mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-04 18:06:22 +03:00
0024377: [Regression-like] OCC 6.7.0 beta contaminates log with more unnecessary debug symbols
These "DEBUG outputs" are replace with analogically comments.
This commit is contained in:
parent
3cb19cf162
commit
28cec2ba3e
@ -23,19 +23,19 @@
|
||||
// GetStateNumber()
|
||||
|
||||
/*-----------------------------------------------------------------------------
|
||||
Fonctions permettant de rechercher une distance extremale entre 2 courbes
|
||||
Fonctions permettant de rechercher une distance extremale entre 2 courbes
|
||||
C1 et C2 (en partant de points approches C1(u0) et C2(v0)).
|
||||
Cette classe herite de math_FunctionSetWithDerivatives et est utilisee par
|
||||
Cette classe herite de math_FunctionSetWithDerivatives et est utilisee par
|
||||
l'algorithme math_FunctionSetRoot.
|
||||
Si on note Du et Dv, les derivees en u et v, les 2 fonctions a annuler sont:
|
||||
{ F1(u,v) = (C2(v)-C1(u)).Du(u)/||Du|| }
|
||||
{ F2(u,v) = (C2(v)-C1(u)).Dv(v)||Dv|| }
|
||||
Si on note Duu et Dvv, les derivees secondes de C1 et C2, les derivees de F1
|
||||
Si on note Du et Dv, les derivees en u et v, les 2 fonctions a annuler sont:
|
||||
{ F1(u,v) = (C2(v)-C1(u)).Du(u)/||Du|| }
|
||||
{ F2(u,v) = (C2(v)-C1(u)).Dv(v)||Dv|| }
|
||||
Si on note Duu et Dvv, les derivees secondes de C1 et C2, les derivees de F1
|
||||
et F2 sont egales a:
|
||||
{ Duf1(u,v) = -||Du|| + C1C2.Duu/||Du||- F1(u,v)*Duu*Du/||Du||**2
|
||||
{ Dvf1(u,v) = Dv.Du/||Du||
|
||||
{ Duf2(u,v) = -Du.Dv/||Dv||
|
||||
{ Dvf2(u,v) = ||Dv|| + C2C1.Dvv/||Dv||- F2(u,v)*Dv*Dvv/||Dv||**2
|
||||
{ Duf1(u,v) = -||Du|| + C1C2.Duu/||Du||- F1(u,v)*Duu*Du/||Du||**2
|
||||
{ Dvf1(u,v) = Dv.Du/||Du||
|
||||
{ Duf2(u,v) = -Du.Dv/||Dv||
|
||||
{ Dvf2(u,v) = ||Dv|| + C2C1.Dvv/||Dv||- F2(u,v)*Dv*Dvv/||Dv||**2
|
||||
|
||||
----------------------------------------------------------------------------*/
|
||||
|
||||
@ -52,56 +52,53 @@ static const Standard_Integer MaxOrder = 3;
|
||||
|
||||
//=============================================================================
|
||||
Standard_Real Extrema_FuncExtCC::SearchOfTolerance(const Standard_Address C)
|
||||
{
|
||||
{
|
||||
const Standard_Integer NPoint = 10;
|
||||
Standard_Real aStartParam, anEndParam;
|
||||
|
||||
|
||||
if(C==myC1)
|
||||
{
|
||||
{
|
||||
aStartParam = myUinfium;
|
||||
anEndParam = myUsupremum;
|
||||
}
|
||||
}
|
||||
else if(C==myC2)
|
||||
{
|
||||
{
|
||||
aStartParam = myVinfium;
|
||||
anEndParam = myVsupremum;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::SearchOfTolerance(...)" << endl;
|
||||
cout << "Warning: No curve for tolerance computing!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//Warning: No curve for tolerance computing!
|
||||
return MinTol;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
const Standard_Real aStep = (anEndParam - aStartParam)/(Standard_Real)NPoint;
|
||||
|
||||
|
||||
Standard_Integer aNum = 0;
|
||||
Standard_Real aMax = -Precision::Infinite(); //Maximum value of 1st derivative
|
||||
//(it is computed with using NPoint point)
|
||||
|
||||
//(it is computed with using NPoint point)
|
||||
|
||||
do
|
||||
{
|
||||
{
|
||||
Standard_Real u = aStartParam + aNum*aStep; //parameter for every point
|
||||
if(u > anEndParam)
|
||||
u = anEndParam;
|
||||
|
||||
|
||||
Pnt Ptemp; //empty point (is not used below)
|
||||
Vec VDer; // 1st derivative vector
|
||||
Tool1::D1(*((Curve1*)C), u, Ptemp, VDer);
|
||||
Standard_Real vm = VDer.Magnitude();
|
||||
if(vm > aMax)
|
||||
aMax = vm;
|
||||
}
|
||||
while(++aNum < NPoint+1);
|
||||
|
||||
return Max(aMax*TolFactor,MinTol);
|
||||
}
|
||||
while(++aNum < NPoint+1);
|
||||
|
||||
return Max(aMax*TolFactor,MinTol);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
Extrema_FuncExtCC::Extrema_FuncExtCC(const Standard_Real thetol) : myC1 (0), myC2 (0), myTol (thetol)
|
||||
{
|
||||
{
|
||||
math_Vector V1(1,2), V2(1,2);
|
||||
V1(1) = 0.0;
|
||||
V2(1) = 0.0;
|
||||
@ -112,60 +109,60 @@ Extrema_FuncExtCC::Extrema_FuncExtCC(const Standard_Real thetol) : myC1 (0), myC
|
||||
myTolC1=MinTol;
|
||||
myMaxDerivOrderC2 = 0;
|
||||
myTolC2=MinTol;
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
Extrema_FuncExtCC::Extrema_FuncExtCC (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real thetol) :
|
||||
myC1 ((Standard_Address)&C1), myC2 ((Standard_Address)&C2),
|
||||
myTol (thetol)
|
||||
{
|
||||
const Curve2& C2,
|
||||
const Standard_Real thetol) :
|
||||
myC1 ((Standard_Address)&C1), myC2 ((Standard_Address)&C2),
|
||||
myTol (thetol)
|
||||
{
|
||||
math_Vector V1(1,2), V2(1,2);
|
||||
V1(1) = Tool1::FirstParameter(*((Curve1*)myC1));
|
||||
V2(1) = Tool1::LastParameter(*((Curve1*)myC1));
|
||||
V1(2) = Tool2::FirstParameter(*((Curve2*)myC2));
|
||||
V2(2) = Tool2::LastParameter(*((Curve2*)myC2));
|
||||
SubIntervalInitialize(V1, V2);
|
||||
|
||||
|
||||
switch(Tool1::GetType(*((Curve1*)myC1)))
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrderC1 = MaxOrder;
|
||||
