mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0030365: Modeling Algorithms - Create tool to compute deviation between any 2D-curve and some its segment
Adds two new overloaded 'ComputeDeviation()' function (approx & exact) to GeomLib_Tool class to calculates the parameter in the curve where the maximum deviation is obtained between the curve and the line segment connecting its points with the specified parameters Adds new '2ddeviation' DRAW command for 'ComputeDeviation()' functional testing
This commit is contained in:
parent
d0cf7e8f3c
commit
323e88ada7
@ -13,66 +13,17 @@
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <GeomLib_Tool.hxx>
|
||||
|
||||
#include <ElCLib.hxx>
|
||||
#include <ElSLib.hxx>
|
||||
#include <Extrema_ExtPC.hxx>
|
||||
#include <Extrema_ExtPC2d.hxx>
|
||||
#include <Extrema_ExtPS.hxx>
|
||||
#include <Geom2d_BezierCurve.hxx>
|
||||
#include <Geom2d_BSplineCurve.hxx>
|
||||
#include <Geom2d_Circle.hxx>
|
||||
#include <Geom2d_Curve.hxx>
|
||||
#include <Geom2d_Ellipse.hxx>
|
||||
#include <Geom2d_Hyperbola.hxx>
|
||||
#include <Geom2d_Line.hxx>
|
||||
#include <Geom2d_OffsetCurve.hxx>
|
||||
#include <Geom2d_Parabola.hxx>
|
||||
#include <Geom2d_TrimmedCurve.hxx>
|
||||
#include <Geom2dAdaptor_Curve.hxx>
|
||||
#include <Geom_BezierCurve.hxx>
|
||||
#include <Geom_BezierSurface.hxx>
|
||||
#include <Geom_BSplineCurve.hxx>
|
||||
#include <Geom_BSplineSurface.hxx>
|
||||
#include <Geom_Circle.hxx>
|
||||
#include <Geom_ConicalSurface.hxx>
|
||||
#include <Geom_Curve.hxx>
|
||||
#include <Geom_CylindricalSurface.hxx>
|
||||
#include <Geom_Ellipse.hxx>
|
||||
#include <Geom_Hyperbola.hxx>
|
||||
#include <Geom_Line.hxx>
|
||||
#include <Geom_OffsetCurve.hxx>
|
||||
#include <Geom_OffsetSurface.hxx>
|
||||
#include <Geom_Parabola.hxx>
|
||||
#include <Geom_Plane.hxx>
|
||||
#include <Geom_RectangularTrimmedSurface.hxx>
|
||||
#include <Geom_SphericalSurface.hxx>
|
||||
#include <Geom_Surface.hxx>
|
||||
#include <Geom_SurfaceOfLinearExtrusion.hxx>
|
||||
#include <Geom_SurfaceOfRevolution.hxx>
|
||||
#include <Geom_ToroidalSurface.hxx>
|
||||
#include <Geom_TrimmedCurve.hxx>
|
||||
#include <GeomAdaptor_Curve.hxx>
|
||||
#include <GeomAdaptor_Surface.hxx>
|
||||
#include <GeomLib_Tool.hxx>
|
||||
#include <gp_Circ.hxx>
|
||||
#include <gp_Circ2d.hxx>
|
||||
#include <gp_Cone.hxx>
|
||||
#include <gp_Cylinder.hxx>
|
||||
#include <gp_Elips.hxx>
|
||||
#include <gp_Elips2d.hxx>
|
||||
#include <gp_Hypr.hxx>
|
||||
#include <gp_Hypr2d.hxx>
|
||||
#include <gp_Lin.hxx>
|
||||
#include <gp_Lin2d.hxx>
|
||||
#include <gp_Parab.hxx>
|
||||
#include <gp_Parab2d.hxx>
|
||||
#include <gp_Pln.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Pnt2d.hxx>
|
||||
#include <gp_Sphere.hxx>
|
||||
#include <gp_Torus.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <math_MultipleVarFunction.hxx>
|
||||
#include <math_PSO.hxx>
|
||||
|
||||
// The functions Parameter(s) are used to compute parameter(s) of point
|
||||
// on curves and surfaces. The main rule is that tested point must lied
|
||||
@ -92,7 +43,7 @@ static const Standard_Real PARTOLERANCE = 1.e-9;
|
||||
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom_Curve)& Curve,
|
||||
const gp_Pnt& Point,
|
||||
const Standard_Real MaxDist,
|
||||
Standard_Real& U)
|
||||
Standard_Real& U)
|
||||
{
|
||||
if( Curve.IsNull() ) return Standard_False;
|
||||
//
|
||||
@ -140,8 +91,8 @@ Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom_Curve)& Curve,
|
||||
Standard_Boolean GeomLib_Tool::Parameters(const Handle(Geom_Surface)& Surface,
|
||||
const gp_Pnt& Point,
|
||||
const Standard_Real MaxDist,
|
||||
Standard_Real& U,
|
||||
Standard_Real& V)
|
||||
Standard_Real& U,
|
||||
Standard_Real& V)
|
||||
{
|
||||
if( Surface.IsNull() ) return Standard_False;
|
||||
//
|
||||
@ -192,7 +143,7 @@ Standard_Boolean GeomLib_Tool::Parameters(const Handle(Geom_Surface)& Surface,
|
||||
Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom2d_Curve)& Curve,
|
||||
const gp_Pnt2d& Point,
|
||||
const Standard_Real MaxDist,
|
||||
Standard_Real& U)
|
||||
Standard_Real& U)
|
||||
{
|
||||
if( Curve.IsNull() ) return Standard_False;
|
||||
//
|
||||
@ -225,3 +176,281 @@ Standard_Boolean GeomLib_Tool::Parameter(const Handle(Geom2d_Curve)& Curve,
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
//! Target function to compute deviation of the source 2D-curve.
