mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0032296: Coding Rules - merge GCPnts_QuasiUniformDeflection.pxx into GCPnts_QuasiUniformDeflection.cxx
This commit is contained in:
parent
24579ecd6e
commit
194c71af96
@ -5,7 +5,6 @@ GCPnts_DeflectionType.hxx
|
||||
GCPnts_QuasiUniformAbscissa.cxx
|
||||
GCPnts_QuasiUniformAbscissa.hxx
|
||||
GCPnts_QuasiUniformDeflection.cxx
|
||||
GCPnts_QuasiUniformDeflection.pxx
|
||||
GCPnts_QuasiUniformDeflection.hxx
|
||||
GCPnts_TangentialDeflection.cxx
|
||||
GCPnts_TangentialDeflection.hxx
|
||||
|
@ -12,106 +12,590 @@
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
|
||||
#include <Adaptor2d_Curve2d.hxx>
|
||||
#include <Adaptor3d_Curve.hxx>
|
||||
#include <GCPnts_QuasiUniformDeflection.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Pnt2d.hxx>
|
||||
|
||||
#include <GCPnts_DeflectionType.hxx>
|
||||
#include <GCPnts_TCurveTypes.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <gp_Vec2d.hxx>
|
||||
#include <Standard_ConstructionError.hxx>
|
||||
#include <Standard_DomainError.hxx>
|
||||
#include <Standard_NotImplemented.hxx>
|
||||
#include <Standard_OutOfRange.hxx>
|
||||
#include <StdFail_NotDone.hxx>
|
||||
|
||||
static const Standard_Integer MyMaxQuasiFleshe = 2000;
|
||||
|
||||
// mask the return of a Adaptor2d_Curve2d as a gp_Pnt
|
||||
static gp_Pnt Value(const Adaptor3d_Curve & C,
|
||||
const Standard_Real Parameter)
|
||||
static gp_Pnt Value (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theParameter)
|
||||
{
|
||||
return C.Value(Parameter) ;
|
||||
}
|
||||
static gp_Pnt Value(const Adaptor2d_Curve2d & C,
|
||||
const Standard_Real Parameter)
|
||||
{
|
||||
gp_Pnt aPoint ;
|
||||
gp_Pnt2d a2dPoint(C.Value(Parameter));
|
||||
aPoint.SetCoord(a2dPoint.X(),a2dPoint.Y(),0.);
|
||||
return aPoint ;
|
||||
return theC.Value (theParameter);
|
||||
}
|
||||
|
||||
static void D1(const Adaptor3d_Curve & C,
|
||||
const Standard_Real Parameter,
|
||||
gp_Pnt& P,
|
||||
gp_Vec& V)
|
||||
static gp_Pnt Value (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theParameter)
|
||||
{
|
||||
C.D1(Parameter,P,V);
|
||||
gp_Pnt aPoint;
|
||||
gp_Pnt2d a2dPoint (theC.Value (theParameter));
|
||||
aPoint.SetCoord (a2dPoint.X(), a2dPoint.Y(), 0.0);
|
||||
return aPoint;
|
||||
}
|
||||
|
||||
static void D1(const Adaptor2d_Curve2d & C,
|
||||
const Standard_Real Parameter,
|
||||
gp_Pnt& P,
|
||||
gp_Vec& V)
|
||||
static void D1 (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theParameter,
|
||||
gp_Pnt& theP,
|
||||
gp_Vec& theV)
|
||||
{
|
||||
theC.D1 (theParameter, theP, theV);
|
||||
}
|
||||
|
||||
static void D1 (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theParameter,
|
||||
gp_Pnt& theP,
|
||||
gp_Vec& theV)
|
||||
{
|
||||
gp_Pnt2d a2dPoint;
|
||||
gp_Vec2d a2dVec;
|
||||
C.D1(Parameter,a2dPoint,a2dVec);
|
||||
P.SetCoord(a2dPoint.X(),a2dPoint.Y(),0.);
|
||||
V.SetCoord(a2dVec.X(),a2dVec.Y(),0.);
|
||||
theC.D1 (theParameter, a2dPoint, a2dVec);
|
||||
theP.SetCoord (a2dPoint.X(), a2dPoint.Y(), 0.0);
|
||||
theV.SetCoord (a2dVec.X(), a2dVec.Y(), 0.0);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : QuasiFleche
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static void QuasiFleche (const TheCurve& theC,
|
||||
const Standard_Real theDeflection2,
|
||||
const Standard_Real theUdeb,
|
||||
const gp_Pnt& thePdeb,
|
||||
const gp_Vec& theVdeb,
|
||||
const Standard_Real theUfin,
|
||||
const gp_Pnt& thePfin,
|
||||
const gp_Vec& theVfin,
|
||||
const Standard_Integer theNbmin,
|
||||
const Standard_Real theEps,
|
||||
TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
Standard_Integer& theNbCalls)
|
||||
{
|
||||
++theNbCalls;
|
||||
if (theNbCalls >= MyMaxQuasiFleshe)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
const Standard_Integer aPtslength = thePoints.Length();
|
||||
if (theNbCalls > 100 && aPtslength < 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
Standard_Real aUdelta = theUfin - theUdeb;
|
||||
gp_Pnt aPdelta;
|
||||
gp_Vec aVdelta;
|
||||
if (theNbmin > 2)
|
||||
{
|
||||
aUdelta /= (theNbmin - 1);
|
||||
D1 (theC, theUdeb + aUdelta, aPdelta, aVdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
aPdelta = thePfin;
|
||||
aVdelta = theVfin;
|
||||
}
|
||||
|
||||
const Standard_Real aNorme = gp_Vec (thePdeb, aPdelta).SquareMagnitude();
|
||||
Standard_Real aFleche = 0.0;
|
||||
Standard_Boolean isFlecheOk = Standard_False;
|
||||
if (aNorme > theEps)
|
||||
{
|
||||
// Evaluation de la fleche par interpolation . Voir IntWalk_IWalking_5.gxx
|
||||
Standard_Real N1 = theVdeb.SquareMagnitude();
|
||||
Standard_Real N2 = aVdelta.SquareMagnitude();
|
||||
if (N1 > theEps && N2 > theEps)
|
||||
{
|
||||
Standard_Real aNormediff = (theVdeb.Normalized().XYZ() - aVdelta.Normalized().XYZ()).SquareModulus();
