1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

0031939: Coding - correction of spelling errors in comments [part 10]

Fix various typos via codespell.
This commit is contained in:
luz paz
2021-04-19 11:42:46 +03:00
committed by bugmaster
parent b69e576af0
commit 316ea29318
339 changed files with 1743 additions and 1972 deletions

View File

@@ -1189,7 +1189,7 @@ Standard_Integer PLib::EvalCubicHermite
//
//
// initialise it at the stage 2 of the building algorithm
// for devided differences
// for divided differences
//
inverse = FirstLast[1] - FirstLast[0] ;
inverse = 1.0e0 / inverse ;

View File

@@ -153,28 +153,29 @@ public:
//! Warning: <RationalDerivates> must be dimensionned properly.
Standard_EXPORT static void RationalDerivatives (const Standard_Integer DerivativesRequest, const Standard_Integer Dimension, Standard_Real& PolesDerivatives, Standard_Real& WeightsDerivatives, Standard_Real& RationalDerivates);
//! Performs Horner method with synthethic division
//! for derivatives
//! Performs Horner method with synthetic division for derivatives
//! parameter <U>, with <Degree> and <Dimension>.
//! PolynomialCoeff are stored in the following fashion
//! @code
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//! @endcode
//! where the polynomial is defined as :
//!
//! @code
//! 2 Degree
//! c0 + c1 X + c2 X + .... cDegree X
//!
//! @endcode
//! Results stores the result in the following format
//!
//! @code
//! f(1) f(2) .... f(Dimension)
//! (1) (1) (1)
//! f (1) f (2) .... f (Dimension)
//!
//! (DerivativeRequest) (DerivativeRequest)
//! f (1) f (Dimension)
//!
//! @endcode
//! this just evaluates the point at parameter U
//!
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
@@ -188,6 +189,7 @@ public:
//! at parameters U,V
//!
//! PolynomialCoeff are stored in the following fashion
//! @code
//! c00(1) .... c00(Dimension)
//! c10(1) .... c10(Dimension)
//! ....
@@ -202,21 +204,22 @@ public:
//! c1n(1) .... c1n(Dimension)
//! ....
//! cmn(1) .... cmn(Dimension)
//!
//! @endcode
//! where the polynomial is defined as :
//! @code
//! 2 m
//! c00 + c10 U + c20 U + .... + cm0 U
//! 2 m
//! + c01 V + c11 UV + c21 U V + .... + cm1 U V
//! n m n
//! + .... + c0n V + .... + cmn U V
//!
//! @endcode
//! with m = UDegree and n = VDegree
//!
//! Results stores the result in the following format
//!
//! @code
//! f(1) f(2) .... f(Dimension)
//!
//! @endcode
//! Warning: <Results> and <PolynomialCoeff> must be dimensioned properly
Standard_EXPORT static void EvalPoly2Var (const Standard_Real U, const Standard_Real V, const Standard_Integer UDerivativeOrder, const Standard_Integer VDerivativeOrder, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer Dimension, Standard_Real& PolynomialCoeff, Standard_Real& Results);
@@ -225,11 +228,12 @@ public:
//! with the requested derivative order
//! Results will store things in the following format
//! with d = DerivativeOrder
//!
//! @code
//! [0], [Dimension-1] : value
//! [Dimension], [Dimension + Dimension-1] : first derivative
//!
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
//! @endcode
Standard_EXPORT static Standard_Integer EvalLagrange (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real& ValueArray, Standard_Real& ParameterArray, Standard_Real& Results);
//! Performs the Cubic Hermite Interpolation of
@@ -237,28 +241,37 @@ public:
//! with the requested derivative order.
//! ValueArray stores the value at the first and
//! last parameter. It has the following format :
//! @code
//! [0], [Dimension-1] : value at first param
//! [Dimension], [Dimension + Dimension-1] : value at last param
//! @endcode
//! Derivative array stores the value of the derivatives
//! at the first parameter and at the last parameter
//! in the following format
//! @code
//! [0], [Dimension-1] : derivative at
//! @endcode
//! first param
//! @code
//! [Dimension], [Dimension + Dimension-1] : derivative at
//! @endcode
//! last param
//!
//! ParameterArray stores the first and last parameter
//! in the following format :
//! @code
//! [0] : first parameter
//! [1] : last parameter
//! @endcode
//!
//! Results will store things in the following format
//! with d = DerivativeOrder
//!
//! @code
//! [0], [Dimension-1] : value
//! [Dimension], [Dimension + Dimension-1] : first derivative
//!
//! [d *Dimension], [d*Dimension + Dimension-1]: dth derivative
//! @endcode
Standard_EXPORT static Standard_Integer EvalCubicHermite (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Dimension, Standard_Real& ValueArray, Standard_Real& DerivativeArray, Standard_Real& ParameterArray, Standard_Real& Results);
//! This build the coefficient of Hermite's polynomes on