|
||||
//! It is one-variate function. Its parameter is a parameter
|
||||
//! on the curve. Deviation is a maximal distance between
|
||||
//! any point in the curve and the given line.
|
||||
class FuncSolveDeviation: public math_MultipleVarFunction
|
||||
{
|
||||
public:
|
||||
|
||||
//! Constructor. Initializes the curve and the line
|
||||
//! going through two given points.
|
||||
FuncSolveDeviation(const Geom2dAdaptor_Curve& theCurve,
|
||||
const gp_XY& thePf,
|
||||
const gp_XY& thePl):
|
||||
myCurve(theCurve),
|
||||
myPRef(thePf)
|
||||
{
|
||||
myDirRef = thePl - thePf;
|
||||
mySqMod = myDirRef.SquareModulus();
|
||||
myIsValid = (mySqMod > Precision::SquarePConfusion());
|
||||
}
|
||||
|
||||
//! Compute additional parameters depending on the argument
|
||||
//! of *this
|
||||
void UpdateFields(const Standard_Real theParam)
|
||||
{
|
||||
myCurve.D0(theParam, myPointOnCurve);
|
||||
const gp_XY aVt = myPointOnCurve.XY() - myPRef;
|
||||
myVecCurvLine = aVt.Dot(myDirRef) * myDirRef / mySqMod - aVt;
|
||||
}
|
||||
|
||||
//! Returns value of *this (square deviation) and its 1st and 2nd derivative.
|
||||
void ValueAndDerives(const Standard_Real theParam, Standard_Real& theVal,
|
||||
Standard_Real& theD1, Standard_Real& theD2)
|
||||
{
|
||||
gp_Vec2d aD1;
|
||||
gp_Vec2d aD2;
|
||||
myCurve.D2(theParam, myPointOnCurve, aD1, aD2);
|
||||
|
||||
const gp_XY aVt = myPointOnCurve.XY() - myPRef;
|
||||
theVal = aVt.Crossed(myDirRef);
|
||||
theD1 = aD1.Crossed(myDirRef);
|
||||
theD2 = 2.0 * (theD1 * theD1 + theVal * aD2.Crossed(myDirRef));
|
||||
theD1 *= 2.0 * theVal;
|
||||
theVal *= theVal / mySqMod;
|
||||
}
|
||||
|
||||
//! Returns TRUE if the function has been initializes correctly.
|
||||
Standard_Boolean IsValid() const
|
||||
{
|
||||
return myIsValid;
|
||||
}
|
||||
|
||||
//! Returns number of variables
|
||||
virtual Standard_Integer NbVariables() const Standard_OVERRIDE
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
//! Returns last computed Point in the given curve.
|
||||
//! Its value will be recomputed after calling UpdateFields(...) method,
|
||||
//! which sets this point correspond to the input parameter.
|
||||
const gp_Pnt2d& PointOnCurve() const
|
||||
{
|
||||
return myPointOnCurve;
|
||||
}
|
||||
|
||||
//! Returns last computed vector directed from some point on the curve
|
||||
//! to the given line. This vector is correspond to the found deviation.
|
||||
//! Its value will be recomputed after calling UpdateFields(...) method,
|
||||
//! which set this vector correspond to the input parameter.
|
||||
const gp_Vec2d& VecCurveLine() const
|
||||
{
|
||||
return myVecCurvLine;
|
||||
}
|
||||
|
||||
//! Returns the given line
|
||||
void GetLine(gp_Lin2d* const theLine) const
|
||||
{
|
||||
if (theLine == nullptr)
|
||||
{
|
||||
return;
|
||||
}
|
||||
theLine->SetDirection(myDirRef);
|
||||
theLine->SetLocation(myPRef);
|
||||
}
|
||||
|
||||
//! Returns value of *this (square deviation)
|
||||
virtual Standard_Boolean Value(const math_Vector& thePrm,
|
||||
Standard_Real& theVal) Standard_OVERRIDE
|
||||
{
|
||||
Standard_Real aD1;
|
||||
Standard_Real aD2;
|
||||
ValueAndDerives(thePrm.Value(thePrm.Lower()), theVal, aD1, aD2);
|
||||
theVal = -theVal;
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//! Always returns 0. It is used for compatibility with the parent class.