|
||||
if (aNormediff > theEps)
|
||||
{
|
||||
aFleche = aNormediff * aNorme / 64.0;
|
||||
isFlecheOk = Standard_True;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!isFlecheOk)
|
||||
{
|
||||
gp_Pnt aPmid ((thePdeb.XYZ() + aPdelta.XYZ()) * 0.5);
|
||||
gp_Pnt aPverif (Value (theC, theUdeb + aUdelta * 0.5));
|
||||
aFleche = aPmid.SquareDistance (aPverif);
|
||||
}
|
||||
|
||||
if (aFleche < theDeflection2)
|
||||
{
|
||||
theParameters.Append (theUdeb + aUdelta);
|
||||
thePoints.Append (aPdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuasiFleche (theC, theDeflection2, theUdeb, thePdeb,
|
||||
theVdeb,
|
||||
theUdeb + aUdelta, aPdelta,
|
||||
aVdelta,
|
||||
3,
|
||||
theEps,
|
||||
theParameters, thePoints, theNbCalls);
|
||||
}
|
||||
|
||||
if (theNbmin > 2)
|
||||
{
|
||||
QuasiFleche (theC, theDeflection2, theUdeb + aUdelta, aPdelta,
|
||||
aVdelta,
|
||||
theUfin, thePfin,
|
||||
theVfin,
|
||||
theNbmin - (thePoints.Length() - aPtslength),
|
||||
theEps,
|
||||
theParameters, thePoints, theNbCalls);
|
||||
}
|
||||
--theNbCalls;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : QuasiFleche
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static void QuasiFleche (const TheCurve& theC,
|
||||
const Standard_Real theDeflection2,
|
||||
const Standard_Real theUdeb,
|
||||
const gp_Pnt& thePdeb,
|
||||
const Standard_Real theUfin,
|
||||
const gp_Pnt& thePfin,
|
||||
const Standard_Integer theNbmin,
|
||||
TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
Standard_Integer& theNbCalls)
|
||||
{
|
||||
++theNbCalls;
|
||||
if (theNbCalls >= MyMaxQuasiFleshe)
|
||||
{
|
||||
return;
|
||||
}
|
||||
const Standard_Integer aPtslength = thePoints.Length();
|
||||
if (theNbCalls > 100 && aPtslength < 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
Standard_Real aUdelta = theUfin - theUdeb;
|
||||
gp_Pnt aPdelta;
|
||||
if (theNbmin > 2)
|
||||
{
|
||||
aUdelta /= (theNbmin - 1);
|
||||
aPdelta = Value (theC, theUdeb + aUdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
aPdelta = thePfin;
|
||||
}
|
||||
|
||||
const gp_Pnt aPmid ((thePdeb.XYZ() + aPdelta.XYZ()) * 0.5);
|
||||
const gp_Pnt aPverif (Value (theC, theUdeb + aUdelta * 0.5));
|
||||
const Standard_Real aFleche = aPmid.SquareDistance (aPverif);
|
||||
if (aFleche < theDeflection2)
|
||||
{
|
||||
theParameters.Append (theUdeb + aUdelta);
|
||||
thePoints.Append (aPdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuasiFleche (theC, theDeflection2, theUdeb, thePdeb,
|
||||
theUdeb + aUdelta * 0.5, aPverif,
|
||||
2,
|
||||
theParameters, thePoints, theNbCalls);
|
||||
|
||||
QuasiFleche (theC, theDeflection2, theUdeb + aUdelta * 0.5, aPverif,
|
||||
theUdeb + aUdelta, aPdelta,
|
||||
2,
|
||||
theParameters, thePoints, theNbCalls);
|
||||
}
|
||||
|
||||
if (theNbmin > 2)
|
||||
{
|
||||
QuasiFleche (theC, theDeflection2, theUdeb + aUdelta, aPdelta,
|
||||
theUfin, thePfin,
|
||||
theNbmin - (thePoints.Length() - aPtslength),
|
||||
theParameters, thePoints, theNbCalls);
|
||||
}
|
||||
--theNbCalls;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformLinear
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static Standard_Boolean PerformLinear (const TheCurve& theC,
|
||||
TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
const Standard_Real theU1,
|
||||
const Standard_Real theU2)
|
||||
{
|
||||
theParameters.Append (theU1);
|
||||
gp_Pnt aPoint = Value (theC, theU1);
|
||||
thePoints.Append (aPoint);
|
||||
|
||||
theParameters.Append (theU2);
|
||||
aPoint = Value (theC, theU2);
|
||||
thePoints.Append (aPoint);
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformCircular
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static Standard_Boolean PerformCircular (const TheCurve& theC,
|
||||
TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1,
|
||||
const Standard_Real theU2)
|
||||
{
|
||||
Standard_Real anAngle = Max (1.0 - (theDeflection / theC.Circle().Radius()), 0.0);
|
||||
anAngle = 2.0 * ACos (anAngle);
|
||||
Standard_Integer aNbPoints = (Standard_Integer )((theU2 - theU1) / anAngle);
|
||||
aNbPoints += 2;
|
||||
anAngle = (theU2 - theU1) / (Standard_Real) (aNbPoints - 1);
|
||||
Standard_Real U = theU1;
|
||||
for (Standard_Integer i = 1; i <= aNbPoints; ++i)
|
||||
{
|
||||
theParameters.Append (U);
|
||||
const gp_Pnt aPoint = Value (theC, U);
|
||||
thePoints.Append (aPoint);
|
||||
U += anAngle;
|
||||
}
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetDefType
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static GCPnts_DeflectionType GetDefType (const TheCurve& theC)
|
||||
{
|
||||
if (theC.NbIntervals (GeomAbs_C1) > 1)
|
||||
{
|
||||
return GCPnts_DefComposite;
|
||||
}
|
||||
|
||||
// pour forcer les decoupages aux cassures.
