns Real;
---C++: inline
--- Purpose : parametrization
-- In the local coordinate system of the Hyperbola
-- X (U) = MajorRadius * Ch (U)
-- Y (U) = MinorRadius * Sh (U)
Parameter (Prb : Parab from gp; P : Pnt from gp) returns Real;
---C++: inline
Parameter (Prb : Parab2d from gp; P : Pnt2d from gp) returns Real;
---C++: inline
--- Purpose : parametrization
-- In the local coordinate system of the parabola
-- Y**2 = (2*P) * X where P is the distance between the focus
-- and the directrix.
LineParameter (Pos : Ax1 from gp; P : Pnt from gp) returns Real;
LineParameter (Pos : Ax2d from gp; P : Pnt2d from gp) returns Real;
--- Purpose : parametrization
-- P (U) = L.Location() + U * L.Direction()
CircleParameter (Pos : Ax2 from gp; P : Pnt from gp) returns Real;
CircleParameter (Pos : Ax22d from gp; P : Pnt2d from gp) returns Real;
--- Purpose : Pos is the Axis of the Circle
--- Purpose : parametrization
-- In the local coordinate system of the circle
-- X (U) = Radius * Cos (U)
-- Y (U) = Radius * Sin (U)
EllipseParameter (Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : Pnt from gp)
returns Real;
EllipseParameter (Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : Pnt2d from gp)
returns Real;
--- Purpose : Pos is the Axis of the Ellipse
--- Purpose : parametrization
-- In the local coordinate system of the Ellipse
-- X (U) = MajorRadius * Cos (U)
-- Y (U) = MinorRadius * Sin (U)
HyperbolaParameter (Pos : Ax2 from gp; MajorRadius, MinorRadius : Real;
P : Pnt from gp)
returns Real;
HyperbolaParameter (Pos : Ax22d from gp; MajorRadius, MinorRadius : Real;
P : Pnt2d from gp)
returns Real;
--- Purpose : Pos is the Axis of the Hyperbola
--- Purpose : parametrization
-- In the local coordinate system of the Hyperbola
-- X (U) = MajorRadius * Ch (U)
-- Y (U) = MinorRadius * Sh (U)
ParabolaParameter (Pos : Ax2 from gp; P : Pnt from gp) returns Real;
ParabolaParameter (Pos : Ax22d from gp; P : Pnt2d from gp) returns Real;
--- Purpose : Pos is the mirror axis of the parabola
--- Purpose : parametrization
-- In the local coordinate system of the parabola
-- Y**2 = (2*P) * X where P is the distance between the focus
-- and the directrix.
--- Purpose: The following functions build a 3d curve from a
-- 2d curve at a given position defined with an Ax2.
To3d (Pos : Ax2 from gp; P : Pnt2d from gp) returns Pnt from gp;
To3d (Pos : Ax2 from gp; V : Vec2d from gp) returns Vec from gp;
To3d (Pos : Ax2 from gp; V : Dir2d from gp) returns Dir from gp;
To3d (Pos : Ax2 from gp; A : Ax2d from gp) returns Ax1 from gp;
To3d (Pos : Ax2 from gp; A : Ax22d from gp) returns Ax2 from gp;
To3d (Pos : Ax2 from gp; L : Lin2d from gp) returns Lin from gp;
To3d (Pos : Ax2 from gp; C : Circ2d from gp) returns Circ from gp;
To3d (Pos : Ax2 from gp; E : Elips2d from gp) returns Elips from gp;
To3d (Pos : Ax2 from gp; H : Hypr2d from gp) returns Hypr from gp;
To3d (Pos : Ax2 from gp; Prb : Parab2d from gp) returns Parab from gp;
--- Purpose:
-- These functions build a 3D geometric entity from a 2D geometric entity.