myTolC1 = SearchOfTolerance((Standard_Address)&C1);
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrderC1 = 0;
|
||||
myTolC1=MinTol;
|
||||
break;
|
||||
}
|
||||
|
||||
switch(Tool2::GetType(*((Curve2*)myC2)))
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrderC2 = MaxOrder;
|
||||
myTolC2 = SearchOfTolerance((Standard_Address)&C2);
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrderC2 = 0;
|
||||
myTolC2=MinTol;
|
||||
break;
|
||||
}
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrderC1 = MaxOrder;
|
||||
myTolC1 = SearchOfTolerance((Standard_Address)&C1);
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrderC1 = 0;
|
||||
myTolC1=MinTol;
|
||||
break;
|
||||
}
|
||||
|
||||
switch(Tool2::GetType(*((Curve2*)myC2)))
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrderC2 = MaxOrder;
|
||||
myTolC2 = SearchOfTolerance((Standard_Address)&C2);
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrderC2 = 0;
|
||||
myTolC2=MinTol;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1& C)
|
||||
{
|
||||
{
|
||||
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_FuncExtCC::SetCurve()")
|
||||
|
||||
if (theRank == 1)
|
||||
|
||||
if (theRank == 1)
|
||||
{
|
||||
myC1 = (Standard_Address)&C;
|
||||
switch(/*Tool1::GetType(*((Curve1*)myC1))*/ C.GetType())
|
||||
myC1 = (Standard_Address)&C;
|
||||
switch(/*Tool1::GetType(*((Curve1*)myC1))*/ C.GetType())
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
@ -179,10 +176,10 @@ void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1&
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (theRank == 2)
|
||||
else if (theRank == 2)
|
||||
{
|
||||
myC2 = (Standard_Address)&C;
|
||||
switch(/*Tool2::GetType(*((Curve2*)myC2))*/C.GetType())
|
||||
myC2 = (Standard_Address)&C;
|
||||
switch(/*Tool2::GetType(*((Curve2*)myC2))*/C.GetType())
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
@ -196,11 +193,11 @@ void Extrema_FuncExtCC::SetCurve (const Standard_Integer theRank, const Curve1&
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
Standard_Boolean Extrema_FuncExtCC::Value (const math_Vector& UV, math_Vector& F)
|
||||
{
|
||||
{
|
||||
myU = UV(1);
|
||||
myV = UV(2);
|
||||
Tool1::D1(*((Curve1*)myC1), myU,myP1,myDu);
|
||||
@ -212,264 +209,254 @@ Standard_Boolean Extrema_FuncExtCC::Value (const math_Vector& UV, math_Vector& F
|
||||
|
||||
|
||||
if(myMaxDerivOrderC1 != 0)
|
||||
{
|
||||
{
|
||||
if (Ndu <= myTolC1)
|
||||
{
|
||||
//Derivative is approximated by Taylor-series
|
||||
{
|
||||
//Derivative is approximated by Taylor-series
|
||||
const Standard_Real DivisionFactor = 1.e-3;
|
||||
Standard_Real du;
|
||||
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = myUsupremum-myUinfium;
|
||||
|
||||
|
||||
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
|
||||
|
||||
|
||||
Standard_Integer n = 1; //Derivative order
|
||||
Vec V;
|
||||
Standard_Boolean IsDeriveFound;
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
{
|
||||
V = Tool1::DN(*((Curve1*)myC1),myU,++n);
|
||||
Ndu = V.Magnitude();
|
||||
IsDeriveFound = (Ndu > myTolC1);
|
||||
}
|
||||
}
|
||||
while(!IsDeriveFound && n < myMaxDerivOrderC1);
|
||||
|
||||
|
||||
if(IsDeriveFound)
|
||||
{
|
||||
{
|
||||
Standard_Real u;
|
||||
|
||||
|
||||
if(myU-myUinfium < aDelta)
|
||||
u = myU+aDelta;
|
||||
else
|
||||
u = myU-aDelta;
|
||||
|
||||
|
||||
Pnt P1, P2;
|
||||
Tool1::D0(*((Curve1*)myC1),Min(myU, u),P1);
|
||||
Tool1::D0(*((Curve1*)myC1),Max(myU, u),P2);
|
||||
|
||||
|
||||
Vec V1(P1,P2);
|
||||
Standard_Real aDirFactor = V.Dot(V1);
|
||||
|
||||
|
||||
if(aDirFactor < 0.0)
|
||||
myDu = -V;
|
||||
else
|
||||
myDu = V;
|
||||
}//if(IsDeriveFound)
|
||||
}//if(IsDeriveFound)
|
||||
else
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
Pnt Ptemp; //(0,0,0)-coordinate
|
||||
Pnt P1, P2, P3;
|
||||
Standard_Boolean IsParameterGrown;
|
||||
|
||||
|
||||
if(myU-myUinfium < 2*aDelta)
|
||||
{
|
||||
{
|
||||
Tool1::D0(*((Curve1*)myC1),myU,P1);
|
||||
Tool1::D0(*((Curve1*)myC1),myU+aDelta,P2);
|
||||
Tool1::D0(*((Curve1*)myC1),myU+2*aDelta,P3);
|
||||
IsParameterGrown = Standard_True;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
Tool1::D0(*((Curve1*)myC1),myU-2*aDelta,P1);
|
||||
Tool1::D0(*((Curve1*)myC1),myU-aDelta,P2);
|
||||
Tool1::D0(*((Curve1*)myC1),myU,P3);
|
||||
IsParameterGrown = Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
|
||||
|
||||
|
||||
if(IsParameterGrown)
|
||||
myDu=-3*V1+4*V2-V3;
|
||||
else
|
||||
myDu=V1-4*V2+3*V3;
|
||||
}//else of if(IsDeriveFound)
|
||||
}//else of if(IsDeriveFound)
|
||||
Ndu = myDu.Magnitude();
|
||||
}//if (Ndu <= myTolC1) condition
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
}//if (Ndu <= myTolC1) condition
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
|
||||
if (Ndu <= MinTol)
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++Function Extrema_FuncExtCC::Value(...)." << endl;
|
||||
cout << "Warning: 1st derivative of C1 is equal to zero!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//Warning: 1st derivative of C1 is equal to zero!