|
||||
// G1 devrait marcher, mais donne des exceptions...
|
||||
switch (theC.GetType())
|
||||
{
|
||||
case GeomAbs_Line: return GCPnts_Linear;
|
||||
case GeomAbs_Circle: return GCPnts_Circular;
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Handle(typename GCPnts_TCurveTypes<TheCurve>::BSplineCurve) aBS = theC.BSpline();
|
||||
return (aBS->NbPoles() == 2) ? GCPnts_Linear : GCPnts_Curved;
|
||||
}
|
||||
case GeomAbs_BezierCurve:
|
||||
{
|
||||
Handle(typename GCPnts_TCurveTypes<TheCurve>::BezierCurve) aBZ = theC.Bezier();
|
||||
return (aBZ->NbPoles() == 2) ? GCPnts_Linear : GCPnts_Curved;
|
||||
}
|
||||
default: return GCPnts_Curved;
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformCurve
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static Standard_Boolean PerformCurve (TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
const TheCurve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1,
|
||||
const Standard_Real theU2,
|
||||
const Standard_Real theEPSILON,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
Standard_Integer aNbmin = 2;
|
||||
Standard_Integer aNbCallQF = 0;
|
||||
|
||||
gp_Pnt aPdeb;
|
||||
if (theContinuity <= GeomAbs_G1)
|
||||
{
|
||||
aPdeb = Value (theC, theU1);
|
||||
theParameters.Append (theU1);
|
||||
thePoints.Append (aPdeb);
|
||||
|
||||
gp_Pnt aPfin (Value (theC, theU2));
|
||||
QuasiFleche (theC, theDeflection * theDeflection,
|
||||
theU1, aPdeb,
|
||||
theU2, aPfin,
|
||||
aNbmin,
|
||||
theParameters, thePoints, aNbCallQF);
|
||||
}
|
||||
else
|
||||
{
|
||||
gp_Pnt aPfin;
|
||||
gp_Vec aDdeb, aDfin;
|
||||
D1 (theC, theU1, aPdeb, aDdeb);
|
||||
theParameters.Append (theU1);
|
||||
thePoints.Append (aPdeb);
|
||||
|
||||
const Standard_Real aDecreasedU2 = theU2 - Epsilon (theU2) * 10.0;
|
||||
D1 (theC, aDecreasedU2, aPfin, aDfin);
|
||||
QuasiFleche (theC, theDeflection * theDeflection,
|
||||
theU1, aPdeb,
|
||||
aDdeb,
|
||||
theU2, aPfin,
|
||||
aDfin,
|
||||
aNbmin,
|
||||
theEPSILON * theEPSILON,
|
||||
theParameters, thePoints, aNbCallQF);
|
||||
}
|
||||
// cout << "Nb de pts: " << Points.Length()<< endl;
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformComposite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
static Standard_Boolean PerformComposite (TColStd_SequenceOfReal& theParameters,
|
||||
TColgp_SequenceOfPnt& thePoints,
|
||||
const TheCurve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1,
|
||||
const Standard_Real theU2,
|
||||
const Standard_Real theEPSILON,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
//
|
||||
// coherence avec Intervals
|
||||
//
|
||||
const Standard_Integer aNbIntervals = theC.NbIntervals (GeomAbs_C2);
|
||||
Standard_Integer aPIndex = 0;
|
||||
TColStd_Array1OfReal aTI (1, aNbIntervals + 1);
|
||||
theC.Intervals (aTI, GeomAbs_C2);
|
||||
BSplCLib::Hunt (aTI, theU1, aPIndex);
|
||||
|
||||
// iterate by continuous segments
|
||||
Standard_Real aUa = theU1;
|
||||
for (Standard_Integer anIndex = aPIndex;;)
|
||||
{
|
||||
Standard_Real aUb = anIndex + 1 <= aTI.Upper()
|
||||
? Min (theU2, aTI (anIndex + 1))
|
||||
: theU2;
|
||||
if (!PerformCurve (theParameters, thePoints, theC, theDeflection,
|
||||
aUa, aUb, theEPSILON, theContinuity))
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
++anIndex;
|
||||
if (anIndex > aNbIntervals || theU2 < aTI (anIndex))
|
||||
{
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// remove last point to avoid duplication
|
||||
theParameters.Remove (theParameters.Length());
|
||||
thePoints.Remove (thePoints.Length());
|
||||
|
||||
aUa = aUb;
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
gp_Pnt GCPnts_QuasiUniformDeflection::Value
|
||||
(const Standard_Integer Index) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if(!myDone,
|
||||
"GCPnts_QuasiUniformAbscissa::Parameter()");
|
||||
return myPoints.Value(Index) ;
|
||||
gp_Pnt GCPnts_QuasiUniformDeflection::Value (const Standard_Integer theIndex) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if(!myDone, "GCPnts_QuasiUniformAbscissa::Parameter()");
|
||||
return myPoints.Value (theIndex);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection ()
|
||||
: myDone(Standard_False),
|
||||
myDeflection(0.0),
|
||||
myCont(GeomAbs_C1)
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection()
|
||||
: myDone (Standard_False),
|
||||
myDeflection (0.0),
|
||||
myCont (GeomAbs_C1)
|
||||
{
|
||||
}
|
||||
//
|
||||
}
|
||||
|
||||
#include <Geom_BezierCurve.hxx>
|
||||
#include <Geom_BSplineCurve.hxx>
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
: myDone (Standard_False),
|
||||
myDeflection (theDeflection),
|
||||
myCont (GeomAbs_C1)
|
||||
{
|
||||
Initialize (theC, theDeflection, theU1, theU2, theContinuity);
|
||||
}
|
||||
|
||||
#define TheCurve Adaptor3d_Curve
|