-- The "X Axis" and the "Y Axis" of the global coordinate
-- system (i.e. 2D space) are lined up respectively with the
-- "X Axis" and "Y Axis" of the 3D coordinate system, Pos.
end ElCLib;

View File

@@ -20,8 +20,29 @@
#define No_Standard_OutOfRange
#include <ElCLib.ixx>
#include <ElCLib.hxx>
#include <gp.hxx>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Ax22d.hxx>
#include <gp_Circ.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Dir.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Elips.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
static Standard_Real PIPI = M_PI + M_PI;

473
src/ElCLib/ElCLib.hxx Normal file
View File

@@ -0,0 +1,473 @@
// Created on: 1991-09-10
// Created by: Michel Chauvat
// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _ElCLib_HeaderFile
#define _ElCLib_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Handle.hxx>
#include <Standard_Real.hxx>
#include <gp_Pnt.hxx>
#include <Standard_Integer.hxx>
#include <gp_Vec.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
class gp_Pnt;
class gp_Lin;
class gp_Circ;
class gp_Elips;
class gp_Hypr;
class gp_Parab;
class gp_Vec;
class gp_Lin2d;
class gp_Circ2d;
class gp_Elips2d;
class gp_Hypr2d;
class gp_Parab2d;
class gp_Pnt2d;
class gp_Vec2d;
class gp_Ax1;
class gp_Ax2;
class gp_Ax2d;
class gp_Ax22d;
class gp_Dir;
class gp_Dir2d;
//! Provides functions for basic geometric computations on
//! elementary curves such as conics and lines in 2D and 3D space.
//! This includes:
//! - calculation of a point or derived vector on a 2D or
//! 3D curve where:
//! - the curve is provided by the gp package, or
//! defined in reference form (as in the gp package),
//! and
//! - the point is defined by a parameter,
//! - evaluation of the parameter corresponding to a point
//! on a 2D or 3D curve from gp,
//! - various elementary computations which allow you to
//! position parameterized values within the period of a curve.
//! Notes:
//! - ElCLib stands for Elementary Curves Library.
//! - If the curves provided by the gp package are not
//! explicitly parameterized, they still have an implicit
//! parameterization, analogous to that which they infer
//! for the equivalent Geom or Geom2d curves.
class ElCLib
{
public:
DEFINE_STANDARD_ALLOC
//! Return a value in the range <UFirst, ULast> by
//! adding or removing the period <ULast - UFirst> to
//! <U>.
Standard_EXPORT static Standard_Real InPeriod (const Standard_Real U, const Standard_Real UFirst, const Standard_Real ULast);
//! Adjust U1 and U2 in the parametric range UFirst
//! Ulast of a periodic curve, where ULast -
//! UFirst is its period. To do this, this function:
//! - sets U1 in the range [ UFirst, ULast ] by
//! adding/removing the period to/from the value U1, then
//! - sets U2 in the range [ U1, U1 + period ] by
//! adding/removing the period to/from the value U2.
//! Precision is used to test the equalities.
Standard_EXPORT static void AdjustPeriodic (const Standard_Real UFirst, const Standard_Real ULast, const Standard_Real Precision, Standard_Real& U1, Standard_Real& U2);
//! For elementary curves (lines, circles and conics) from
//! the gp package, computes the point of parameter U.
//! The result is either:
//! - a gp_Pnt point for a curve in 3D space, or
//! - a gp_Pnt2d point for a curve in 2D space.
Standard_EXPORT static gp_Pnt Value (const Standard_Real U, const gp_Lin& L);
static gp_Pnt Value (const Standard_Real U, const gp_Circ& C);
static gp_Pnt Value (const Standard_Real U, const gp_Elips& E);
static gp_Pnt Value (const Standard_Real U, const gp_Hypr& H);
static gp_Pnt Value (const Standard_Real U, const gp_Parab& Prb);
//! For elementary curves (lines, circles and conics) from the
//! gp package, computes:
//! - the point P of parameter U, and
//! - the first derivative vector V1 at this point.
//! The results P and V1 are either:
//! - a gp_Pnt point and a gp_Vec vector, for a curve in 3D space, or
//! - a gp_Pnt2d point and a gp_Vec2d vector, for a curve in 2D space.