View File

@@ -34,31 +34,36 @@ class PLib_HermitJacobi;
DEFINE_STANDARD_HANDLE(PLib_HermitJacobi, PLib_Base)
//! This class provides method to work with Jacobi Polynomials
//! relativly to an order of constraint
//! relatively to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relatively to the weigth W(t)
//! iorder is the integer value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
//! iorder = 2 <=> ConstraintOrder = GeomAbs_C2
//! P(t) = H(t) + W(t) * Q(t) Where W(t) = (1-t**2)**(2*iordre+2)
//! the coefficients JacCoeff represents P(t) JacCoeff are stored as follow:
//!
//! @code
//! c0(1) c0(2) .... c0(Dimension)
//! c1(1) c1(2) .... c1(Dimension)
//!
//! cDegree(1) cDegree(2) .... cDegree(Dimension)
//!
//! @endcode
//! The coefficients
//! @code
//! c0(1) c0(2) .... c0(Dimension)
//! c2*ordre+1(1) ... c2*ordre+1(dimension)
//!
//! @endcode
//! represents the part of the polynomial in the
//! Hermit's base: H(t)
//! @code
//! H(t) = c0H00(t) + c1H01(t) + ...c(iordre)H(0 ;iorder)+ c(iordre+1)H10(t)+...
//! @endcode
//! The following coefficients represents the part of the
//! polynomial in the Jacobi base ie Q(t)
//! @code
//! Q(t) = c2*iordre+2 J0(t) + ...+ cDegree JDegree-2*iordre-2
//! @endcode
class PLib_HermitJacobi : public PLib_Base
{

View File

@@ -34,9 +34,9 @@ class PLib_JacobiPolynomial;
DEFINE_STANDARD_HANDLE(PLib_JacobiPolynomial, PLib_Base)
//! This class provides method to work with Jacobi Polynomials
//! relativly to an order of constraint
//! relatively to an order of constraint
//! q = myWorkDegree-2*(myNivConstr+1)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relativly to the weigth W(t)
//! Jk(t) for k=0,q compose the Jacobi Polynomial base relatively to the weigth W(t)
//! iorder is the integer value for the constraints:
//! iorder = 0 <=> ConstraintOrder = GeomAbs_C0
//! iorder = 1 <=> ConstraintOrder = GeomAbs_C1
@@ -76,7 +76,7 @@ public:
//! returns the Jacobi Points for Gauss integration ie
//! the positive values of the Legendre roots by increasing values
//! NbGaussPoints is the number of points choosen for the integral
//! NbGaussPoints is the number of points chosen for the integral
//! computation.
//! TabPoints (0,NbGaussPoints/2)
//! TabPoints (0) is loaded only for the odd values of NbGaussPoints
@@ -89,7 +89,7 @@ public:
//! returns the Jacobi weigths for Gauss integration only for
//! the positive values of the Legendre roots in the order they
//! are given by the method Points
//! NbGaussPoints is the number of points choosen for the integral
//! NbGaussPoints is the number of points chosen for the integral
//! computation.
//! TabWeights (0,NbGaussPoints/2,0,Degree)
//! TabWeights (0,.) are only loaded for the odd values of NbGaussPoints