||||
#define Handle_TheBezierCurve Handle(Geom_BezierCurve)
|
||||
#define Handle_TheBSplineCurve Handle(Geom_BSplineCurve)
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
: myDone (Standard_False),
|
||||
myDeflection (theDeflection),
|
||||
myCont (GeomAbs_C1)
|
||||
{
|
||||
Initialize (theC, theDeflection, theU1, theU2, theContinuity);
|
||||
}
|
||||
|
||||
#include "GCPnts_QuasiUniformDeflection.pxx"
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
: myDone (Standard_False),
|
||||
myDeflection (theDeflection),
|
||||
myCont (GeomAbs_C1)
|
||||
{
|
||||
Initialize (theC, theDeflection, theContinuity);
|
||||
}
|
||||
|
||||
#undef TheCurve
|
||||
#undef Handle_TheBezierCurve
|
||||
#undef Handle_TheBSplineCurve
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
: myDone (Standard_False),
|
||||
myDeflection (theDeflection),
|
||||
myCont (GeomAbs_C1)
|
||||
{
|
||||
Initialize (theC, theDeflection, theContinuity);
|
||||
}
|
||||
|
||||
#include <Geom2d_BezierCurve.hxx>
|
||||
#include <Geom2d_BSplineCurve.hxx>
|
||||
|
||||
#define TheCurve Adaptor2d_Curve2d
|
||||
#define Handle_TheBezierCurve Handle(Geom2d_BezierCurve)
|
||||
#define Handle_TheBSplineCurve Handle(Geom2d_BSplineCurve)
|
||||
|
||||
#include "GCPnts_QuasiUniformDeflection.pxx"
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void GCPnts_QuasiUniformDeflection::Initialize (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
Initialize (theC, theDeflection, theC.FirstParameter(), theC.LastParameter(), theContinuity);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void GCPnts_QuasiUniformDeflection::Initialize (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
Initialize (theC, theDeflection, theC.FirstParameter(), theC.LastParameter(), theContinuity);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void GCPnts_QuasiUniformDeflection::Initialize (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
initialize (theC, theDeflection, theU1, theU2, theContinuity);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void GCPnts_QuasiUniformDeflection::Initialize (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
initialize (theC, theDeflection, theU1, theU2, theContinuity);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
template<class TheCurve>
|
||||
void GCPnts_QuasiUniformDeflection::initialize (const TheCurve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity)
|
||||
{
|
||||
myCont = (theContinuity > GeomAbs_G1) ? GeomAbs_C1 : GeomAbs_C0;
|
||||
myDeflection = theDeflection;
|
||||
myDone = Standard_False;
|
||||
myParams.Clear();
|
||||
myPoints.Clear();
|
||||
|
||||
const Standard_Real anEPSILON = Min (theC.Resolution (Precision::Confusion()), 1.e50);
|
||||
const GCPnts_DeflectionType aType = GetDefType (theC);
|
||||
const Standard_Real aU1 = Min (theU1, theU2);
|
||||
const Standard_Real aU2 = Max (theU1, theU2);
|
||||
if (aType == GCPnts_Curved
|
||||
|| aType == GCPnts_DefComposite)
|
||||
{
|
||||
if (theC.GetType() == GeomAbs_BSplineCurve
|
||||
|| theC.GetType() == GeomAbs_BezierCurve)
|
||||
{
|
||||
const Standard_Real aMaxPar = Max (Abs (theC.FirstParameter()), Abs (theC.LastParameter()));
|
||||
if (anEPSILON < Epsilon (aMaxPar))
|
||||
{
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
switch (aType)
|
||||
{
|
||||
case GCPnts_Linear:
|
||||
{
|
||||
myDone = PerformLinear (theC, myParams, myPoints, aU1, aU2);
|
||||
break;
|
||||
}
|
||||
case GCPnts_Circular:
|
||||
{
|
||||
myDone = PerformCircular (theC, myParams, myPoints, theDeflection, aU1, aU2);
|
||||
break;
|
||||
}
|
||||
case GCPnts_Curved:
|
||||
{
|
||||
myDone = PerformCurve (myParams, myPoints, theC, theDeflection,
|
||||
aU1, aU2, anEPSILON, myCont);
|
||||
break;
|
||||
}
|
||||
case GCPnts_DefComposite:
|
||||
{
|
||||
myDone = PerformComposite (myParams, myPoints, theC, theDeflection,
|
||||
aU1, aU2, anEPSILON, myCont);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -22,26 +22,20 @@
|
||||
#include <TColgp_SequenceOfPnt.hxx>
|
||||
#include <GeomAbs_Shape.hxx>
|
||||
|
||||
class Standard_DomainError;
|
||||
class Standard_ConstructionError;
|
||||
class Standard_OutOfRange;
|
||||
class StdFail_NotDone;
|
||||
class Adaptor3d_Curve;
|
||||
class Adaptor2d_Curve2d;
|
||||
class gp_Pnt;
|
||||
|
||||
//! This class computes a distribution of points on a
|
||||
//! curve. The points may respect the deflection. The algorithm
|
||||
//! is not based on the classical prediction (with second
|
||||
//! derivative of curve), but either on the evaluation of
|
||||
//! the distance between the mid point and the point of
|
||||
//! mid parameter of the two points, or the distance
|
||||
//! between the mid point and the point at parameter 0.5
|
||||
//! on the cubic interpolation of the two points and their
|
||||
//! tangents.