Standard_EXPORT static void D1 (const Standard_Real U, const gp_Lin& L, gp_Pnt& P, gp_Vec& V1);
static void D1 (const Standard_Real U, const gp_Circ& C, gp_Pnt& P, gp_Vec& V1);
static void D1 (const Standard_Real U, const gp_Elips& E, gp_Pnt& P, gp_Vec& V1);
static void D1 (const Standard_Real U, const gp_Hypr& H, gp_Pnt& P, gp_Vec& V1);
static void D1 (const Standard_Real U, const gp_Parab& Prb, gp_Pnt& P, gp_Vec& V1);
//! For elementary curves (circles and conics) from the gp
//! package, computes:
//! - the point P of parameter U, and
//! - the first and second derivative vectors V1 and V2 at this point.
//! The results, P, V1 and V2, are either:
//! - a gp_Pnt point and two gp_Vec vectors, for a curve in 3D space, or
//! - a gp_Pnt2d point and two gp_Vec2d vectors, for a curve in 2D space.
Standard_EXPORT static void D2 (const Standard_Real U, const gp_Circ& C, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
static void D2 (const Standard_Real U, const gp_Elips& E, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
static void D2 (const Standard_Real U, const gp_Hypr& H, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
static void D2 (const Standard_Real U, const gp_Parab& Prb, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
//! For elementary curves (circles, ellipses and hyperbolae)
//! from the gp package, computes:
//! - the point P of parameter U, and
//! - the first, second and third derivative vectors V1, V2
//! and V3 at this point.
//! The results, P, V1, V2 and V3, are either:
//! - a gp_Pnt point and three gp_Vec vectors, for a curve in 3D space, or
//! - a gp_Pnt2d point and three gp_Vec2d vectors, for a curve in 2D space.
Standard_EXPORT static void D3 (const Standard_Real U, const gp_Circ& C, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
static void D3 (const Standard_Real U, const gp_Elips& E, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
Standard_EXPORT static void D3 (const Standard_Real U, const gp_Hypr& H, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
//! For elementary curves (lines, circles and conics) from
//! the gp package, computes the vector corresponding to
//! the Nth derivative at the point of parameter U. The result is either:
//! - a gp_Vec vector for a curve in 3D space, or
//! - a gp_Vec2d vector for a curve in 2D space.
//! In the following functions N is the order of derivation
//! and should be greater than 0
Standard_EXPORT static gp_Vec DN (const Standard_Real U, const gp_Lin& L, const Standard_Integer N);
static gp_Vec DN (const Standard_Real U, const gp_Circ& C, const Standard_Integer N);
static gp_Vec DN (const Standard_Real U, const gp_Elips& E, const Standard_Integer N);
static gp_Vec DN (const Standard_Real U, const gp_Hypr& H, const Standard_Integer N);
static gp_Vec DN (const Standard_Real U, const gp_Parab& Prb, const Standard_Integer N);
static gp_Pnt2d Value (const Standard_Real U, const gp_Lin2d& L);
static gp_Pnt2d Value (const Standard_Real U, const gp_Circ2d& C);
static gp_Pnt2d Value (const Standard_Real U, const gp_Elips2d& E);
static gp_Pnt2d Value (const Standard_Real U, const gp_Hypr2d& H);
static gp_Pnt2d Value (const Standard_Real U, const gp_Parab2d& Prb);
static void D1 (const Standard_Real U, const gp_Lin2d& L, gp_Pnt2d& P, gp_Vec2d& V1);
static void D1 (const Standard_Real U, const gp_Circ2d& C, gp_Pnt2d& P, gp_Vec2d& V1);
static void D1 (const Standard_Real U, const gp_Elips2d& E, gp_Pnt2d& P, gp_Vec2d& V1);
static void D1 (const Standard_Real U, const gp_Hypr2d& H, gp_Pnt2d& P, gp_Vec2d& V1);
static void D1 (const Standard_Real U, const gp_Parab2d& Prb, gp_Pnt2d& P, gp_Vec2d& V1);
static void D2 (const Standard_Real U, const gp_Circ2d& C, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
static void D2 (const Standard_Real U, const gp_Elips2d& E, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
static void D2 (const Standard_Real U, const gp_Hypr2d& H, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
static void D2 (const Standard_Real U, const gp_Parab2d& Prb, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
static void D3 (const Standard_Real U, const gp_Circ2d& C, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