|
||||
virtual Standard_Integer GetStateNumber() Standard_OVERRIDE
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
//! The curve
|
||||
Geom2dAdaptor_Curve myCurve;
|
||||
|
||||
//! Square modulus of myDirRef (it is constant)
|
||||
Standard_Real mySqMod;
|
||||
|
||||
//! TRUE if *this is initialized correctly
|
||||
Standard_Boolean myIsValid;
|
||||
|
||||
//! Sets the given line
|
||||
gp_XY myPRef, myDirRef;
|
||||
|
||||
//! Last computed point in the curve
|
||||
gp_Pnt2d myPointOnCurve;
|
||||
|
||||
//! Always directed from myPointOnCurve to the line
|
||||
gp_Vec2d myVecCurvLine;
|
||||
};
|
||||
} //nameless namespace
|
||||
|
||||
//=======================================================================
|
||||
//function : ComputeDeviation
|
||||
//purpose : Computes parameter on curve (*thePrmOnCurve) where maximal deviation
|
||||
// (maximal value of correspond function FuncSolveDeviation) is obtained.
|
||||
// ALGORITHM!
|
||||
// The point is looked for where 1st derivative of the function
|
||||
// FuncSolveDeviation is equal to 0. It is made by iterative formula:
|
||||
//
|
||||
// U(n+1)=U(n) - D1/D2,
|
||||
//
|
||||
// where D1 and D2 are 1st and 2nd derivative of the function, computed in
|
||||
// the point U(n). U(0) = theStartParameter.
|
||||
//=======================================================================
|
||||
Standard_Real GeomLib_Tool::ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
|
||||
const Standard_Real theFPar,
|
||||
const Standard_Real theLPar,
|
||||
const Standard_Real theStartParameter,
|
||||
const Standard_Integer theNbIters,
|
||||
Standard_Real* const thePrmOnCurve,
|
||||
gp_Pnt2d* const thePtOnCurve,
|
||||
gp_Vec2d* const theVecCurvLine,
|
||||
gp_Lin2d* const theLine)
|
||||
{
|
||||
// Computed maximal deflection
|
||||
if ((theStartParameter < theFPar) || (theStartParameter > theLPar))
|
||||
{
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
const gp_Pnt2d aPf(theCurve.Value(theFPar));
|
||||
const gp_Pnt2d aPl(theCurve.Value(theLPar));
|
||||
|
||||
FuncSolveDeviation aFunc(theCurve, aPf.XY(), aPl.XY());
|
||||
|
||||
if (!aFunc.IsValid())
|
||||
{
|
||||
return -1.0;
|
||||
}
|
||||
|
||||
aFunc.GetLine(theLine);
|
||||
|
||||
const Standard_Real aTolDefl = Precision::PConfusion();
|
||||
|
||||
Standard_Real aD1 = 0.0;
|
||||
Standard_Real aD2 = 0.0;
|
||||
Standard_Real aU0 = theStartParameter;
|
||||
Standard_Real aUmax = theStartParameter;
|
||||
Standard_Real aSqDefl;
|
||||
aFunc.ValueAndDerives(aU0, aSqDefl, aD1, aD2);
|
||||
for (Standard_Integer anItr = 1; anItr <= theNbIters; anItr++)
|
||||
{
|
||||
if (Abs(aD2) < Precision::PConfusion())
|
||||
{
|
||||
break;
|
||||
}
|
||||
const Standard_Real aDelta = aD1 / aD2;
|
||||
const Standard_Real aU1 = aU0 - aDelta;
|
||||
|
||||
if ((aU1 < theFPar) || (aU1 > theLPar))
|
||||
{
|
||||
break;
|
||||
}
|
||||
Standard_Real aSqD = aSqDefl;
|
||||
aFunc.ValueAndDerives(aU1, aSqD, aD1, aD2);
|
||||
if (aSqD > aSqDefl)
|
||||
{
|
||||
aUmax = aU1;
|
||||
const Standard_Real aDD = aSqDefl > 0.0 ?
