1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00

0024377: [Regression-like] OCC 6.7.0 beta contaminates log with more unnecessary debug symbols

These "DEBUG outputs" are replace with analogically comments.
This commit is contained in:
nbv 2013-11-19 12:06:09 +04:00 committed by bugmaster
parent 3cb19cf162
commit 28cec2ba3e
2 changed files with 382 additions and 437 deletions

View File

@ -23,19 +23,19 @@
// GetStateNumber()
/*-----------------------------------------------------------------------------
Fonctions permettant de rechercher une distance extremale entre 2 courbes
Fonctions permettant de rechercher une distance extremale entre 2 courbes
C1 et C2 (en partant de points approches C1(u0) et C2(v0)).
Cette classe herite de math_FunctionSetWithDerivatives et est utilisee par
Cette classe herite de math_FunctionSetWithDerivatives et est utilisee par
l'algorithme math_FunctionSetRoot.
Si on note Du et Dv, les derivees en u et v, les 2 fonctions a annuler sont:
{ F1(u,v) = (C2(v)-C1(u)).Du(u)/||Du|| }
{ F2(u,v) = (C2(v)-C1(u)).Dv(v)||Dv|| }
Si on note Duu et Dvv, les derivees secondes de C1 et C2, les derivees de F1
Si on note Du et Dv, les derivees en u et v, les 2 fonctions a annuler sont:
{ F1(u,v) = (C2(v)-C1(u)).Du(u)/||Du|| }
{ F2(u,v) = (C2(v)-C1(u)).Dv(v)||Dv|| }
Si on note Duu et Dvv, les derivees secondes de C1 et C2, les derivees de F1
et F2 sont egales a:
{ Duf1(u,v) = -||Du|| + C1C2.Duu/||Du||- F1(u,v)*Duu*Du/||Du||**2
{ Dvf1(u,v) = Dv.Du/||Du||
{ Duf2(u,v) = -Du.Dv/||Dv||
{ Dvf2(u,v) = ||Dv|| + C2C1.Dvv/||Dv||- F2(u,v)*Dv*Dvv/||Dv||**2
{ Duf1(u,v) = -||Du|| + C1C2.Duu/||Du||- F1(u,v)*Duu*Du/||Du||**2
{ Dvf1(u,v) = Dv.Du/||Du||
{ Duf2(u,v) = -Du.Dv/||Dv||
{ Dvf2(u,v) = ||Dv|| + C2C1.Dvv/||Dv||- F2(u,v)*Dv*Dvv/||Dv||**2
----------------------------------------------------------------------------*/
@ -52,56 +52,53 @@ static const Standard_Integer MaxOrder = 3;
//=============================================================================
Standard_Real Extrema_FuncExtCC::SearchOfTolerance(const Standard_Address C)
{
{
const Standard_Integer NPoint = 10;
Standard_Real aStartParam, anEndParam;
if(C==myC1)
{
{
aStartParam = myUinfium;
anEndParam = myUsupremum;
}
}
else if(C==myC2)
{
{
aStartParam = myVinfium;
anEndParam = myVsupremum;
}
}
else
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::SearchOfTolerance(...)" << endl;
cout << "Warning: No curve for tolerance computing!---"<<endl;
#endif
{
//Warning: No curve for tolerance computing!