|
||||
//! Note: this algorithm is faster than a
|
||||
//! GCPnts_UniformDeflection algorithm, and is
|
||||
//! able to work with non-"C2" continuous curves.
|
||||
//! This class computes a distribution of points on a curve.
|
||||
//! The points may respect the deflection.
|
||||
//! The algorithm is not based on the classical prediction (with second derivative of curve),
|
||||
//! but either on the evaluation of the distance between the mid point
|
||||
//! and the point of mid parameter of the two points,
|
||||
//! or the distance between the mid point and the point at parameter 0.5
|
||||
//! on the cubic interpolation of the two points and their tangents.
|
||||
//!
|
||||
//! Note: this algorithm is faster than a GCPnts_UniformDeflection algorithm,
|
||||
//! and is able to work with non-"C2" continuous curves.
|
||||
//! However, it generates more points in the distribution.
|
||||
class GCPnts_QuasiUniformDeflection
|
||||
{
|
||||
@ -49,132 +43,132 @@ public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
|
||||
//! Constructs an empty algorithm. To define the problem
|
||||
//! to be solved, use the function Initialize.
|
||||
//! Constructs an empty algorithm.
|
||||
//! To define the problem to be solved, use the function Initialize().
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection();
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution
|
||||
//! of points on the Curve <C>.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection(const Adaptor3d_Curve& C, const Standard_Real Deflection, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution
|
||||
//! of points on the Curve <C>.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection(const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution
|
||||
//! of points on a part of the Curve <C>.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection(const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution
|
||||
//! of points on a part of the Curve <C>.
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution of points on the Curve.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution of points on the Curve.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution of points on a part of the Curve.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Computes a QuasiUniform Deflection distribution of points on a part of the Curve.
|
||||
//! This and the above algorithms compute a distribution of points:
|
||||
//! - on the curve C, or
|
||||
//! - on the part of curve C limited by the two
|
||||
//! parameter values U1 and U2,
|
||||
//! - on the curve theC, or
|
||||
//! - on the part of curve theC limited by the two parameter values theU1 and theU2,
|
||||
//! where the deflection resulting from the distributed
|
||||
//! points is not greater than Deflection.
|
||||
//! points is not greater than theDeflection.
|
||||
//!
|
||||
//! The first point of the distribution is either the origin of
|
||||
//! curve C or the point of parameter U1. The last point
|
||||
//! of the distribution is either the end point of curve C or
|
||||
//! the point of parameter U2.
|
||||
//! curve theC or the point of parameter theU1.
|
||||
//! The last point of the distribution is either the end point
|
||||
//! of curve theC or the point of parameter theU2.
|
||||
//!
|
||||
//! Intermediate points of the distribution are built such
|
||||
//! that the deflection is not greater than Deflection.
|
||||
//! that the deflection is not greater than theDeflection.
|
||||
//! Using the following evaluation of the deflection:
|
||||
//! if Pi and Pj are two consecutive points of the
|
||||
//! distribution, respectively of parameter ui and uj on
|
||||
//! the curve, the deflection is the distance between:
|
||||
//! - the mid-point of Pi and Pj (the center of the
|
||||
//! chord joining these two points)
|
||||
//! distribution, respectively of parameter ui and uj on the curve,
|
||||
//! the deflection is the distance between:
|
||||
//! - the mid-point of Pi and Pj (the center of the chord joining these two points)
|
||||
//! - and the point of mid-parameter of these two
|
||||
//! points (the point of parameter [(ui+uj) / 2 ] on curve C).
|
||||
//! Continuity, defaulted to GeomAbs_C1, gives the
|
||||
//! degree of continuity of the curve C. (Note that C is an
|
||||
//! Adaptor3d_Curve or an Adaptor2d_Curve2d
|
||||
//! object, and does not know the degree of continuity of
|
||||
//! the underlying curve).
|
||||
//! Use the function IsDone to verify that the
|
||||
//! computation was successful, the function NbPoints
|
||||
//! to obtain the number of points of the computed
|
||||
//! distribution, and the function Parameter to read the
|
||||
//! parameter of each point.
|
||||
//! points (the point of parameter [(ui+uj) / 2] on curve theC).
|
||||
//! theContinuity, defaulted to GeomAbs_C1, gives the degree of continuity of the curve theC.
|
||||
//! (Note that C is an Adaptor3d_Curve or an Adaptor2d_Curve2d object,
|
||||
//! and does not know the degree of continuity of the underlying curve).
|
||||
//! Use the function IsDone() to verify that the computation was successful,
|
||||
//! the function NbPoints() to obtain the number of points of the computed distribution,
|
||||
//! and the function Parameter() to read the parameter of each point.
|
||||
//!
|
||||
//! Warning
|
||||
//! - The roles of U1 and U2 are inverted if U1 > U2.
|
||||
//! - Derivative functions on the curve are called
|
||||
//! according to Continuity. An error may occur if
|
||||
//! Continuity is greater than the real degree of
|
||||
//! continuity of the curve.
|
||||
//! - The roles of theU1 and theU2 are inverted if theU1 > theU2.
|
||||
//! - Derivative functions on the curve are called according to theContinuity.
|
||||
//! An error may occur if theContinuity is greater than
|
||||
//! the real degree of continuity of the curve.
|
||||
//!