|
||||
Abs(Sqrt(aSqD) - Sqrt(aSqDefl)) : Sqrt(aSqD);
|
||||
aSqDefl = aSqD;
|
||||
if (aDD < aTolDefl)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (Abs(aU0 - aU1) < Precision::PConfusion())
|
||||
{
|
||||
break;
|
||||
}
|
||||
aU0 = aU1;
|
||||
}
|
||||
if (aSqDefl < 0.0)
|
||||
{
|
||||
return aSqDefl;
|
||||
}
|
||||
if (thePrmOnCurve)
|
||||
{
|
||||
*thePrmOnCurve = aUmax;
|
||||
}
|
||||
if ((thePtOnCurve != nullptr) || (theVecCurvLine != nullptr))
|
||||
{
|
||||
aFunc.UpdateFields(aUmax);
|
||||
|
||||
if (thePtOnCurve != nullptr)
|
||||
{
|
||||
thePtOnCurve->SetXY(aFunc.PointOnCurve().XY());
|
||||
}
|
||||
|
||||
if (theVecCurvLine != nullptr)
|
||||
{
|
||||
theVecCurvLine->SetXY(aFunc.VecCurveLine().XY());
|
||||
}
|
||||
}
|
||||
return Sqrt(aSqDefl);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ComputeDeviation
|
||||
//purpose : Computes parameter on curve (*thePrmOnCurve) where maximal deviation
|
||||
// (maximal value of correspond function FuncSolveDeviation) is obtained
|
||||
// (fast but not precisely).
|
||||
// math_PSO Algorithm is used.
|
||||
//=======================================================================
|
||||
Standard_Real GeomLib_Tool::ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
|
||||
const Standard_Real theFPar,
|
||||
const Standard_Real theLPar,
|
||||
const Standard_Integer theNbSubIntervals,
|
||||
const Standard_Integer theNbIters,
|
||||
Standard_Real* const thePrmOnCurve)
|
||||
{
|
||||
// Computed maximal deflection
|
||||
const gp_Pnt2d aPf(theCurve.Value(theFPar));
|
||||
const gp_Pnt2d aPl(theCurve.Value(theLPar));
|
||||
|
||||
FuncSolveDeviation aFunc(theCurve, aPf.XY(), aPl.XY());
|
||||
|
||||
if (!aFunc.IsValid())
|
||||
{
|
||||
return -1.0;
|
||||
}
|
||||
const math_Vector aFPar(1, 1, theFPar);
|
||||
const math_Vector aLPar(1, 1, theLPar);
|
||||
const math_Vector aStep(1, 1, (theLPar - theFPar) / (10.0*theNbSubIntervals));
|
||||
math_Vector anOutputPnt(1, 1, theFPar);
|
||||
math_PSO aMPSO(&aFunc, aFPar, aLPar, aStep, theNbSubIntervals, theNbIters);
|
||||
|
||||
Standard_Real aSqDefl = RealLast();
|
||||
aMPSO.Perform(aStep, aSqDefl, anOutputPnt, theNbIters);
|
||||
|
||||
if (aSqDefl == RealLast())
|
||||
{
|
||||
return -1.0;
|
||||
}
|
||||
if (thePrmOnCurve)
|
||||
{
|
||||
*thePrmOnCurve = anOutputPnt(1);
|
||||
}
|
||||
return Sqrt(Abs(aSqDefl));
|
||||
}
|
@ -22,63 +22,97 @@
|
||||
|
||||
#include <Standard_Boolean.hxx>
|
||||
#include <Standard_Real.hxx>
|
||||
|
||||
class Geom_Curve;
|
||||
class gp_Pnt;
|
||||
class Geom_Surface;
|
||||
class Geom2d_Curve;
|
||||
class Geom2dAdaptor_Curve;
|
||||
class gp_Lin2d;
|
||||
class gp_Pnt;
|
||||
class gp_Pnt2d;
|
||||
|
||||
class gp_Vec2d;
|
||||
|
||||
//! Provides various methods with Geom2d and Geom curves and surfaces.
|
||||
//! The methods of this class compute the parameter(s) of a given point on a
|
||||
//! curve or a surface. To get the valid result the point must be located rather close
|
||||
//! curve or a surface. To get the valid result the point must be located rather close
|
||||
//! to the curve (surface) or at least to allow getting unambiguous result
|
||||
//! (do not put point at center of circle...),
|
||||
//! but choice of "trust" distance between curve/surface and point is
|
||||
//! responcibility of user (parameter MaxDist).
|
||||
//! but choice of "trust" distance between curve/surface and point is
|
||||
//! responsibility of user (parameter MaxDist).
|
||||
//! Return FALSE if the point is beyond the MaxDist
|
||||
//! limit or if computation fails.
|
||||
class GeomLib_Tool
|
||||
class GeomLib_Tool
|
||||
{
|
||||
public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
|
||||
//! Extracts the parameter of a 3D point lying on a 3D curve
|
||||
//! or at a distance less than the MaxDist value.
|
||||
Standard_EXPORT static Standard_Boolean Parameter(const Handle(Geom_Curve)& Curve, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U);
|
||||
|
||||
//! Extracts the parameter of a 3D point lying on a 3D curve
|
||||
//! or at a distance less than the MaxDist value.
|
||||
Standard_EXPORT static Standard_Boolean Parameter (const Handle(Geom_Curve)& Curve, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U);
|
||||
|
||||
//! Extracts the parameter of a 3D point lying on a surface
|
||||
//! or at a distance less than the MaxDist value.