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Standard_Real Ndv = myDv.Magnitude();
|
||||
|
||||
if(myMaxDerivOrderC2 != 0)
|
||||
{
|
||||
{
|
||||
if (Ndv <= myTolC2)
|
||||
{
|
||||
{
|
||||
const Standard_Real DivisionFactor = 1.e-3;
|
||||
Standard_Real dv;
|
||||
if((myVsupremum >= RealLast()) || (myVinfium <= RealFirst()))
|
||||
dv = 0.0;
|
||||
else
|
||||
dv = myVsupremum-myVinfium;
|
||||
|
||||
|
||||
const Standard_Real aDelta = Max(dv*DivisionFactor,MinStep);
|
||||
|
||||
//Derivative is approximated by Taylor-series
|
||||
|
||||
//Derivative is approximated by Taylor-series
|
||||
|
||||
Standard_Integer n = 1; //Derivative order
|
||||
Vec V;
|
||||
Standard_Boolean IsDeriveFound;
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
{
|
||||
V = Tool2::DN(*((Curve2*)myC2),myV,++n);
|
||||
Ndv = V.Magnitude();
|
||||
IsDeriveFound = (Ndv > myTolC2);
|
||||
}
|
||||
}
|
||||
while(!IsDeriveFound && n < myMaxDerivOrderC2);
|
||||
|
||||
|
||||
if(IsDeriveFound)
|
||||
{
|
||||
{
|
||||
Standard_Real v;
|
||||
|
||||
|
||||
if(myV-myVinfium < aDelta)
|
||||
v = myV+aDelta;
|
||||
else
|
||||
v = myV-aDelta;
|
||||
|
||||
|
||||
Pnt P1, P2;
|
||||
Tool2::D0(*((Curve2*)myC2),Min(myV, v),P1);
|
||||
Tool2::D0(*((Curve2*)myC2),Max(myV, v),P2);
|
||||
|
||||
|
||||
Vec V1(P1,P2);
|
||||
Standard_Real aDirFactor = V.Dot(V1);
|
||||
|
||||
|
||||
if(aDirFactor < 0.0)
|
||||
myDv = -V;
|
||||
else
|
||||
myDv = V;
|
||||
}//if(IsDeriveFound)
|
||||
}//if(IsDeriveFound)
|
||||
else
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
Pnt Ptemp; //(0,0,0)-coordinate
|
||||
Pnt P1, P2, P3;
|
||||
Standard_Boolean IsParameterGrown;
|
||||
|
||||
|
||||
if(myV-myVinfium < 2*aDelta)
|
||||
{
|
||||
{
|
||||
Tool2::D0(*((Curve2*)myC2),myV,P1);
|
||||
Tool2::D0(*((Curve2*)myC2),myV+aDelta,P2);
|
||||
Tool2::D0(*((Curve2*)myC2),myV+2*aDelta,P3);
|
||||
IsParameterGrown = Standard_True;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
Tool2::D0(*((Curve2*)myC2),myV-2*aDelta,P1);
|
||||
Tool2::D0(*((Curve2*)myC2),myV-aDelta,P2);
|
||||
Tool2::D0(*((Curve2*)myC2),myV,P3);
|
||||
IsParameterGrown = Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
|
||||
|
||||
|
||||
if(IsParameterGrown)
|
||||
myDv=-3*V1+4*V2-V3;
|
||||
else
|
||||
myDv=V1-4*V2+3*V3;
|
||||
}//else of if(IsDeriveFound)
|
||||
|
||||
Ndv = myDv.Magnitude();
|
||||
}//if (Ndv <= myTolC2)
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
}//else of if(IsDeriveFound)
|
||||
|
||||
Ndv = myDv.Magnitude();
|
||||
}//if (Ndv <= myTolC2)
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
|
||||
if (Ndv <= MinTol)
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++Function Extrema_FuncExtCC::Value(...)." << endl;
|
||||
cout << "1st derivative of C2 is equal to zero!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//1st derivative of C2 is equal to zero!
|
||||
return Standard_False;
|
||||
}
|
||||
}
|
||||
|
||||
F(1) = P1P2.Dot(myDu)/Ndu;
|
||||
F(2) = P1P2.Dot(myDv)/Ndv;
|
||||
return Standard_True;
|
||||
}
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Boolean Extrema_FuncExtCC::Derivatives (const math_Vector& UV,
|
||||
math_Matrix& Df)
|
||||
{
|
||||
math_Matrix& Df)
|
||||
{
|
||||
math_Vector F(1,2);
|
||||
return Values(UV,F,Df);
|
||||
}
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
math_Vector& F,
|
||||
math_Matrix& Df)
|
||||
{
|
||||
{
|
||||
myU = UV(1);
|
||||
myV = UV(2);
|
||||
|
||||
if(Value(UV, F) == Standard_False) //Computes F, myDu, myDv
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++Standard_Boolean Extrema_FuncExtCC::Values(...)." << endl;
|
||||
cout << "Warning: No function value found!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//Warning: No function value found!