|
||||
//! Warning
|
||||
//! C is an adapted curve, i.e. an object which is an
|
||||
//! interface between:
|
||||
//! theC is an adapted curve, i.e. an object which is an interface between:
|
||||
//! - the services provided by either a 2D curve from
|
||||
//! the package Geom2d (in the case of an
|
||||
//! Adaptor2d_Curve2d curve) or a 3D curve from
|
||||
//! the package Geom (in the case of an
|
||||
//! Adaptor3d_Curve curve),
|
||||
//! - and those required on the curve by the
|
||||
//! computation algorithm.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection(const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with <C>, <Deflection>
|
||||
Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Real Deflection, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with <C>, <Deflection>
|
||||
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with <C>, <Deflection>,
|
||||
//! <U1>,<U2>
|
||||
Standard_EXPORT void Initialize (const Adaptor3d_Curve& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with <C>, <Deflection>,
|
||||
//! -- <U1>,<U2>
|
||||
//! the package Geom2d (in the case of an Adaptor2d_Curve2d curve)
|
||||
//! or a 3D curve from the package Geom (in the case of an Adaptor3d_Curve curve),
|
||||
//! - and those required on the curve by the computation algorithm.
|
||||
Standard_EXPORT GCPnts_QuasiUniformDeflection (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with 3D curve and deflection.
|
||||
Standard_EXPORT void Initialize (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with 2D curve and deflection.
|
||||
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with 3D curve, deflection and parameter range.
|
||||
Standard_EXPORT void Initialize (const Adaptor3d_Curve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Initialize the algorithms with theC, theDeflection, theU1, theU2.
|
||||
//! This and the above algorithms initialize (or reinitialize)
|
||||
//! this algorithm and compute a distribution of points:
|
||||
//! - on the curve C, or
|
||||
//! - on the part of curve C limited by the two
|
||||
//! parameter values U1 and U2,
|
||||
//! - on the curve theC, or
|
||||
//! - on the part of curve theC limited by the two parameter values theU1 and theU2,
|
||||
//! where the deflection resulting from the distributed
|
||||
//! points is not greater than Deflection.
|
||||
//! points is not greater than theDeflection.
|
||||
//!
|
||||
//! The first point of the distribution is either the origin
|
||||
//! of curve C or the point of parameter U1. The last
|
||||
//! point of the distribution is either the end point of
|
||||
//! curve C or the point of parameter U2.
|
||||
//! of curve theC or the point of parameter theU1.
|
||||
//! The last point of the distribution is either the end point of
|
||||
//! curve theC or the point of parameter theU2.
|
||||
//!
|
||||
//! Intermediate points of the distribution are built in
|
||||
//! such a way that the deflection is not greater than
|
||||
//! Deflection. Using the following evaluation of the deflection:
|
||||
//! if Pi and Pj are two consecutive points of the
|
||||
//! distribution, respectively of parameter ui and uj
|
||||
//! on the curve, the deflection is the distance between:
|
||||
//! - the mid-point of Pi and Pj (the center of the
|
||||
//! chord joining these two points)
|
||||
//! such a way that the deflection is not greater than theDeflection.
|
||||
//! Using the following evaluation of the deflection:
|
||||
//! if Pi and Pj are two consecutive points of the distribution,
|
||||
//! respectively of parameter ui and uj on the curve,
|
||||
//! the deflection is the distance between:
|
||||
//! - the mid-point of Pi and Pj (the center of the chord joining these two points)
|
||||
//! - and the point of mid-parameter of these two
|
||||
//! points (the point of parameter [(ui+uj) / 2 ] on curve C).
|
||||
//! Continuity, defaulted to GeomAbs_C1, gives the
|
||||
//! degree of continuity of the curve C. (Note that C is
|
||||
//! an Adaptor3d_Curve or an
|
||||
//! Adaptor2d_Curve2d object, and does not know
|
||||
//! the degree of continuity of the underlying curve).
|
||||
//! Use the function IsDone to verify that the
|
||||
//! computation was successful, the function NbPoints
|
||||
//! to obtain the number of points of the computed
|
||||
//! distribution, and the function Parameter to read
|
||||
//! the parameter of each point.
|
||||
//! points (the point of parameter [(ui+uj) / 2] on curve theC).
|
||||
//! theContinuity, defaulted to GeomAbs_C1, gives the degree of continuity of the curve theC.
|
||||
//! (Note that C is an Adaptor3d_Curve or an Adaptor2d_Curve2d object,
|
||||
//! and does not know the degree of continuity of the underlying curve).
|
||||
//! Use the function IsDone to verify that the computation was successful,
|
||||
//! the function NbPoints() to obtain the number of points of the computed distribution,
|
||||
//! and the function Parameter() to read the parameter of each point.
|
||||
//!
|
||||
//! Warning
|
||||
//! - The roles of U1 and U2 are inverted if U1 > U2.
|
||||
//! - Derivative functions on the curve are called
|
||||
//! according to Continuity. An error may occur if
|
||||
//! Continuity is greater than the real degree of
|
||||
//! continuity of the curve.
|
||||
//! - The roles of theU1 and theU2 are inverted if theU1 > theU2.
|
||||
//! - Derivative functions on the curve are called according to theContinuity.
|
||||
//! An error may occur if theContinuity is greater than
|
||||
//! the real degree of continuity of the curve.
|
||||
//!
|
||||
//! Warning
|
||||
//! C is an adapted curve, i.e. an object which is an
|
||||
//! interface between:
|
||||
//! theC is an adapted curve, i.e. an object which is an interface between:
|
||||
//! - the services provided by either a 2D curve from
|
||||
//! the package Geom2d (in the case of an
|
||||
//! Adaptor2d_Curve2d curve) or a 3D curve from
|
||||
//! the package Geom (in the case of an Adaptor3d_Curve curve),
|
||||
//! and those required on the curve by the computation algorithm.
|
||||
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& C, const Standard_Real Deflection, const Standard_Real U1, const Standard_Real U2, const GeomAbs_Shape Continuity = GeomAbs_C1);
|
||||
|
||||
//! the package Geom2d (in the case of an Adaptor2d_Curve2d curve)
|
||||
//! or a 3D curve from the package Geom (in the case of an Adaptor3d_Curve curve),
|
||||
//! and those required on the curve by the computation algorithm.