return MinTol;
}
}
const Standard_Real aStep = (anEndParam - aStartParam)/(Standard_Real)NPoint;
Standard_Integer aNum = 0;
Standard_Real aMax = -Precision::Infinite(); //Maximum value of 1st derivative
//(it is computed with using NPoint point)
//(it is computed with using NPoint point)
do
{
{
Standard_Real u = aStartParam + aNum*aStep; //parameter for every point
if(u > anEndParam)
u = anEndParam;
Pnt Ptemp; //empty point (is not used below)
Vec VDer; // 1st derivative vector
Tool1::D1(*((Curve1*)C), u, Ptemp, VDer);
Standard_Real vm = VDer.Magnitude();
if(vm > aMax)
aMax = vm;
}
while(++aNum < NPoint+1);
return Max(aMax*TolFactor,MinTol);
}
while(++aNum < NPoint+1);
return Max(aMax*TolFactor,MinTol);
}
//=============================================================================
Extrema_FuncExtCC::Extrema_FuncExtCC(const Standard_Real thetol) : myC1 (0), myC2 (0), myTol (thetol)
{
{
math_Vector V1(1,2), V2(1,2);
V1(1) = 0.0;
V2(1) = 0.0;
@ -112,60 +109,60 @@ Extrema_FuncExtCC::Extrema_FuncExtCC(const Standard_Real thetol) : myC1 (0), myC
myTolC1=MinTol;
myMaxDerivOrderC2 = 0;
myTolC2=MinTol;
}
}
//=============================================================================
Extrema_FuncExtCC::Extrema_FuncExtCC (const Curve1& C1,
const Curve2& C2,
const Standard_Real thetol) :
myC1 ((Standard_Address)&C1), myC2 ((Standard_Address)&C2),
myTol (thetol)
{
const Curve2& C2,
const Standard_Real thetol) :
myC1 ((Standard_Address)&C1), myC2 ((Standard_Address)&C2),
myTol (thetol)
{
math_Vector V1(1,2), V2(1,2);
V1(1) = Tool1::FirstParameter(*((Curve1*)myC1));
V2(1) = Tool1::LastParameter(*((Curve1*)myC1));
V1(2) = Tool2::FirstParameter(*((Curve2*)myC2));
V2(2) = Tool2::LastParameter(*((Curve2*)myC2));
SubIntervalInitialize(V1, V2);
switch(Tool1::GetType(*((Curve1*)myC1)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrderC1 = MaxOrder;
myTolC1 = SearchOfTolerance((Standard_Address)&C1);
break;
default:
myMaxDerivOrderC1 = 0;
myTolC1=MinTol;
break;
}
switch(Tool2::GetType(*((Curve2*)myC2)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrderC2 = MaxOrder;
myTolC2 = SearchOfTolerance((Standard_Address)&C2);
break;
default:
myMaxDerivOrderC2 = 0;
myTolC2=MinTol;
break;
}
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrderC1 = MaxOrder;
myTolC1 = SearchOfTolerance((Standard_Address)&C1);
break;
default:
myMaxDerivOrderC1 = 0;
myTolC1=MinTol;
break;
}
switch(Tool2::GetType(*((Curve2*)myC2)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrderC2 = MaxOrder;
myTolC2 = SearchOfTolerance((Standard_Address)&C2);
break;
default:
myMaxDerivOrderC2 = 0;
myTolC2=MinTol;
break;
}
}
//=============================================================================
void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1& C)
{
{
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_FuncExtCC::SetCurve()")
if (theRank == 1)
if (theRank == 1)
{
myC1 = (Standard_Address)&C;
switch(/*Tool1::GetType(*((Curve1*)myC1))*/ C.GetType())
myC1 = (Standard_Address)&C;
switch(/*Tool1::GetType(*((Curve1*)myC1))*/ C.GetType())
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
@ -179,10 +176,10 @@ void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1&
break;
}
}
else if (theRank == 2)
else if (theRank == 2)
{
myC2 = (Standard_Address)&C;
switch(/*Tool2::GetType(*((Curve2*)myC2))*/C.GetType())
myC2 = (Standard_Address)&C;
switch(/*Tool2::GetType(*((Curve2*)myC2))*/C.GetType())
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
@ -196,11 +193,11 @@ void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1&
break;
}
}
}
}
//=============================================================================
Standard_Boolean Extrema_FuncExtCC::Value (const math_Vector& UV, math_Vector& F)
{
{
myU = UV(1);
myV = UV(2);
Tool1::D1(*((Curve1*)myC1), myU,myP1,myDu);
@ -212,264 +209,254 @@ Standard_Boolean Extrema_FuncExtCC::Value (const math_Vector& UV, math_Vector& F