|
||||
Standard_EXPORT static Standard_Boolean Parameters (const Handle(Geom_Surface)& Surface, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U, Standard_Real& V);
|
||||
|
||||
Standard_EXPORT static Standard_Boolean Parameters(const Handle(Geom_Surface)& Surface, const gp_Pnt& Point, const Standard_Real MaxDist, Standard_Real& U, Standard_Real& V);
|
||||
|
||||
//! Extracts the parameter of a 2D point lying on a 2D curve
|
||||
//! or at a distance less than the MaxDist value.
|
||||
Standard_EXPORT static Standard_Boolean Parameter (const Handle(Geom2d_Curve)& Curve, const gp_Pnt2d& Point, const Standard_Real MaxDist, Standard_Real& U);
|
||||
|
||||
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
Standard_EXPORT static Standard_Boolean Parameter(const Handle(Geom2d_Curve)& Curve, const gp_Pnt2d& Point, const Standard_Real MaxDist, Standard_Real& U);
|
||||
|
||||
//! Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation
|
||||
//! between theCurve and the linear segment joining its points with
|
||||
//! the parameters theFPar and theLPar is obtained.
|
||||
//! Returns the (positive) value of deviation. Returns negative value if
|
||||
//! the deviation cannot be computed.
|
||||
//! The returned parameter (in case of successful) will always be in
|
||||
//! the range [theFPar, theLPar].
|
||||
//! Iterative method is used for computation. So, theStartParameter is
|
||||
//! needed to be set. Recommend value of theStartParameter can be found with
|
||||
//! the overloaded method.
|
||||
//! Additionally, following values can be returned (optionally):
|
||||
//! @param thePtOnCurve - the point on curve where maximal deviation is achieved;
|
||||
//! @param thePrmOnCurve - the parameter of thePtOnCurve;
|
||||
//! @param theVecCurvLine - the vector along which is computed (this vector is always
|
||||
//! perpendicular theLine);
|
||||
//! @param theLine - the linear segment joining the point of theCurve having parameters
|
||||
//! theFPar and theLPar.
|
||||
Standard_EXPORT static
|
||||
Standard_Real ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
|
||||
const Standard_Real theFPar,
|
||||
const Standard_Real theLPar,
|
||||
const Standard_Real theStartParameter,
|
||||
const Standard_Integer theNbIters = 100,
|
||||
Standard_Real* const thePrmOnCurve = NULL,
|
||||
gp_Pnt2d* const thePtOnCurve = NULL,
|
||||
gp_Vec2d* const theVecCurvLine = NULL,
|
||||
gp_Lin2d* const theLine = NULL);
|
||||
|
||||
//! Computes parameter in theCurve (*thePrmOnCurve) where maximal deviation
|
||||
//! between theCurve and the linear segment joining its points with
|
||||
//! the parameters theFPar and theLPar is obtained.
|
||||
//! Returns the (positive) value of deviation. Returns negative value if
|
||||
//! the deviation cannot be computed.
|
||||
//! The returned parameter (in case of successful) will always be in
|
||||
//! the range [theFPar, theLPar].
|
||||
//! theNbSubIntervals defines discretization of the given interval [theFPar, theLPar]
|
||||
//! to provide better search condition. This value should be chosen taking into
|
||||
//! account complexity of the curve in considered interval. E.g. if there are many
|
||||
//! oscillations of the curve in the interval then theNbSubIntervals mus be
|
||||
//! great number. However, the greater value of theNbSubIntervals the slower the
|
||||
//! algorithm will compute.
|
||||
//! theNbIters sets number of iterations.
|
||||
//! ATTENTION!!!
|
||||
//! This algorithm cannot compute deviation precisely (so, there is no point in
|
||||
//! setting big value of theNbIters). But it can give some start point for
|
||||
//! the overloaded method.