static void D3 (const Standard_Real U, const gp_Elips2d& E, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
//! In the following functions N is the order of derivation
//! and should be greater than 0
static void D3 (const Standard_Real U, const gp_Hypr2d& H, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
static gp_Vec2d DN (const Standard_Real U, const gp_Lin2d& L, const Standard_Integer N);
static gp_Vec2d DN (const Standard_Real U, const gp_Circ2d& C, const Standard_Integer N);
static gp_Vec2d DN (const Standard_Real U, const gp_Elips2d& E, const Standard_Integer N);
static gp_Vec2d DN (const Standard_Real U, const gp_Hypr2d& H, const Standard_Integer N);
static gp_Vec2d DN (const Standard_Real U, const gp_Parab2d& Prb, const Standard_Integer N);
//! Curve evaluation
//! The following basis functions compute the derivatives on
//! elementary curves defined by their geometric characteristics.
//! These functions can be called without constructing a conic
//! from package gp. They are called by the previous functions.
//! Example :
//! A circle is defined by its position and its radius.
Standard_EXPORT static gp_Pnt LineValue (const Standard_Real U, const gp_Ax1& Pos);
Standard_EXPORT static gp_Pnt CircleValue (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Radius);
Standard_EXPORT static gp_Pnt EllipseValue (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
Standard_EXPORT static gp_Pnt HyperbolaValue (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
Standard_EXPORT static gp_Pnt ParabolaValue (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Focal);
Standard_EXPORT static void LineD1 (const Standard_Real U, const gp_Ax1& Pos, gp_Pnt& P, gp_Vec& V1);
Standard_EXPORT static void CircleD1 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Radius, gp_Pnt& P, gp_Vec& V1);
Standard_EXPORT static void EllipseD1 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1);
Standard_EXPORT static void HyperbolaD1 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1);
Standard_EXPORT static void ParabolaD1 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Focal, gp_Pnt& P, gp_Vec& V1);
Standard_EXPORT static void CircleD2 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Radius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
Standard_EXPORT static void EllipseD2 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
Standard_EXPORT static void HyperbolaD2 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
Standard_EXPORT static void ParabolaD2 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Focal, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2);
Standard_EXPORT static void CircleD3 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Radius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
Standard_EXPORT static void EllipseD3 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
Standard_EXPORT static void HyperbolaD3 (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2, gp_Vec& V3);
//! In the following functions N is the order of derivation
//! and should be greater than 0
Standard_EXPORT static gp_Vec LineDN (const Standard_Real U, const gp_Ax1& Pos, const Standard_Integer N);
Standard_EXPORT static gp_Vec CircleDN (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Radius, const Standard_Integer N);
Standard_EXPORT static gp_Vec EllipseDN (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Integer N);
Standard_EXPORT static gp_Vec HyperbolaDN (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Integer N);
Standard_EXPORT static gp_Vec ParabolaDN (const Standard_Real U, const gp_Ax2& Pos, const Standard_Real Focal, const Standard_Integer N);
Standard_EXPORT static gp_Pnt2d LineValue (const Standard_Real U, const gp_Ax2d& Pos);
Standard_EXPORT static gp_Pnt2d CircleValue (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Radius);
Standard_EXPORT static gp_Pnt2d EllipseValue (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
Standard_EXPORT static gp_Pnt2d HyperbolaValue (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius);
Standard_EXPORT static gp_Pnt2d ParabolaValue (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Focal);
Standard_EXPORT static void LineD1 (const Standard_Real U, const gp_Ax2d& Pos, gp_Pnt2d& P, gp_Vec2d& V1);