if(myMaxDerivOrderC1 != 0)
{
{
if (Ndu <= myTolC1)
{
//Derivative is approximated by Taylor-series
{
//Derivative is approximated by Taylor-series
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
Standard_Integer n = 1; //Derivative order
Vec V;
Standard_Boolean IsDeriveFound;
do
{
{
V = Tool1::DN(*((Curve1*)myC1),myU,++n);
Ndu = V.Magnitude();
IsDeriveFound = (Ndu > myTolC1);
}
}
while(!IsDeriveFound && n < myMaxDerivOrderC1);
if(IsDeriveFound)
{
{
Standard_Real u;
if(myU-myUinfium < aDelta)
u = myU+aDelta;
else
u = myU-aDelta;
Pnt P1, P2;
Tool1::D0(*((Curve1*)myC1),Min(myU, u),P1);
Tool1::D0(*((Curve1*)myC1),Max(myU, u),P2);
Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
myDu = -V;
else
myDu = V;
}//if(IsDeriveFound)
}//if(IsDeriveFound)
else
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
Pnt Ptemp; //(0,0,0)-coordinate
Pnt P1, P2, P3;
Standard_Boolean IsParameterGrown;
if(myU-myUinfium < 2*aDelta)
{
{
Tool1::D0(*((Curve1*)myC1),myU,P1);
Tool1::D0(*((Curve1*)myC1),myU+aDelta,P2);
Tool1::D0(*((Curve1*)myC1),myU+2*aDelta,P3);
IsParameterGrown = Standard_True;
}
}
else
{
{
Tool1::D0(*((Curve1*)myC1),myU-2*aDelta,P1);
Tool1::D0(*((Curve1*)myC1),myU-aDelta,P2);
Tool1::D0(*((Curve1*)myC1),myU,P3);
IsParameterGrown = Standard_False;
}
}
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
if(IsParameterGrown)
myDu=-3*V1+4*V2-V3;
else
myDu=V1-4*V2+3*V3;
}//else of if(IsDeriveFound)
}//else of if(IsDeriveFound)
Ndu = myDu.Magnitude();
}//if (Ndu <= myTolC1) condition
}//if(myMaxDerivOrder != 0)
}//if (Ndu <= myTolC1) condition
}//if(myMaxDerivOrder != 0)
if (Ndu <= MinTol)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtCC::Value(...)." << endl;
cout << "Warning: 1st derivative of C1 is equal to zero!---"<<endl;
#endif
{
//Warning: 1st derivative of C1 is equal to zero!
return Standard_False;
}
}
Standard_Real Ndv = myDv.Magnitude();
if(myMaxDerivOrderC2 != 0)
{
{
if (Ndv <= myTolC2)
{
{
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real dv;
if((myVsupremum >= RealLast()) || (myVinfium <= RealFirst()))
dv = 0.0;
else
dv = myVsupremum-myVinfium;
const Standard_Real aDelta = Max(dv*DivisionFactor,MinStep);
//Derivative is approximated by Taylor-series
//Derivative is approximated by Taylor-series
Standard_Integer n = 1; //Derivative order
Vec V;
Standard_Boolean IsDeriveFound;
do
{
{
V = Tool2::DN(*((Curve2*)myC2),myV,++n);
Ndv = V.Magnitude();
IsDeriveFound = (Ndv > myTolC2);
}
}
while(!IsDeriveFound && n < myMaxDerivOrderC2);
if(IsDeriveFound)
{
{
Standard_Real v;
if(myV-myVinfium < aDelta)
v = myV+aDelta;
else
v = myV-aDelta;
Pnt P1, P2;
Tool2::D0(*((Curve2*)myC2),Min(myV, v),P1);
Tool2::D0(*((Curve2*)myC2),Max(myV, v),P2);
Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
myDv = -V;
else
myDv = V;
}//if(IsDeriveFound)
}//if(IsDeriveFound)
else
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
Pnt Ptemp; //(0,0,0)-coordinate
Pnt P1, P2, P3;
Standard_Boolean IsParameterGrown;
if(myV-myVinfium < 2*aDelta)
{
{
Tool2::D0(*((Curve2*)myC2),myV,P1);
Tool2::D0(*((Curve2*)myC2),myV+aDelta,P2);
Tool2::D0(*((Curve2*)myC2),myV+2*aDelta,P3);
IsParameterGrown = Standard_True;
}
}
else
{
{
Tool2::D0(*((Curve2*)myC2),myV-2*aDelta,P1);
Tool2::D0(*((Curve2*)myC2),myV-aDelta,P2);
Tool2::D0(*((Curve2*)myC2),myV,P3);
IsParameterGrown = Standard_False;
}
}
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
if(IsParameterGrown)
myDv=-3*V1+4*V2-V3;
else
myDv=V1-4*V2+3*V3;
}//else of if(IsDeriveFound)
Ndv = myDv.Magnitude();
}//if (Ndv <= myTolC2)
}//if(myMaxDerivOrder != 0)
}//else of if(IsDeriveFound)
Ndv = myDv.Magnitude();
}//if (Ndv <= myTolC2)
}//if(myMaxDerivOrder != 0)
if (Ndv <= MinTol)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtCC::Value(...)." << endl;
cout << "1st derivative of C2 is equal to zero!---"<<endl;
#endif
{
//1st derivative of C2 is equal to zero!