|
||||
Standard_EXPORT static
|
||||
Standard_Real ComputeDeviation(const Geom2dAdaptor_Curve& theCurve,
|
||||
const Standard_Real theFPar,
|
||||
const Standard_Real theLPar,
|
||||
const Standard_Integer theNbSubIntervals,
|
||||
const Standard_Integer theNbIters = 10,
|
||||
Standard_Real * const thePrmOnCurve = NULL);
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif // _GeomLib_Tool_HeaderFile
|
||||
#endif // _GeomLib_Tool_HeaderFile
|
@ -31,6 +31,7 @@
|
||||
#include <Geom2dAPI_InterCurveCurve.hxx>
|
||||
#include <Geom2d_Line.hxx>
|
||||
#include <Geom2d_TrimmedCurve.hxx>
|
||||
#include <GeomLib_Tool.hxx>
|
||||
#include <TColgp_Array1OfPnt2d.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <Draw_Marker2D.hxx>
|
||||
@ -127,7 +128,7 @@ static Standard_Integer appro(Draw_Interpretor& di, Standard_Integer n, const ch
|
||||
{
|
||||
Tol2d = Draw::Atof(a[1]);
|
||||
}
|
||||
|
||||
|
||||
di << "Tolerance for 2d approx : "<< Tol2d << "\n";
|
||||
return 0;
|
||||
}
|
||||
@ -229,7 +230,7 @@ static Standard_Integer appro(Draw_Interpretor& di, Standard_Integer n, const ch
|
||||
}
|
||||
TheCurve = anInterpol.Curve();
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
Geom2dAPI_PointsToBSpline anApprox (Points, Dmin, Dmax, GeomAbs_C2, Tol2d);
|
||||
if (!anApprox.IsDone())
|
||||
@ -276,12 +277,12 @@ static Standard_Integer extrema(Draw_Interpretor& di, Standard_Integer n, const
|
||||
|
||||
Handle(Geom2d_Curve) GC1 = DrawTrSurf::GetCurve2d (a[1]);
|
||||
Handle(Geom2d_Curve) GC2 = DrawTrSurf::GetCurve2d (a[2]);
|
||||
if (GC1.IsNull())
|
||||
if ( GC1.IsNull())
|
||||
{
|
||||
di << "Syntax error: '" << a[1] << "' is NULL";
|
||||
return 1;
|
||||
}
|
||||
if (GC2.IsNull())
|
||||
if ( GC2.IsNull())
|
||||
{
|
||||
di << "Syntax error: '" << a[2] << "' is NULL";
|
||||
return 1;
|
||||
@ -376,7 +377,7 @@ static Standard_Integer intersect(Draw_Interpretor& di, Standard_Integer n, cons
|
||||
{
|
||||
di << "Syntax error at '" << a[i] << "'";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (C1.IsNull())
|
||||
{
|
||||
@ -440,7 +441,7 @@ static Standard_Integer intersect(Draw_Interpretor& di, Standard_Integer n, cons
|
||||
CD = new DrawTrSurf_Curve2d(S2, Draw_violet, 30);
|
||||
dout << CD;
|
||||
}
|
||||
|
||||
|
||||
dout.Flush();
|
||||
return 0;
|
||||
}
|
||||
@ -516,32 +517,32 @@ static Standard_Integer intconcon(Draw_Interpretor& di, Standard_Integer n, cons
|
||||
{
|
||||
case GeomAbs_Line:
|
||||
{
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Line()));
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Line()));
|
||||
break;
|
||||
}
|
||||
case GeomAbs_Circle:
|
||||
{
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Circle()));
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Circle()));
|
||||
break;
|
||||
}
|
||||
case GeomAbs_Ellipse:
|
||||
{
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Ellipse()));
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Ellipse()));
|
||||
break;
|
||||
}
|
||||
case GeomAbs_Hyperbola:
|
||||
{
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Hyperbola()));
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Hyperbola()));
|
||||
break;
|
||||
}
|
||||
case GeomAbs_Parabola:
|
||||
{
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Parabola()));
|
||||
pCon.reset (new NCollection_Shared<IntAna2d_Conic>(AC2.Parabola()));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
di << "Syntax error: '" << a[2] << "' is not conic";
|
||||
{
|
||||
di << "Syntax error: '" << a[2] << "' is not conic";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
@ -549,24 +550,24 @@ static Standard_Integer intconcon(Draw_Interpretor& di, Standard_Integer n, cons
|
||||
IntAna2d_AnaIntersection Intersector;
|
||||
switch (T1)
|
||||
{
|
||||
case GeomAbs_Line:
|
||||
Intersector.Perform(AC1.Line(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Circle:
|
||||
Intersector.Perform(AC1.Circle(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Ellipse:
|
||||
Intersector.Perform(AC1.Ellipse(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Hyperbola:
|
||||
Intersector.Perform(AC1.Hyperbola(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Parabola:
|
||||
Intersector.Perform(AC1.Parabola(), *pCon);
|
||||
break;
|
||||
default:
|
||||
case GeomAbs_Line:
|
||||
Intersector.Perform(AC1.Line(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Circle:
|
||||
Intersector.Perform(AC1.Circle(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Ellipse:
|
||||
Intersector.Perform(AC1.Ellipse(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Hyperbola:
|
||||
Intersector.Perform(AC1.Hyperbola(), *pCon);
|
||||
break;
|
||||
case GeomAbs_Parabola:
|
||||
Intersector.Perform(AC1.Parabola(), *pCon);
|
||||
break;
|
||||
default:
|
||||
di << "Syntax error: '" << a[1] << "' is not conic";
|
||||
return 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
for (Standard_Integer i = 1; i <= Intersector.NbPoints(); i++)
|
||||
@ -589,6 +590,119 @@ static Standard_Integer intconcon(Draw_Interpretor& di, Standard_Integer n, cons
|
||||
return 0;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : deviation
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Integer deviation(Draw_Interpretor& theDI, Standard_Integer theNArg, const char** theArgv)
|
||||
{
|
||||
if (theNArg < 3)
|
||||
{
|
||||
theDI << "Syntax error: wrong number of arguments";
|
||||
return 1;
|
||||
}
|
||||
|
||||
const Handle(Geom2d_Curve) aC = DrawTrSurf::GetCurve2d(theArgv[2]);
|
||||
|
||||
if (aC.IsNull())
|
||||
{
|
||||
theDI << "Error: " << theArgv[2] << " is not a 2D-curve.\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
Geom2dAdaptor_Curve anAC(aC);
|
||||
|
||||
Standard_Integer aNbInterv = 2;
|
||||
Standard_Real aU0 = RealLast();
|
||||
Standard_Integer aNbApprox = 10;
|
||||
Standard_Integer aNbExact = 100;
|
||||
Standard_Boolean anIsApproxOnly = Standard_False;
|
||||
|
||||
|
||||
for (Standard_Integer aCurrArg = 3; aCurrArg < theNArg; aCurrArg++)
|
||||
{
|
||||
TCollection_AsciiString anArg(theArgv[aCurrArg]);
|
||||
anArg.LowerCase();
|
||||
if (anArg == "-i")
|
||||
{
|
||||
aU0 = Draw::Atof(theArgv[++aCurrArg]);
|
||||
}
|
||||
else if (anArg == "-d")
|
||||
{
|
||||
aNbInterv = Draw::Atoi(theArgv[++aCurrArg]);
|
||||
}
|
||||
else if (anArg == "-napprox")
|
||||
{
|
||||
aNbApprox = Draw::Atoi(theArgv[++aCurrArg]);
|
||||
}
|
||||
else if (anArg == "-nexact")
|
||||
{
|
||||
aNbExact = Draw::Atoi(theArgv[++aCurrArg]);
|
||||
}
|
||||
else if (anArg == "-approxonly")
|
||||
{
|
||||
anIsApproxOnly = Standard_True;
|
||||
++aCurrArg;
|
||||
}
|
||||
else
|
||||
{
|
||||
theDI << "Error: Wrong option " << theArgv[aCurrArg] << "\n";
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const Standard_Real aU1 = anAC.FirstParameter();
|
||||
const Standard_Real aU2 = anAC.LastParameter();
|
||||
|
||||
Standard_Real aRetCurvParam = aU0;
|
||||
gp_Pnt2d aPtOnCurv;
|
||||
gp_Vec2d aRetVec;
|
||||
gp_Lin2d aLinSegm;
|
||||
|
||||
Standard_Real aDefl = RealLast();
|
||||
|
||||
if (aU0 == RealLast() || anIsApproxOnly)
|
||||
{
|
||||
aDefl = GeomLib_Tool::ComputeDeviation(anAC, aU1, aU2,
|
||||
aNbInterv, aNbApprox, &aU0);
|
||||
|
||||
if (aDefl < 0.0)
|
||||
{
|
||||
theDI << "Error: Cannot compute deviation on interval.\n";
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (!anIsApproxOnly)
|
||||
{
|
||||
aDefl = GeomLib_Tool::ComputeDeviation(anAC, aU1, aU2, aU0, aNbExact,
|
||||
&aRetCurvParam, &aPtOnCurv,
|
||||
&aRetVec, &aLinSegm);
|
||||
}
|
||||
if (aDefl < 0.0)
|
||||
{
|
||||
theDI << "Error: Cannot compute a deviation!\n";
|
||||
return 0;
|
||||
}
|
||||
theDI << "Computed value is: " << aDefl << "\n";
|
||||
TCollection_AsciiString anArgString = theArgv[1];
|
||||
TCollection_AsciiString aPntString = anArgString + "_pnt";
|
||||
DrawTrSurf::Set(aPntString.ToCString(), aPtOnCurv);
|
||||
theDI << "From point " << aPntString << " (with parameter " << aRetCurvParam << ") to ";
|
||||
|
||||
Handle(Geom2d_Curve) aLine = new Geom2d_Line(aLinSegm);
|
||||
TCollection_AsciiString aLinString = anArgString + "_lin";
|
||||
DrawTrSurf::Set(aLinString.ToCString(), aLine);
|
||||
theDI << "the line " << aLinString << ".\n";
|
||||
|
||||
aLine = new Geom2d_Line(aPtOnCurv, aRetVec);
|
||||
aLine = new Geom2d_TrimmedCurve(aLine, 0.0, aDefl);
|
||||
TCollection_AsciiString aNormString = anArgString + "_norm";
|
||||
DrawTrSurf::Set(aNormString.ToCString(), aLine);
|
||||
theDI << "The deflection is measured along the line " << aNormString << ".\n";
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void GeomliteTest::API2dCommands(Draw_Interpretor& theCommands)
|
||||
{
|
||||
static Standard_Boolean done = Standard_False;
|
||||