|
||||
return Standard_False;
|
||||
}//if(Value(UV, F) == Standard_False)
|
||||
}//if(Value(UV, F) == Standard_False)
|
||||
|
||||
Vec Du, Dv, Duu, Dvv;
|
||||
Tool1::D2(*((Curve1*)myC1), myU,myP1,Du,Duu);
|
||||
Tool2::D2(*((Curve2*)myC2), myV,myP2,Dv,Dvv);
|
||||
|
||||
//Calling of "Value(...)" function change class member values.
|
||||
//After running it is necessary to return to previous values.
|
||||
|
||||
//Calling of "Value(...)" function change class member values.
|
||||
//After running it is necessary to return to previous values.
|
||||
const Standard_Real myU_old = myU, myV_old = myV;
|
||||
const Pnt myP1_old = myP1, myP2_old = myP2;
|
||||
const Vec myDu_old = myDu, myDv_old = myDv;
|
||||
|
||||
|
||||
//Attention: aDelta value must be greater than same value for "Value(...)"
|
||||
// function to avoid of points' collisions.
|
||||
|
||||
//Attention: aDelta value must be greater than same value for "Value(...)"
|
||||
// function to avoid of points' collisions.
|
||||
|
||||
const Standard_Real DivisionFactor = 0.01;
|
||||
|
||||
|
||||
Standard_Real du;
|
||||
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = myUsupremum-myUinfium;
|
||||
|
||||
|
||||
const Standard_Real aDeltaU = Max(du*DivisionFactor,MinStep);
|
||||
|
||||
|
||||
Standard_Real dv;
|
||||
if((myVsupremum >= RealLast()) || (myVinfium <= RealFirst()))
|
||||
dv = 0.0;
|
||||
else
|
||||
dv = myVsupremum-myVinfium;
|
||||
|
||||
|
||||
const Standard_Real aDeltaV = Max(dv*DivisionFactor,MinStep);
|
||||
|
||||
Vec P1P2 (myP1,myP2);
|
||||
|
||||
|
||||
if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
math_Vector FF1(1,2), FF2(1,2), FF3(1,2);
|
||||
Standard_Real F1, F2, F3;
|
||||
|
||||
/////////////////////////// Search of DF1_u derivative (begin) ///////////////////
|
||||
/////////////////////////// Search of DF1_u derivative (begin) ///////////////////
|
||||
if(myU-myUinfium < 2*aDeltaU)
|
||||
{
|
||||
{
|
||||
F1=F(1);
|
||||
math_Vector UV2(1,2), UV3(1,2);
|
||||
UV2(1)=myU+aDeltaU;
|
||||
@ -477,23 +464,19 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV3(1)=myU+2*aDeltaU;
|
||||
UV3(2)=myV;
|
||||
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F2 = FF2(1);
|
||||
F3 = FF3(1);
|
||||
|
||||
|
||||
Df(1,1) = (-3*F1+4*F2-F3)/(2.0*aDeltaU);
|
||||
}//if(myU-myUinfium < 2*aDeltaU)
|
||||
}//if(myU-myUinfium < 2*aDeltaU)
|
||||
else
|
||||
{
|
||||
{
|
||||
F3 = F(1);
|
||||
math_Vector UV2(1,2), UV1(1,2);
|
||||
UV2(1)=myU-aDeltaU;
|
||||
@ -502,30 +485,26 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV1(2)=myV;
|
||||
|
||||
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F1 = FF1(1);
|
||||
F2 = FF2(1);
|
||||
|
||||
Df(1,1) = (F1-4*F2+3*F3)/(2.0*aDeltaU);
|
||||
}//else of if(myU-myUinfium < 2*aDeltaU) condition
|
||||
/////////////////////////// Search of DF1_u derivative (end) ///////////////////
|
||||
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
}//else of if(myU-myUinfium < 2*aDeltaU) condition
|
||||
/////////////////////////// Search of DF1_u derivative (end) ///////////////////
|
||||
|
||||
/////////////////////////// Search of DF1_v derivative (begin) ///////////////////
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
|
||||
/////////////////////////// Search of DF1_v derivative (begin) ///////////////////
|
||||
if(myV-myVinfium < 2*aDeltaV)
|
||||
{
|
||||
{
|
||||
F1=F(1);
|
||||
math_Vector UV2(1,2), UV3(1,2);
|
||||
UV2(1)=myU;
|
||||
@ -534,22 +513,18 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV3(2)=myV+2*aDeltaV;
|
||||
|
||||
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
}
|
||||
F2 = FF2(1);
|
||||
F3 = FF3(1);
|
||||
|
||||
|
||||
Df(1,2) = (-3*F1+4*F2-F3)/(2.0*aDeltaV);
|
||||
}//if(myV-myVinfium < 2*aDeltaV)
|
||||
}//if(myV-myVinfium < 2*aDeltaV)
|
||||
else
|
||||
{
|
||||
{
|
||||
F3 = F(1);
|
||||