return Standard_False;
}
}
F(1) = P1P2.Dot(myDu)/Ndu;
F(2) = P1P2.Dot(myDv)/Ndv;
return Standard_True;
}
}
//=============================================================================
Standard_Boolean Extrema_FuncExtCC::Derivatives (const math_Vector& UV,
math_Matrix& Df)
{
math_Matrix& Df)
{
math_Vector F(1,2);
return Values(UV,F,Df);
}
}
//=============================================================================
Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
math_Vector& F,
math_Matrix& Df)
{
{
myU = UV(1);
myV = UV(2);
if(Value(UV, F) == Standard_False) //Computes F, myDu, myDv
{
#ifdef DEB
cout << "+++Standard_Boolean Extrema_FuncExtCC::Values(...)." << endl;
cout << "Warning: No function value found!---"<<endl;
#endif
{
//Warning: No function value found!
return Standard_False;
}//if(Value(UV, F) == Standard_False)
}//if(Value(UV, F) == Standard_False)
Vec Du, Dv, Duu, Dvv;
Tool1::D2(*((Curve1*)myC1), myU,myP1,Du,Duu);
Tool2::D2(*((Curve2*)myC2), myV,myP2,Dv,Dvv);
//Calling of "Value(...)" function change class member values.
//After running it is necessary to return to previous values.
//Calling of "Value(...)" function change class member values.
//After running it is necessary to return to previous values.
const Standard_Real myU_old = myU, myV_old = myV;
const Pnt myP1_old = myP1, myP2_old = myP2;
const Vec myDu_old = myDu, myDv_old = myDv;
//Attention: aDelta value must be greater than same value for "Value(...)"
// function to avoid of points' collisions.
//Attention: aDelta value must be greater than same value for "Value(...)"
// function to avoid of points' collisions.
const Standard_Real DivisionFactor = 0.01;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDeltaU = Max(du*DivisionFactor,MinStep);
Standard_Real dv;
if((myVsupremum >= RealLast()) || (myVinfium <= RealFirst()))
dv = 0.0;
else
dv = myVsupremum-myVinfium;
const Standard_Real aDeltaV = Max(dv*DivisionFactor,MinStep);
Vec P1P2 (myP1,myP2);
if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
math_Vector FF1(1,2), FF2(1,2), FF3(1,2);
Standard_Real F1, F2, F3;
/////////////////////////// Search of DF1_u derivative (begin) ///////////////////
/////////////////////////// Search of DF1_u derivative (begin) ///////////////////
if(myU-myUinfium < 2*aDeltaU)
{
{
F1=F(1);
math_Vector UV2(1,2), UV3(1,2);
UV2(1)=myU+aDeltaU;
@ -477,23 +464,19 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV3(1)=myU+2*aDeltaU;
UV3(2)=myV;
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F2 = FF2(1);
F3 = FF3(1);
Df(1,1) = (-3*F1+4*F2-F3)/(2.0*aDeltaU);
}//if(myU-myUinfium < 2*aDeltaU)
}//if(myU-myUinfium < 2*aDeltaU)
else
{
{
F3 = F(1);
math_Vector UV2(1,2), UV1(1,2);
UV2(1)=myU-aDeltaU;
@ -502,30 +485,26 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV1(2)=myV;
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F1 = FF1(1);
F2 = FF2(1);
Df(1,1) = (F1-4*F2+3*F3)/(2.0*aDeltaU);
}//else of if(myU-myUinfium < 2*aDeltaU) condition
/////////////////////////// Search of DF1_u derivative (end) ///////////////////
//Return to previous values
myU = myU_old;
myV = myV_old;
}//else of if(myU-myUinfium < 2*aDeltaU) condition
/////////////////////////// Search of DF1_u derivative (end) ///////////////////
/////////////////////////// Search of DF1_v derivative (begin) ///////////////////
//Return to previous values
myU = myU_old;
myV = myV_old;
/////////////////////////// Search of DF1_v derivative (begin) ///////////////////