Standard_EXPORT static void CircleD1 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Radius, gp_Pnt2d& P, gp_Vec2d& V1);
Standard_EXPORT static void EllipseD1 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1);
Standard_EXPORT static void HyperbolaD1 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1);
Standard_EXPORT static void ParabolaD1 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Focal, gp_Pnt2d& P, gp_Vec2d& V1);
Standard_EXPORT static void CircleD2 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Radius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
Standard_EXPORT static void EllipseD2 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
Standard_EXPORT static void HyperbolaD2 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
Standard_EXPORT static void ParabolaD2 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Focal, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2);
Standard_EXPORT static void CircleD3 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Radius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
Standard_EXPORT static void EllipseD3 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
//! In the following functions N is the order of derivation
//! and should be greater than 0
Standard_EXPORT static void HyperbolaD3 (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V3);
Standard_EXPORT static gp_Vec2d LineDN (const Standard_Real U, const gp_Ax2d& Pos, const Standard_Integer N);
Standard_EXPORT static gp_Vec2d CircleDN (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Radius, const Standard_Integer N);
Standard_EXPORT static gp_Vec2d EllipseDN (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Integer N);
Standard_EXPORT static gp_Vec2d HyperbolaDN (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const Standard_Integer N);
//! The following functions compute the parametric value corresponding
//! to a given point on a elementary curve. The point should be on the
//! curve.
Standard_EXPORT static gp_Vec2d ParabolaDN (const Standard_Real U, const gp_Ax22d& Pos, const Standard_Real Focal, const Standard_Integer N);
//! Computes the parameter value of the point P on the given curve.
//! Note: In its local coordinate system, the parametric
//! equation of the curve is given by the following:
//! - for the line L: P(U) = Po + U*Vo
//! where Po is the origin and Vo the unit vector of its positioning axis.
//! - for the circle C: X(U) = Radius*Cos(U), Y(U) = Radius*Sin(U)
//! - for the ellipse E: X(U) = MajorRadius*Cos(U). Y(U) = MinorRadius*Sin(U)
//! - for the hyperbola H: X(U) = MajorRadius*Ch(U), Y(U) = MinorRadius*Sh(U)
//! - for the parabola Prb:
//! X(U) = U**2 / (2*p)
//! Y(U) = U
//! where p is the distance between the focus and the directrix.
//! Warning
//! The point P must be on the curve. These functions are
//! not protected, however, and if point P is not on the
//! curve, an exception may be raised.
Standard_EXPORT static Standard_Real Parameter (const gp_Lin& L, const gp_Pnt& P);
//! parametrization
//! P (U) = L.Location() + U * L.Direction()
static Standard_Real Parameter (const gp_Lin2d& L, const gp_Pnt2d& P);
static Standard_Real Parameter (const gp_Circ& C, const gp_Pnt& P);
//! parametrization
//! In the local coordinate system of the circle
//! X (U) = Radius * Cos (U)
//! Y (U) = Radius * Sin (U)
static Standard_Real Parameter (const gp_Circ2d& C, const gp_Pnt2d& P);
static Standard_Real Parameter (const gp_Elips& E, const gp_Pnt& P);
//! parametrization
//! In the local coordinate system of the Ellipse
//! X (U) = MajorRadius * Cos (U)
//! Y (U) = MinorRadius * Sin (U)
static Standard_Real Parameter (const gp_Elips2d& E, const gp_Pnt2d& P);
static Standard_Real Parameter (const gp_Hypr& H, const gp_Pnt& P);
//! parametrization
//! In the local coordinate system of the Hyperbola
//! X (U) = MajorRadius * Ch (U)
//! Y (U) = MinorRadius * Sh (U)
static Standard_Real Parameter (const gp_Hypr2d& H, const gp_Pnt2d& P);
static Standard_Real Parameter (const gp_Parab& Prb, const gp_Pnt& P);
//! parametrization
//! In the local coordinate system of the parabola
//! Y**2 = (2*P) * X where P is the distance between the focus
//! and the directrix.