math_Vector UV2(1,2), UV1(1,2);
|
||||
UV2(1)=myU;
|
||||
@ -557,46 +532,42 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV1(1)=myU;
|
||||
UV1(2)=myV-2*aDeltaV;
|
||||
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F1 = FF1(1);
|
||||
F2 = FF2(1);
|
||||
|
||||
Df(1,2) = (F1-4*F2+3*F3)/(2.0*aDeltaV);
|
||||
}//else of if(myV-myVinfium < 2*aDeltaV)
|
||||
/////////////////////////// Search of DF1_v derivative (end) ///////////////////
|
||||
|
||||
}//else of if(myV-myVinfium < 2*aDeltaV)
|
||||
/////////////////////////// Search of DF1_v derivative (end) ///////////////////
|
||||
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
myP1 = myP1_old, myP2 = myP2_old;
|
||||
myDu = myDu_old, myDv = myDv_old;
|
||||
}//if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
|
||||
}//if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
|
||||
else
|
||||
{
|
||||
{
|
||||
const Standard_Real Ndu = myDu.Magnitude();
|
||||
Df(1,1) = - Ndu + (P1P2.Dot(Duu)/Ndu) - F(1)*(myDu.Dot(Duu)/(Ndu*Ndu));
|
||||
Df(1,2) = myDv.Dot(myDu)/Ndu;
|
||||
}//else of if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
|
||||
|
||||
}//else of if((myMaxDerivOrderC1 != 0) && (Du.Magnitude() <= myTolC1))
|
||||
|
||||
if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
math_Vector FF1(1,2), FF2(1,2), FF3(1,2);
|
||||
Standard_Real F1, F2, F3;
|
||||
|
||||
/////////////////////////// Search of DF2_v derivative (begin) ///////////////////
|
||||
/////////////////////////// Search of DF2_v derivative (begin) ///////////////////
|
||||
if(myV-myVinfium < 2*aDeltaV)
|
||||
{
|
||||
{
|
||||
F1=F(2);
|
||||
math_Vector UV2(1,2), UV3(1,2);
|
||||
UV2(1)=myU;
|
||||
@ -605,24 +576,20 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV3(2)=myV+2*aDeltaV;
|
||||
|
||||
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F2 = FF2(2);
|
||||
F3 = FF3(2);
|
||||
|
||||
|
||||
Df(2,2) = (-3*F1+4*F2-F3)/(2.0*aDeltaV);
|
||||
|
||||
}//if(myV-myVinfium < 2*aDeltaV)
|
||||
|
||||
}//if(myV-myVinfium < 2*aDeltaV)
|
||||
else
|
||||
{
|
||||
{
|
||||
F3 = F(2);
|
||||
math_Vector UV2(1,2), UV1(1,2);
|
||||
UV2(1)=myU;
|
||||
@ -631,30 +598,26 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV1(2)=myV-2*aDeltaV;
|
||||
|
||||
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F1 = FF1(2);
|
||||
F2 = FF2(2);
|
||||
|
||||
Df(2,2) = (F1-4*F2+3*F3)/(2.0*aDeltaV);
|
||||
}//else of if(myV-myVinfium < 2*aDeltaV)
|
||||
/////////////////////////// Search of DF2_v derivative (end) ///////////////////
|
||||
}//else of if(myV-myVinfium < 2*aDeltaV)
|
||||
/////////////////////////// Search of DF2_v derivative (end) ///////////////////
|
||||
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
|
||||
/////////////////////////// Search of DF2_u derivative (begin) ///////////////////
|
||||
/////////////////////////// Search of DF2_u derivative (begin) ///////////////////
|
||||
if(myU-myUinfium < 2*aDeltaU)
|
||||
{
|
||||
{
|
||||
F1=F(2);
|
||||
math_Vector UV2(1,2), UV3(1,2);
|
||||
UV2(1)=myU+aDeltaU;
|
||||
@ -662,48 +625,41 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
UV3(1)=myU+2*aDeltaU;
|
||||
UV3(2)=myV;
|
||||
if(!((Value(UV2,FF2)) && (Value(UV3,FF3))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F2 = FF2(2);
|
||||
F3 = FF3(2);
|
||||
|
||||
|
||||
Df(2,1) = (-3*F1+4*F2-F3)/(2.0*aDeltaU);
|
||||
}//if(myU-myUinfium < 2*aDelta)
|
||||
}//if(myU-myUinfium < 2*aDelta)
|
||||
else
|
||||
{
|
||||
{
|
||||
F3 = F(2);
|
||||
math_Vector UV2(1,2), UV1(1,2);
|
||||
UV2(1)=myU-aDeltaU;
|
||||
UV2(2)=myV;
|
||||
UV1(1)=myU-2*aDeltaU;
|
||||
UV1(2)=myV;
|
||||
|
||||
|
||||
if(!((Value(UV2,FF2)) && (Value(UV1,FF1))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtCC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points
|
||||
//and which have zero-derivative.
|
||||
//Try to decrease aDelta variable's value.