if(myV-myVinfium < 2*aDeltaV)
{
{
F1=F(1);
math_Vector UV2(1,2), UV3(1,2);
UV2(1)=myU;
@ -534,22 +513,18 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV3(2)=myV+2*aDeltaV;
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F2 = FF2(1);
F3 = FF3(1);
Df(1,2) = (-3*F1+4*F2-F3)/(2.0*aDeltaV);
}//if(myV-myVinfium < 2*aDeltaV)
}//if(myV-myVinfium < 2*aDeltaV)
else
{
{
F3 = F(1);
math_Vector UV2(1,2), UV1(1,2);
UV2(1)=myU;
@ -557,46 +532,42 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV1(1)=myU;
UV1(2)=myV-2*aDeltaV;
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F1 = FF1(1);
F2 = FF2(1);
Df(1,2) = (F1-4*F2+3*F3)/(2.0*aDeltaV);
}//else of if(myV-myVinfium < 2*aDeltaV)
/////////////////////////// Search of DF1_v derivative (end) ///////////////////
}//else of if(myV-myVinfium < 2*aDeltaV)
/////////////////////////// Search of DF1_v derivative (end) ///////////////////
//Return to previous values
myU = myU_old;
myV = myV_old;
myP1 = myP1_old, myP2 = myP2_old;
myDu = myDu_old, myDv = myDv_old;
}//if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
}//if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
else
{
{
const Standard_Real Ndu = myDu.Magnitude();
Df(1,1) = - Ndu + (P1P2.Dot(Duu)/Ndu) - F(1)*(myDu.Dot(Duu)/(Ndu*Ndu));
Df(1,2) = myDv.Dot(myDu)/Ndu;
}//else of if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
}//else of if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
math_Vector FF1(1,2), FF2(1,2), FF3(1,2);
Standard_Real F1, F2, F3;
/////////////////////////// Search of DF2_v derivative (begin) ///////////////////
/////////////////////////// Search of DF2_v derivative (begin) ///////////////////
if(myV-myVinfium < 2*aDeltaV)
{
{
F1=F(2);
math_Vector UV2(1,2), UV3(1,2);
UV2(1)=myU;
@ -605,24 +576,20 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV3(2)=myV+2*aDeltaV;
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F2 = FF2(2);
F3 = FF3(2);
Df(2,2) = (-3*F1+4*F2-F3)/(2.0*aDeltaV);
}//if(myV-myVinfium < 2*aDeltaV)
}//if(myV-myVinfium < 2*aDeltaV)
else
{
{
F3 = F(2);
math_Vector UV2(1,2), UV1(1,2);
UV2(1)=myU;
@ -631,30 +598,26 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV1(2)=myV-2*aDeltaV;
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F1 = FF1(2);
F2 = FF2(2);
Df(2,2) = (F1-4*F2+3*F3)/(2.0*aDeltaV);
}//else of if(myV-myVinfium < 2*aDeltaV)
/////////////////////////// Search of DF2_v derivative (end) ///////////////////
}//else of if(myV-myVinfium < 2*aDeltaV)
/////////////////////////// Search of DF2_v derivative (end) ///////////////////
//Return to previous values
myU = myU_old;
myV = myV_old;
//Return to previous values
myU = myU_old;
myV = myV_old;
/////////////////////////// Search of DF2_u derivative (begin) ///////////////////
/////////////////////////// Search of DF2_u derivative (begin) ///////////////////
if(myU-myUinfium < 2*aDeltaU)
{
{
F1=F(2);
math_Vector UV2(1,2), UV3(1,2);
UV2(1)=myU+aDeltaU;
@ -662,48 +625,41 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
UV3(1)=myU+2*aDeltaU;
UV3(2)=myV;
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F2 = FF2(2);
F3 = FF3(2);
Df(2,1) = (-3*F1+4*F2-F3)/(2.0*aDeltaU);
}//if(myU-myUinfium < 2*aDelta)
}//if(myU-myUinfium < 2*aDelta)
else
{
{
F3 = F(2);
math_Vector UV2(1,2), UV1(1,2);
UV2(1)=myU-aDeltaU;
UV2(2)=myV;
UV1(1)=myU-2*aDeltaU;
UV1(2)=myV;
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points
//and which have zero-derivative.