|
||||
Standard_EXPORT void Initialize (const Adaptor2d_Curve2d& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity = GeomAbs_C1);
|
||||
|
||||
//! Returns true if the computation was successful.
|
||||
//! IsDone is a protection against:
|
||||
@ -238,6 +232,15 @@ public:
|
||||
return myDeflection;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
//! Initializes algorithm.
|
||||
template<class TheCurve>
|
||||
void initialize (const TheCurve& theC,
|
||||
const Standard_Real theDeflection,
|
||||
const Standard_Real theU1, const Standard_Real theU2,
|
||||
const GeomAbs_Shape theContinuity);
|
||||
|
||||
private:
|
||||
Standard_Boolean myDone;
|
||||
Standard_Real myDeflection;
|
||||
|
@ -1,496 +0,0 @@
|
||||
// Copyright (c) 1995-1999 Matra Datavision
|
||||
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <StdFail_NotDone.hxx>
|
||||
#include <Standard_DomainError.hxx>
|
||||
#include <Standard_OutOfRange.hxx>
|
||||
#include <Standard_ConstructionError.hxx>
|
||||
#include <Standard_NotImplemented.hxx>
|
||||
#include <GCPnts_DeflectionType.hxx>
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <TColStd_SequenceOfReal.hxx>
|
||||
#include <BSplCLib.hxx>
|
||||
#include <gp_Circ.hxx>
|
||||
#include <gp_Circ2d.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
|
||||
static void QuasiFleche(const TheCurve&,
|
||||
const Standard_Real,
|
||||
const Standard_Real,
|
||||
const gp_Pnt&,
|
||||
const gp_Vec&,
|
||||
const Standard_Real,
|
||||
const gp_Pnt&,
|
||||
const gp_Vec&,
|
||||
const Standard_Integer,
|
||||
const Standard_Real,
|
||||
TColStd_SequenceOfReal&,
|
||||
TColgp_SequenceOfPnt&,
|
||||
Standard_Integer&);
|
||||
|
||||
static void QuasiFleche(const TheCurve&,
|
||||
const Standard_Real,
|
||||
const Standard_Real,
|
||||
const gp_Pnt&,
|
||||
const Standard_Real,
|
||||
const gp_Pnt&,
|
||||
const Standard_Integer,
|
||||
TColStd_SequenceOfReal&,
|
||||
TColgp_SequenceOfPnt&,
|
||||
Standard_Integer&);
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformLinear
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Boolean PerformLinear (const TheCurve& C,
|
||||
TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
const Standard_Real U1,
|
||||
const Standard_Real U2)
|
||||
{
|
||||
gp_Pnt aPoint;
|
||||
Parameters.Append (U1);
|
||||
aPoint = Value (C, U1);
|
||||
Points.Append (aPoint);
|
||||
|
||||
Parameters.Append (U2);
|
||||
aPoint = Value (C, U2);
|
||||
Points.Append (aPoint);
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformCircular
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Boolean PerformCircular (const TheCurve& C,
|
||||
TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
const Standard_Real Deflection,
|
||||
const Standard_Real U1,
|
||||
const Standard_Real U2)
|
||||
|
||||
{
|
||||
gp_Pnt aPoint;
|
||||
Standard_Real Angle = Max (1.0e0 - (Deflection / C.Circle().Radius()), 0.0e0);
|
||||
Angle = 2.0e0 * ACos (Angle);
|
||||
Standard_Integer NbPoints = (Standard_Integer )((U2 - U1) / Angle);
|
||||
NbPoints += 2;
|
||||
Angle = (U2 - U1) / (Standard_Real) (NbPoints - 1);
|
||||
Standard_Real U = U1;
|
||||
for (Standard_Integer i = 1; i <= NbPoints; ++i)
|
||||
{
|
||||
Parameters.Append (U);
|
||||
aPoint = Value (C,U);
|
||||
Points.Append (aPoint);
|
||||
U += Angle;
|
||||
}
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : GetDefType
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static GCPnts_DeflectionType GetDefType (const TheCurve& C)
|
||||
{
|
||||
if (C.NbIntervals(GeomAbs_C1) > 1)
|
||||
return GCPnts_DefComposite;
|
||||
// pour forcer les decoupages aux cassures. G1 devrait marcher,
|
||||
// mais donne des exceptions...