static Standard_Real Parameter (const gp_Parab2d& Prb, const gp_Pnt2d& P);
Standard_EXPORT static Standard_Real LineParameter (const gp_Ax1& Pos, const gp_Pnt& P);
//! parametrization
//! P (U) = L.Location() + U * L.Direction()
Standard_EXPORT static Standard_Real LineParameter (const gp_Ax2d& Pos, const gp_Pnt2d& P);
Standard_EXPORT static Standard_Real CircleParameter (const gp_Ax2& Pos, const gp_Pnt& P);
//! Pos is the Axis of the Circle
//! parametrization
//! In the local coordinate system of the circle
//! X (U) = Radius * Cos (U)
//! Y (U) = Radius * Sin (U)
Standard_EXPORT static Standard_Real CircleParameter (const gp_Ax22d& Pos, const gp_Pnt2d& P);
Standard_EXPORT static Standard_Real EllipseParameter (const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const gp_Pnt& P);
//! Pos is the Axis of the Ellipse
//! parametrization
//! In the local coordinate system of the Ellipse
//! X (U) = MajorRadius * Cos (U)
//! Y (U) = MinorRadius * Sin (U)
Standard_EXPORT static Standard_Real EllipseParameter (const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const gp_Pnt2d& P);
Standard_EXPORT static Standard_Real HyperbolaParameter (const gp_Ax2& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const gp_Pnt& P);
//! Pos is the Axis of the Hyperbola
//! parametrization
//! In the local coordinate system of the Hyperbola
//! X (U) = MajorRadius * Ch (U)
//! Y (U) = MinorRadius * Sh (U)
Standard_EXPORT static Standard_Real HyperbolaParameter (const gp_Ax22d& Pos, const Standard_Real MajorRadius, const Standard_Real MinorRadius, const gp_Pnt2d& P);
Standard_EXPORT static Standard_Real ParabolaParameter (const gp_Ax2& Pos, const gp_Pnt& P);
//! Pos is the mirror axis of the parabola
//! parametrization
//! In the local coordinate system of the parabola
//! Y**2 = (2*P) * X where P is the distance between the focus
//! and the directrix.
//! The following functions build a 3d curve from a
//! 2d curve at a given position defined with an Ax2.
Standard_EXPORT static Standard_Real ParabolaParameter (const gp_Ax22d& Pos, const gp_Pnt2d& P);
Standard_EXPORT static gp_Pnt To3d (const gp_Ax2& Pos, const gp_Pnt2d& P);
Standard_EXPORT static gp_Vec To3d (const gp_Ax2& Pos, const gp_Vec2d& V);
Standard_EXPORT static gp_Dir To3d (const gp_Ax2& Pos, const gp_Dir2d& V);
Standard_EXPORT static gp_Ax1 To3d (const gp_Ax2& Pos, const gp_Ax2d& A);
Standard_EXPORT static gp_Ax2 To3d (const gp_Ax2& Pos, const gp_Ax22d& A);
Standard_EXPORT static gp_Lin To3d (const gp_Ax2& Pos, const gp_Lin2d& L);
Standard_EXPORT static gp_Circ To3d (const gp_Ax2& Pos, const gp_Circ2d& C);
Standard_EXPORT static gp_Elips To3d (const gp_Ax2& Pos, const gp_Elips2d& E);
Standard_EXPORT static gp_Hypr To3d (const gp_Ax2& Pos, const gp_Hypr2d& H);
//! These functions build a 3D geometric entity from a 2D geometric entity.
//! The "X Axis" and the "Y Axis" of the global coordinate
//! system (i.e. 2D space) are lined up respectively with the
//! "X Axis" and "Y Axis" of the 3D coordinate system, Pos.
Standard_EXPORT static gp_Parab To3d (const gp_Ax2& Pos, const gp_Parab2d& Prb);
protected:
private:
};
#include <ElCLib.lxx>
#endif // _ElCLib_HeaderFile

3
src/ElCLib/FILES Normal file
View File

@@ -0,0 +1,3 @@
ElCLib.cxx
ElCLib.hxx
ElCLib.lxx