//Try to decrease aDelta variable's value.
return Standard_False;
}
}
F1 = FF1(2);
F2 = FF2(2);
Df(2,1) = (F1-4*F2+3*F3)/(2.0*aDeltaU);
}//else of if(myU-myUinfium < 2*aDeltaU)
/////////////////////////// Search of DF2_u derivative (end) ///////////////////
}//else of if(myU-myUinfium < 2*aDeltaU)
/////////////////////////// Search of DF2_u derivative (end) ///////////////////
//Return to previous values
myU = myU_old;
myV = myV_old;
@ -711,17 +667,17 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
myP2 = myP2_old;
myDu = myDu_old;
myDv = myDv_old;
}//if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
}//if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
else
{
{
Standard_Real Ndv = myDv.Magnitude();
Df(2,2) = Ndv + (P1P2.Dot(Dvv)/Ndv) - F(2)*(myDv.Dot(Dvv)/(Ndv*Ndv));
Df(2,1) = -myDu.Dot(myDv)/Ndv;
}//else of if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
}//else of if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
return Standard_True;
}//end of function
}//end of function
//=============================================================================
Standard_Integer Extrema_FuncExtCC::GetStateNumber ()
@ -748,8 +704,8 @@ Standard_Integer Extrema_FuncExtCC::GetStateNumber ()
//=============================================================================
void Extrema_FuncExtCC::Points (const Standard_Integer N,
POnC& P1,
POnC& P2) const
POnC& P1,
POnC& P2) const
{
P1 = myPoints.Value(2*N-1);
P2 = myPoints.Value(2*N);
@ -758,10 +714,10 @@ void Extrema_FuncExtCC::Points (const Standard_Integer N,
void Extrema_FuncExtCC::SubIntervalInitialize(const math_Vector& theInfBound,
const math_Vector& theSupBound)
{
{
myUinfium = theInfBound(1);
myUsupremum = theSupBound(1);
myVinfium = theInfBound(2);
myVsupremum = theSupBound(2);
}
//=============================================================================
}
//=============================================================================

View File

@ -27,47 +27,47 @@ static const Standard_Integer MaxOrder = 3;
/*-----------------------------------------------------------------------------
Fonction permettant de rechercher une distance extremale entre un point P et
Fonction permettant de rechercher une distance extremale entre un point P et
une courbe C (en partant d'un point approche C(u0)).
Cette classe herite de math_FunctionWithDerivative et est utilisee par
Cette classe herite de math_FunctionWithDerivative et est utilisee par
les algorithmes math_FunctionRoot et math_FunctionRoots.
Si on note D1c et D2c les derivees premiere et seconde:
{ F(u) = (C(u)-P).D1c(u)/ ||Du||}
{ DF(u) = ||Du|| + (C(u)-P).D2c(u)/||Du|| - F(u)*Duu*Du/||Du||**2
Si on note D1c et D2c les derivees premiere et seconde:
{ F(u) = (C(u)-P).D1c(u)/ ||Du||}
{ DF(u) = ||Du|| + (C(u)-P).D2c(u)/||Du|| - F(u)*Duu*Du/||Du||**2
{ F(u) = (C(u)-P).D1c(u) }
{ DF(u) = D1c(u).D1c(u) + (C(u)-P).D2c(u)
= ||D1c(u)|| ** 2 + (C(u)-P).D2c(u) }
{ F(u) = (C(u)-P).D1c(u) }
{ DF(u) = D1c(u).D1c(u) + (C(u)-P).D2c(u)
= ||D1c(u)|| ** 2 + (C(u)-P).D2c(u) }
----------------------------------------------------------------------------*/
Standard_Real Extrema_FuncExtPC::SearchOfTolerance()
{
{
const Standard_Integer NPoint = 10;
const Standard_Real aStep = (myUsupremum - myUinfium)/(Standard_Real)NPoint;
Standard_Integer aNum = 0;
Standard_Real aMax = -Precision::Infinite(); //Maximum value of 1st derivative
//(it is computed with using NPoint point)
//(it is computed with using NPoint point)
do
{
{
Standard_Real u = myUinfium + aNum*aStep; //parameter for every point
if(u > myUsupremum)
u = myUsupremum;
Pnt Ptemp; //empty point (is not used below)
Vec VDer; // 1st derivative vector
Tool::D1(*((Curve*)myC), u, Ptemp, VDer);
Standard_Real vm = VDer.Magnitude();
if(vm > aMax)
aMax = vm;
}
while(++aNum < NPoint+1);
return Max(aMax*TolFactor,MinTol);
}
while(++aNum < NPoint+1);
return Max(aMax*TolFactor,MinTol);
}
//=============================================================================
@ -78,7 +78,7 @@ myD1f(0.)
myPinit = Standard_False;
myCinit = Standard_False;
myD1Init = Standard_False;
SubIntervalInitialize(0.0,0.0);
myMaxDerivOrder = 0;
myTol=MinTol;
@ -87,58 +87,58 @@ myD1f(0.)