@ -623,12 +737,22 @@ void GeomliteTest::API2dCommands(Draw_Interpretor& theCommands)
|
||||
" -state - allows printing the intersection state for each point.",
|
||||
__FILE__, intersect, g);
|
||||
|
||||
theCommands.Add("2dintanalytical",
|
||||
"2dintanalytical circle1 circle2"
|
||||
"Intersect circle1 and circle2 using IntAna2d_AnaIntersection.",
|
||||
__FILE__, intersect_ana, g);
|
||||
theCommands.Add("intconcon",
|
||||
"intconcon curve1 curve2"
|
||||
"Intersect conic curve1 and conic curve2 using IntAna2d_AnaIntersection",
|
||||
__FILE__, intconcon, g);
|
||||
theCommands.Add("2dintanalytical", "2dintanalytical circle1 circle2"
|
||||
"Intersect circle1 and circle2 using IntAna2d_AnaIntersection.",
|
||||
__FILE__, intersect_ana, g);
|
||||
theCommands.Add("intconcon", "intconcon curve1 curve2"
|
||||
"Intersect conic curve1 and conic curve2 using IntAna2d_AnaIntersection",
|
||||
__FILE__, intconcon, g);
|
||||
|
||||
theCommands.Add("2ddeviation", "2ddeviation result curve [-i U0] [-d N] [-Napprox N] [-Nexact N] [-approxOnly]\n"
|
||||
"-i - sets an initial parameter for computation by iterative method;\n"
|
||||
"-d - sets number of sub-intervals for searching. Default value is 2.\n"
|
||||
"-Napprox - sets number of iteration for approx deviation computing,\n"
|
||||
" defauilt value is 10"
|
||||
"-Nexact - sets number of iteration for exact deviation computing,\n"
|
||||
" defauilt value is 100"
|
||||
"-approxOnly - to find deviation with approx method only,\n"
|
||||
" the exact method is used if this parameter is not specified",
|
||||
__FILE__, deviation, g);
|
||||
|
||||
}
|
||||
|
24
tests/lowalgos/2ddeviation/A1
Normal file
24
tests/lowalgos/2ddeviation/A1
Normal file
@ -0,0 +1,24 @@
|
||||
set ExpectDeviation 0.36597801294402493
|
||||
|
||||
restore [locate_data_file OCC538.brep] r
|
||||
smallview -2D-
|
||||
pcurve r
|
||||
|
||||
trim cc r_3 1.5704826035188950 3.1409652070377900
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result1 [2ddeviation res cc -d 8]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result1 full aDev1
|
||||
checkreal FoundDeviation $aDev1 $ExpectDeviation 1.0e-9 0.0
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_1.png
|
||||
|
||||
reverse cc
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result2 [2ddeviation res cc -d 8]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result2 full aDev2
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_2.png
|
||||
checkreal FoundDeviation $aDev2 $ExpectDeviation 1.0e-9 0.0
|
||||
|
24
tests/lowalgos/2ddeviation/A2
Normal file
24
tests/lowalgos/2ddeviation/A2
Normal file
@ -0,0 +1,24 @@
|
||||
set ExpectDeviation 0.019156616993488952
|
||||
|
||||
restore [locate_data_file bug28211_cface7.brep] r
|
||||
smallview -2D-
|
||||
pcurve r
|
||||
|
||||
trim cc r_4 0 0.970848497621606
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result1 [2ddeviation res cc -d 8]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result1 full aDev1
|
||||
checkreal FoundDeviation $aDev1 $ExpectDeviation 1.0e-9 0.0
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_1.png
|
||||
|
||||
reverse cc
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result2 [2ddeviation res cc -d 8]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result2 full aDev2
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_2.png
|
||||
checkreal FoundDeviation $aDev2 $ExpectDeviation 1.0e-9 0.0
|
||||
|
22
tests/lowalgos/2ddeviation/A3
Normal file
22
tests/lowalgos/2ddeviation/A3
Normal file
@ -0,0 +1,22 @@
|
||||
set ExpectDeviation 199.9999995
|
||||
|
||||
circle cc 0 0 100
|
||||
trim cc cc 0.0001 2*pi-0.0001
|
||||
|
||||
smallview -2D-
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result1 [2ddeviation res cc]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result1 full aDev1
|
||||
checkreal FoundDeviation $aDev1 $ExpectDeviation 1.0e-9 0.0
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_1.png
|
||||
|
||||
reverse cc
|
||||
don cc
|
||||
2dfit
|
||||
|
||||
set log_result2 [2ddeviation res cc]
|
||||
regexp {Computed value is: +([-0-9.+eE]+)} $log_result2 full aDev2
|
||||
checkreal FoundDeviation $aDev2 $ExpectDeviation 1.0e-9 0.0
|
||||
checkview -screenshot -2d -path ${imagedir}/${test_image}_2.png
|
@ -8,4 +8,4 @@
|
||||
008 classifier
|
||||
009 bvh
|
||||
010 progress
|
||||
|
||||
011 2ddeviation
|
||||
|
Loading…
x
Reference in New Issue
Block a user