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
F1 = FF1(2);
|
||||
F2 = FF2(2);
|
||||
|
||||
Df(2,1) = (F1-4*F2+3*F3)/(2.0*aDeltaU);
|
||||
}//else of if(myU-myUinfium < 2*aDeltaU)
|
||||
/////////////////////////// Search of DF2_u derivative (end) ///////////////////
|
||||
|
||||
}//else of if(myU-myUinfium < 2*aDeltaU)
|
||||
/////////////////////////// Search of DF2_u derivative (end) ///////////////////
|
||||
|
||||
//Return to previous values
|
||||
myU = myU_old;
|
||||
myV = myV_old;
|
||||
@ -711,17 +667,17 @@ Standard_Boolean Extrema_FuncExtCC::Values (const math_Vector& UV,
|
||||
myP2 = myP2_old;
|
||||
myDu = myDu_old;
|
||||
myDv = myDv_old;
|
||||
}//if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
|
||||
}//if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
|
||||
else
|
||||
{
|
||||
{
|
||||
Standard_Real Ndv = myDv.Magnitude();
|
||||
Df(2,2) = Ndv + (P1P2.Dot(Dvv)/Ndv) - F(2)*(myDv.Dot(Dvv)/(Ndv*Ndv));
|
||||
Df(2,1) = -myDu.Dot(myDv)/Ndv;
|
||||
}//else of if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
|
||||
|
||||
}//else of if((myMaxDerivOrderC2 != 0) && (Dv.Magnitude() <= myTolC2))
|
||||
|
||||
return Standard_True;
|
||||
|
||||
}//end of function
|
||||
}//end of function
|
||||
//=============================================================================
|
||||
|
||||
Standard_Integer Extrema_FuncExtCC::GetStateNumber ()
|
||||
@ -748,8 +704,8 @@ Standard_Integer Extrema_FuncExtCC::GetStateNumber ()
|
||||
//=============================================================================
|
||||
|
||||
void Extrema_FuncExtCC::Points (const Standard_Integer N,
|
||||
POnC& P1,
|
||||
POnC& P2) const
|
||||
POnC& P1,
|
||||
POnC& P2) const
|
||||
{
|
||||
P1 = myPoints.Value(2*N-1);
|
||||
P2 = myPoints.Value(2*N);
|
||||
@ -758,10 +714,10 @@ void Extrema_FuncExtCC::Points (const Standard_Integer N,
|
||||
|
||||
void Extrema_FuncExtCC::SubIntervalInitialize(const math_Vector& theInfBound,
|
||||
const math_Vector& theSupBound)
|
||||
{
|
||||
{
|
||||
myUinfium = theInfBound(1);
|
||||
myUsupremum = theSupBound(1);
|
||||
myVinfium = theInfBound(2);
|
||||
myVsupremum = theSupBound(2);
|
||||
}
|
||||
//=============================================================================
|
||||
}
|
||||
//=============================================================================
|
||||
|
@ -27,47 +27,47 @@ static const Standard_Integer MaxOrder = 3;
|
||||
|
||||
|
||||
/*-----------------------------------------------------------------------------
|
||||
Fonction permettant de rechercher une distance extremale entre un point P et
|
||||
Fonction permettant de rechercher une distance extremale entre un point P et
|
||||
une courbe C (en partant d'un point approche C(u0)).
|
||||
Cette classe herite de math_FunctionWithDerivative et est utilisee par
|
||||
Cette classe herite de math_FunctionWithDerivative et est utilisee par
|
||||
les algorithmes math_FunctionRoot et math_FunctionRoots.
|
||||
Si on note D1c et D2c les derivees premiere et seconde:
|
||||
{ F(u) = (C(u)-P).D1c(u)/ ||Du||}
|
||||
{ DF(u) = ||Du|| + (C(u)-P).D2c(u)/||Du|| - F(u)*Duu*Du/||Du||**2
|
||||
Si on note D1c et D2c les derivees premiere et seconde:
|
||||
{ F(u) = (C(u)-P).D1c(u)/ ||Du||}
|
||||
{ DF(u) = ||Du|| + (C(u)-P).D2c(u)/||Du|| - F(u)*Duu*Du/||Du||**2
|
||||
|
||||
|
||||
{ F(u) = (C(u)-P).D1c(u) }
|
||||
{ DF(u) = D1c(u).D1c(u) + (C(u)-P).D2c(u)
|
||||
= ||D1c(u)|| ** 2 + (C(u)-P).D2c(u) }
|
||||
{ F(u) = (C(u)-P).D1c(u) }
|
||||
{ DF(u) = D1c(u).D1c(u) + (C(u)-P).D2c(u)
|
||||
= ||D1c(u)|| ** 2 + (C(u)-P).D2c(u) }
|
||||
----------------------------------------------------------------------------*/
|
||||
|
||||
Standard_Real Extrema_FuncExtPC::SearchOfTolerance()
|
||||
{
|
||||
{
|
||||
const Standard_Integer NPoint = 10;
|
||||
const Standard_Real aStep = (myUsupremum - myUinfium)/(Standard_Real)NPoint;
|
||||
|
||||
|
||||
Standard_Integer aNum = 0;
|
||||
Standard_Real aMax = -Precision::Infinite(); //Maximum value of 1st derivative
|
||||
//(it is computed with using NPoint point)
|
||||
|
||||
//(it is computed with using NPoint point)
|
||||
|
||||
do
|
||||
{
|
||||
{
|
||||
Standard_Real u = myUinfium + aNum*aStep; //parameter for every point
|
||||
if(u > myUsupremum)
|
||||
u = myUsupremum;
|
||||
|
||||
|
||||
Pnt Ptemp; //empty point (is not used below)
|
||||
Vec VDer; // 1st derivative vector
|
||||
Tool::D1(*((Curve*)myC), u, Ptemp, VDer);
|
||||
Standard_Real vm = VDer.Magnitude();
|
||||
if(vm > aMax)
|
||||
aMax = vm;
|
||||
}
|
||||
while(++aNum < NPoint+1);
|
||||
|
||||
return Max(aMax*TolFactor,MinTol);
|
||||
|
||||
}
|
||||
while(++aNum < NPoint+1);
|
||||
|
||||
return Max(aMax*TolFactor,MinTol);
|
||||
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
|
||||
@ -78,7 +78,7 @@ myD1f(0.)
|
||||
myPinit = Standard_False;
|
||||
myCinit = Standard_False;
|
||||
myD1Init = Standard_False;
|
||||
|
||||
|
||||
SubIntervalInitialize(0.0,0.0);
|
||||
myMaxDerivOrder = 0;
|
||||
myTol=MinTol;
|
||||
@ -87,58 +87,58 @@ myD1f(0.)
|
||||
//=============================================================================
|
||||
|
||||
Extrema_FuncExtPC::Extrema_FuncExtPC (const Pnt& P,
|
||||
const Curve& C): myU(0.), myD1f(0.)
|
||||
{
|
||||
const Curve& C): myU(0.), myD1f(0.)