//=============================================================================
Extrema_FuncExtPC::Extrema_FuncExtPC (const Pnt& P,
const Curve& C): myU(0.), myD1f(0.)
{
const Curve& C): myU(0.), myD1f(0.)
{
myP = P;
myC = (Standard_Address)&C;
myPinit = Standard_True;
myCinit = Standard_True;
myD1Init = Standard_False;
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
Tool::LastParameter(*((Curve*)myC)));
Tool::LastParameter(*((Curve*)myC)));
switch(Tool::GetType(*((Curve*)myC)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
}
//=============================================================================
void Extrema_FuncExtPC::Initialize(const Curve& C)
{
{
myC = (Standard_Address)&C;
myCinit = Standard_True;
myPoint.Clear();
mySqDist.Clear();
myIsMin.Clear();
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
Tool::LastParameter(*((Curve*)myC)));
Tool::LastParameter(*((Curve*)myC)));
switch(Tool::GetType(*((Curve*)myC)))
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
case GeomAbs_OtherCurve:
myMaxDerivOrder = MaxOrder;
myTol = SearchOfTolerance();
break;
default:
myMaxDerivOrder = 0;
myTol=MinTol;
break;
}
}
//=============================================================================
@ -158,102 +158,99 @@ Standard_Boolean Extrema_FuncExtPC::Value (const Standard_Real U, Standard_Real&
{
if (!myPinit || !myCinit)
Standard_TypeMismatch::Raise("No init");
myU = U;
Vec D1c;
Tool::D1(*((Curve*)myC),myU,myPc,D1c);
Standard_Real Ndu = D1c.Magnitude();
if(myMaxDerivOrder != 0)
{
{
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
{
{
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
//Derivative is approximated by Taylor-series
//Derivative is approximated by Taylor-series
Standard_Integer n = 1; //Derivative order
Vec V;
Standard_Boolean IsDeriveFound;
do
{
{
V = Tool::DN(*((Curve*)myC),myU,++n);
Ndu = V.Magnitude();
IsDeriveFound = (Ndu > myTol);
}
}
while(!IsDeriveFound && n < myMaxDerivOrder);
if(IsDeriveFound)
{
{
Standard_Real u;
if(myU-myUinfium < aDelta)
u = myU+aDelta;
else
u = myU-aDelta;
Pnt P1, P2;
Tool::D0(*((Curve*)myC),Min(myU, u),P1);
Tool::D0(*((Curve*)myC),Max(myU, u),P2);
Vec V1(P1,P2);
Standard_Real aDirFactor = V.Dot(V1);
if(aDirFactor < 0.0)
D1c = -V;
else
D1c = V;
}//if(IsDeriveFound)
}//if(IsDeriveFound)
else
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
Pnt Ptemp; //(0,0,0)-coordinate
Pnt P1, P2, P3;
Standard_Boolean IsParameterGrown;
if(myU-myUinfium < 2*aDelta)
{
{
Tool::D0(*((Curve*)myC),myU,P1);
Tool::D0(*((Curve*)myC),myU+aDelta,P2);
Tool::D0(*((Curve*)myC),myU+2*aDelta,P3);
IsParameterGrown = Standard_True;
}
}
else
{
{
Tool::D0(*((Curve*)myC),myU-2*aDelta,P1);
Tool::D0(*((Curve*)myC),myU-aDelta,P2);
Tool::D0(*((Curve*)myC),myU,P3);
IsParameterGrown = Standard_False;
}
}
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
if(IsParameterGrown)
D1c=-3*V1+4*V2-V3;
else
D1c=V1-4*V2+3*V3;
}
Ndu = D1c.Magnitude();
}//(if (Ndu <= myTol)) condition
}//if(myMaxDerivOrder != 0)
}
Ndu = D1c.Magnitude();
}//(if (Ndu <= myTol)) condition
}//if(myMaxDerivOrder != 0)
if (Ndu <= MinTol)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtPC::Value(...)." << endl;
cout << "Warning: 1st derivative is equal to zero!---"<<endl;
#endif
{
//Warning: 1st derivative is equal to zero!
return Standard_False;
}
}
Vec PPc (myP,myPc);
F = PPc.Dot(D1c)/Ndu;
return Standard_True;
@ -266,113 +263,105 @@ Standard_Boolean Extrema_FuncExtPC::Derivative (const Standard_Real U, Standard_
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
Standard_Real F;
return Values(U,F,D1f); /* on fait appel a Values pour simplifier la
sauvegarde de l'etat. */
sauvegarde de l'etat. */
}
//=============================================================================
Standard_Boolean Extrema_FuncExtPC::Values (const Standard_Real U, Standard_Real& F, Standard_Real& D1f)
{
Standard_Boolean Extrema_FuncExtPC::Values (const Standard_Real U,
Standard_Real& F,
Standard_Real& D1f)
{
if (!myPinit || !myCinit)
Standard_TypeMismatch::Raise("No init");
Pnt myPc_old = myPc, myP_old = myP;
if(Value(U,F) == Standard_False)
{
#ifdef DEB
cout << "+++Function Extrema_FuncExtPC::Values(...)." << endl;
cout << "Warning: No function value found!---"<<endl;
#endif
{
//Warning: No function value found!;
myD1Init = Standard_False;
return Standard_False;
}
}
myU = U;
myPc = myPc_old;
myP = myP_old;
Vec D1c,D2c;
Tool::D2(*((Curve*)myC),myU,myPc,D1c,D2c);
Standard_Real Ndu = D1c.Magnitude();
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
{
//Derivative is approximated by three points
{
//Derivative is approximated by three points
//Attention: aDelta value must be greater than same value for "Value(...)"
// function to avoid of points' collisions.
//Attention: aDelta value must be greater than same value for "Value(...)"
// function to avoid of points' collisions.
const Standard_Real DivisionFactor = 0.01;
Standard_Real du;
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
du = 0.0;
else
du = myUsupremum-myUinfium;
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
Standard_Real F1, F2, F3;
if(myU-myUinfium < 2*aDelta)
{
{
F1=F;
//const Standard_Real U1 = myU;
const Standard_Real U2 = myU + aDelta;
const Standard_Real U3 = myU + aDelta * 2.0;
if(!((Value(U2,F2)) && (Value(U3,F3))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and
//which have zero-derivative. Try to decrease aDelta variable's value.
myD1Init = Standard_False;
return Standard_False;
}
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(-3*F1+4*F2-F3)/(2.0*aDelta);
}
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(-3*F1+4*F2-F3)/(2.0*aDelta);
}
else
{
{
F3 = F;
const Standard_Real U1 = myU - aDelta * 2.0;
const Standard_Real U2 = myU - aDelta;
//const Standard_Real U3 = myU;
if(!((Value(U2,F2)) && (Value(U1,F1))))
{
#ifdef DEB
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
cout << "There are many points close to singularity points "
"and which have zero-derivative." << endl;
cout << "Try to decrease aDelta variable's value. ---" << endl;
#endif
{
//There are many points close to singularity points and
//which have zero-derivative. Try to decrease aDelta variable's value.
myD1Init = Standard_False;
return Standard_False;
}
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(F1-4*F2+3*F3)/(2.0*aDelta);
}
myU = U;
myPc = myPc_old;
myP = myP_old;
//After calling of Value(...) function variable myU will be redeterminated.
//So we must return it previous value.
D1f=(F1-4*F2+3*F3)/(2.0*aDelta);
}
myU = U;
myPc = myPc_old;
myP = myP_old;
}
else
{
{
Vec PPc (myP,myPc);
D1f = Ndu + (PPc.Dot(D2c)/Ndu) - F*(D1c.Dot(D2c))/(Ndu*Ndu);
}
}
myD1f = D1f;
myD1Init = Standard_True;
return Standard_True;
}
}
//=============================================================================
Standard_Integer Extrema_FuncExtPC::GetStateNumber ()
@ -419,7 +408,7 @@ const POnC & Extrema_FuncExtPC::Point (const Standard_Integer N) const
//=============================================================================
void Extrema_FuncExtPC::SubIntervalInitialize(const Standard_Real theUfirst, const Standard_Real theUlast)
{
{
myUinfium = theUfirst;
myUsupremum = theUlast;
}
}