|
||||
{
|
||||
myP = P;
|
||||
myC = (Standard_Address)&C;
|
||||
myPinit = Standard_True;
|
||||
myCinit = Standard_True;
|
||||
myD1Init = Standard_False;
|
||||
|
||||
|
||||
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
|
||||
Tool::LastParameter(*((Curve*)myC)));
|
||||
|
||||
Tool::LastParameter(*((Curve*)myC)));
|
||||
|
||||
switch(Tool::GetType(*((Curve*)myC)))
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrder = MaxOrder;
|
||||
myTol = SearchOfTolerance();
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrder = 0;
|
||||
myTol=MinTol;
|
||||
break;
|
||||
}
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrder = MaxOrder;
|
||||
myTol = SearchOfTolerance();
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrder = 0;
|
||||
myTol=MinTol;
|
||||
break;
|
||||
}
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
void Extrema_FuncExtPC::Initialize(const Curve& C)
|
||||
{
|
||||
{
|
||||
myC = (Standard_Address)&C;
|
||||
myCinit = Standard_True;
|
||||
myPoint.Clear();
|
||||
mySqDist.Clear();
|
||||
myIsMin.Clear();
|
||||
|
||||
|
||||
SubIntervalInitialize(Tool::FirstParameter(*((Curve*)myC)),
|
||||
Tool::LastParameter(*((Curve*)myC)));
|
||||
|
||||
Tool::LastParameter(*((Curve*)myC)));
|
||||
|
||||
switch(Tool::GetType(*((Curve*)myC)))
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrder = MaxOrder;
|
||||
myTol = SearchOfTolerance();
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrder = 0;
|
||||
myTol=MinTol;
|
||||
break;
|
||||
}
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
myMaxDerivOrder = MaxOrder;
|
||||
myTol = SearchOfTolerance();
|
||||
break;
|
||||
default:
|
||||
myMaxDerivOrder = 0;
|
||||
myTol=MinTol;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
|
||||
@ -158,102 +158,99 @@ Standard_Boolean Extrema_FuncExtPC::Value (const Standard_Real U, Standard_Real&
|
||||
{
|
||||
if (!myPinit || !myCinit)
|
||||
Standard_TypeMismatch::Raise("No init");
|
||||
|
||||
|
||||
myU = U;
|
||||
Vec D1c;
|
||||
Tool::D1(*((Curve*)myC),myU,myPc,D1c);
|
||||
Standard_Real Ndu = D1c.Magnitude();
|
||||
|
||||
if(myMaxDerivOrder != 0)
|
||||
{
|
||||
{
|
||||
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
|
||||
{
|
||||
{
|
||||
const Standard_Real DivisionFactor = 1.e-3;
|
||||
Standard_Real du;
|
||||
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = myUsupremum-myUinfium;
|
||||
|
||||
|
||||
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
|
||||
//Derivative is approximated by Taylor-series
|
||||
|
||||
//Derivative is approximated by Taylor-series
|
||||
|
||||
Standard_Integer n = 1; //Derivative order
|
||||
Vec V;
|
||||
Standard_Boolean IsDeriveFound;
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
{
|
||||
V = Tool::DN(*((Curve*)myC),myU,++n);
|
||||
Ndu = V.Magnitude();
|
||||
IsDeriveFound = (Ndu > myTol);
|
||||
}
|
||||
}
|
||||
while(!IsDeriveFound && n < myMaxDerivOrder);
|
||||
|
||||
|
||||
if(IsDeriveFound)
|
||||
{
|
||||
{
|
||||
Standard_Real u;
|
||||
|
||||
|
||||
if(myU-myUinfium < aDelta)
|
||||
u = myU+aDelta;
|
||||
else
|
||||
u = myU-aDelta;
|
||||
|
||||
|
||||
Pnt P1, P2;
|
||||
Tool::D0(*((Curve*)myC),Min(myU, u),P1);
|
||||
Tool::D0(*((Curve*)myC),Max(myU, u),P2);
|
||||
|
||||
|
||||
Vec V1(P1,P2);
|
||||
Standard_Real aDirFactor = V.Dot(V1);
|
||||
|
||||
|
||||
if(aDirFactor < 0.0)
|
||||
D1c = -V;
|
||||
else
|
||||
D1c = V;
|
||||
}//if(IsDeriveFound)
|
||||
}//if(IsDeriveFound)
|
||||
else
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
Pnt Ptemp; //(0,0,0)-coordinate
|
||||
Pnt P1, P2, P3;
|
||||
Standard_Boolean IsParameterGrown;
|
||||
|
||||
|
||||
if(myU-myUinfium < 2*aDelta)
|
||||
{
|
||||
{
|
||||
Tool::D0(*((Curve*)myC),myU,P1);
|
||||
Tool::D0(*((Curve*)myC),myU+aDelta,P2);
|
||||
Tool::D0(*((Curve*)myC),myU+2*aDelta,P3);
|
||||
IsParameterGrown = Standard_True;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
Tool::D0(*((Curve*)myC),myU-2*aDelta,P1);
|
||||
Tool::D0(*((Curve*)myC),myU-aDelta,P2);
|
||||
Tool::D0(*((Curve*)myC),myU,P3);
|
||||
IsParameterGrown = Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Vec V1(Ptemp,P1), V2(Ptemp,P2), V3(Ptemp,P3);
|
||||
|
||||
|
||||
if(IsParameterGrown)
|
||||
D1c=-3*V1+4*V2-V3;
|
||||
else
|
||||
D1c=V1-4*V2+3*V3;
|
||||
}
|
||||
Ndu = D1c.Magnitude();
|
||||
}//(if (Ndu <= myTol)) condition
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
}
|
||||
Ndu = D1c.Magnitude();
|
||||
}//(if (Ndu <= myTol)) condition
|
||||
}//if(myMaxDerivOrder != 0)
|
||||
|
||||
if (Ndu <= MinTol)
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++Function Extrema_FuncExtPC::Value(...)." << endl;
|
||||
cout << "Warning: 1st derivative is equal to zero!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//Warning: 1st derivative is equal to zero!
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Vec PPc (myP,myPc);
|
||||
F = PPc.Dot(D1c)/Ndu;
|
||||
return Standard_True;
|
||||
@ -266,113 +263,105 @@ Standard_Boolean Extrema_FuncExtPC::Derivative (const Standard_Real U, Standard_
|
||||
if (!myPinit || !myCinit) Standard_TypeMismatch::Raise();
|
||||
Standard_Real F;
|
||||
return Values(U,F,D1f); /* on fait appel a Values pour simplifier la
|
||||
sauvegarde de l'etat. */
|
||||
sauvegarde de l'etat. */
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Boolean Extrema_FuncExtPC::Values (const Standard_Real U, Standard_Real& F, Standard_Real& D1f)
|
||||
{
|
||||
Standard_Boolean Extrema_FuncExtPC::Values (const Standard_Real U,
|
||||
Standard_Real& F,
|
||||
Standard_Real& D1f)
|
||||
{
|
||||
if (!myPinit || !myCinit)
|
||||
Standard_TypeMismatch::Raise("No init");
|
||||
|
||||
|
||||
Pnt myPc_old = myPc, myP_old = myP;
|
||||
|
||||
if(Value(U,F) == Standard_False)
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++Function Extrema_FuncExtPC::Values(...)." << endl;
|
||||
cout << "Warning: No function value found!---"<<endl;
|
||||
#endif
|
||||
{
|
||||
//Warning: No function value found!;
|
||||
|
||||
myD1Init = Standard_False;
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
myU = U;
|
||||
myPc = myPc_old;
|
||||
myP = myP_old;
|
||||
|
||||
|
||||
Vec D1c,D2c;
|
||||
Tool::D2(*((Curve*)myC),myU,myPc,D1c,D2c);
|
||||
|
||||
Standard_Real Ndu = D1c.Magnitude();
|
||||
if (Ndu <= myTol) // Cas Singulier (PMN 22/04/1998)
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
{
|
||||
//Derivative is approximated by three points
|
||||
|
||||
//Attention: aDelta value must be greater than same value for "Value(...)"
|
||||
// function to avoid of points' collisions.
|
||||
//Attention: aDelta value must be greater than same value for "Value(...)"
|
||||
// function to avoid of points' collisions.
|
||||
const Standard_Real DivisionFactor = 0.01;
|
||||
Standard_Real du;
|
||||
if((myUsupremum >= RealLast()) || (myUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = myUsupremum-myUinfium;
|
||||
|
||||
|
||||
const Standard_Real aDelta = Max(du*DivisionFactor,MinStep);
|
||||
|
||||
|
||||
Standard_Real F1, F2, F3;
|
||||
|
||||
|
||||
if(myU-myUinfium < 2*aDelta)
|
||||
{
|
||||
{
|
||||
F1=F;
|
||||
//const Standard_Real U1 = myU;
|
||||
const Standard_Real U2 = myU + aDelta;
|
||||
const Standard_Real U3 = myU + aDelta * 2.0;
|
||||
|
||||
|
||||
if(!((Value(U2,F2)) && (Value(U3,F3))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and
|
||||
//which have zero-derivative. Try to decrease aDelta variable's value.
|
||||
|
||||
myD1Init = Standard_False;
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//After calling of Value(...) function variable myU will be redeterminated.
|
||||
//So we must return it previous value.
|
||||
D1f=(-3*F1+4*F2-F3)/(2.0*aDelta);
|
||||
}
|
||||
|
||||
//After calling of Value(...) function variable myU will be redeterminated.
|
||||
//So we must return it previous value.
|
||||
D1f=(-3*F1+4*F2-F3)/(2.0*aDelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
F3 = F;
|
||||
const Standard_Real U1 = myU - aDelta * 2.0;
|
||||
const Standard_Real U2 = myU - aDelta;
|
||||
//const Standard_Real U3 = myU;
|
||||
|
||||
if(!((Value(U2,F2)) && (Value(U1,F1))))
|
||||
{
|
||||
#ifdef DEB
|
||||
cout << "+++ Function Extrema_FuncExtPC::Values(...)" << endl;
|
||||
cout << "There are many points close to singularity points "
|
||||
"and which have zero-derivative." << endl;
|
||||
cout << "Try to decrease aDelta variable's value. ---" << endl;
|
||||
#endif
|
||||
{
|
||||
//There are many points close to singularity points and
|
||||
//which have zero-derivative. Try to decrease aDelta variable's value.
|
||||
myD1Init = Standard_False;
|
||||
return Standard_False;
|
||||
}
|
||||
//After calling of Value(...) function variable myU will be redeterminated.
|
||||
//So we must return it previous value.
|
||||
D1f=(F1-4*F2+3*F3)/(2.0*aDelta);
|
||||
}
|
||||
myU = U;
|
||||
myPc = myPc_old;
|
||||
myP = myP_old;
|
||||
//After calling of Value(...) function variable myU will be redeterminated.
|
||||
//So we must return it previous value.
|
||||
D1f=(F1-4*F2+3*F3)/(2.0*aDelta);
|
||||
}
|
||||
myU = U;
|
||||
myPc = myPc_old;
|
||||
myP = myP_old;
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
Vec PPc (myP,myPc);
|
||||
D1f = Ndu + (PPc.Dot(D2c)/Ndu) - F*(D1c.Dot(D2c))/(Ndu*Ndu);
|
||||
}
|
||||
}
|
||||
|
||||
myD1f = D1f;
|
||||
|
||||
myD1Init = Standard_True;
|
||||
return Standard_True;
|
||||
}
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Integer Extrema_FuncExtPC::GetStateNumber ()
|
||||
@ -419,7 +408,7 @@ const POnC & Extrema_FuncExtPC::Point (const Standard_Integer N) const
|
||||
//=============================================================================
|
||||
|
||||
void Extrema_FuncExtPC::SubIntervalInitialize(const Standard_Real theUfirst, const Standard_Real theUlast)
|
||||
{
|
||||
{
|
||||
myUinfium = theUfirst;
|
||||
myUsupremum = theUlast;
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user