|
||||
|
||||
switch (C.GetType())
|
||||
{
|
||||
case GeomAbs_Line: return GCPnts_Linear;
|
||||
case GeomAbs_Circle: return GCPnts_Circular;
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Handle_TheBSplineCurve BS = C.BSpline();
|
||||
return (BS->NbPoles() == 2) ? GCPnts_Linear : GCPnts_Curved;
|
||||
}
|
||||
case GeomAbs_BezierCurve:
|
||||
{
|
||||
Handle_TheBezierCurve BZ = C.Bezier();
|
||||
return (BZ->NbPoles() == 2) ? GCPnts_Linear : GCPnts_Curved;
|
||||
}
|
||||
default: return GCPnts_Curved;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformCurve
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Boolean PerformCurve (TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const Standard_Real U1,
|
||||
const Standard_Real U2,
|
||||
const Standard_Real EPSILON,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
Standard_Integer Nbmin = 2;
|
||||
Standard_Integer aNbCallQF = 0;
|
||||
|
||||
gp_Pnt Pdeb;
|
||||
if (Continuity <= GeomAbs_G1)
|
||||
{
|
||||
|
||||
Pdeb = Value (C, U1);
|
||||
Parameters.Append (U1);
|
||||
Points.Append (Pdeb);
|
||||
|
||||
gp_Pnt Pfin (Value (C, U2));
|
||||
QuasiFleche (C, Deflection * Deflection,
|
||||
U1, Pdeb,
|
||||
U2, Pfin,
|
||||
Nbmin,
|
||||
Parameters, Points, aNbCallQF);
|
||||
}
|
||||
else
|
||||
{
|
||||
gp_Pnt Pfin;
|
||||
gp_Vec Ddeb, Dfin;
|
||||
D1 (C, U1, Pdeb, Ddeb);
|
||||
Parameters.Append (U1);
|
||||
Points.Append (Pdeb);
|
||||
|
||||
Standard_Real aDecreasedU2 = U2 - Epsilon(U2) * 10.;
|
||||
D1 (C, aDecreasedU2, Pfin, Dfin);
|
||||
QuasiFleche (C, Deflection * Deflection,
|
||||
U1, Pdeb,
|
||||
Ddeb,
|
||||
U2, Pfin,
|
||||
Dfin,
|
||||
Nbmin,
|
||||
EPSILON * EPSILON,
|
||||
Parameters, Points, aNbCallQF);
|
||||
}
|
||||
// cout << "Nb de pts: " << Points.Length()<< endl;
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : PerformComposite
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Boolean PerformComposite (TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const Standard_Real U1,
|
||||
const Standard_Real U2,
|
||||
const Standard_Real EPSILON,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
//
|
||||
// coherence avec Intervals
|
||||
//
|
||||
Standard_Integer NbIntervals = C.NbIntervals (GeomAbs_C2);
|
||||
Standard_Integer PIndex;
|
||||
TColStd_Array1OfReal TI (1, NbIntervals + 1);
|
||||
C.Intervals (TI, GeomAbs_C2);
|
||||
BSplCLib::Hunt (TI, U1, PIndex);
|
||||
|
||||
// iterate by continuous segments
|
||||
Standard_Real Ua = U1;
|
||||
for (Standard_Integer Index = PIndex;;)
|
||||
{
|
||||
Standard_Real Ub = Index + 1 <= TI.Upper()
|
||||
? Min (U2, TI (Index + 1))
|
||||
: U2;
|
||||
if (!PerformCurve (Parameters, Points, C, Deflection,
|
||||
Ua, Ub, EPSILON, Continuity))
|
||||
return Standard_False;
|
||||
|
||||
++Index;
|
||||
if (Index > NbIntervals || U2 < TI (Index))
|
||||
return Standard_True;
|
||||
|
||||
// remove last point to avoid duplication
|
||||
Parameters.Remove (Parameters.Length());
|
||||
Points.Remove (Points.Length());
|
||||
|
||||
Ua = Ub;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection
|
||||
(const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const Standard_Real U1,
|
||||
const Standard_Real U2,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
Initialize (C, Deflection, U1, U2, Continuity);
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : GCPnts_QuasiUniformDeflection
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
GCPnts_QuasiUniformDeflection::GCPnts_QuasiUniformDeflection
|
||||
(const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
Initialize (C, Deflection, Continuity);
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void GCPnts_QuasiUniformDeflection::Initialize (const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
Initialize (C, Deflection, C.FirstParameter(),
|
||||
C.LastParameter(), Continuity);
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : Initialize
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void GCPnts_QuasiUniformDeflection::Initialize
|
||||
(const TheCurve& C,
|
||||
const Standard_Real Deflection,
|
||||
const Standard_Real theU1,
|
||||
const Standard_Real theU2,
|
||||
const GeomAbs_Shape Continuity)
|
||||
{
|
||||
myCont = (Continuity > GeomAbs_G1) ? GeomAbs_C1 : GeomAbs_C0;
|
||||
Standard_Real EPSILON = C.Resolution (Precision::Confusion());
|
||||
EPSILON = Min (EPSILON, 1.e50);
|
||||
myDeflection = Deflection;
|
||||
myDone = Standard_False;
|
||||
myParams.Clear();
|
||||
myPoints.Clear();
|
||||
GCPnts_DeflectionType Type = GetDefType (C);
|
||||
|
||||
Standard_Real U1 = Min (theU1, theU2);
|
||||
Standard_Real U2 = Max (theU1, theU2);
|
||||
|
||||
if (Type == GCPnts_Curved || Type == GCPnts_DefComposite)
|
||||
{
|
||||
if (C.GetType() == GeomAbs_BSplineCurve || C.GetType() == GeomAbs_BezierCurve)
|
||||
{
|
||||
Standard_Real maxpar = Max (Abs (C.FirstParameter()), Abs (C.LastParameter()));
|
||||
if (EPSILON < Epsilon (maxpar)) return;
|
||||
}
|
||||
}
|
||||
|
||||
switch (Type)
|
||||
{
|
||||
case GCPnts_Linear:
|
||||
myDone = PerformLinear (C, myParams, myPoints, U1, U2);
|
||||
break;
|
||||
case GCPnts_Circular:
|
||||
myDone = PerformCircular (C, myParams, myPoints, Deflection, U1, U2);
|
||||
break;
|
||||
case GCPnts_Curved:
|
||||
myDone = PerformCurve (myParams, myPoints, C, Deflection,
|
||||
U1, U2, EPSILON, myCont);
|
||||
break;
|
||||
case GCPnts_DefComposite:
|
||||
myDone = PerformComposite (myParams, myPoints, C, Deflection,
|
||||
U1, U2, EPSILON, myCont);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : QuasiFleche
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void QuasiFleche (const TheCurve& C,
|
||||
const Standard_Real Deflection2,
|
||||
const Standard_Real Udeb,
|
||||
const gp_Pnt& Pdeb,
|
||||
const gp_Vec& Vdeb,
|
||||
const Standard_Real Ufin,
|
||||
const gp_Pnt& Pfin,
|
||||
const gp_Vec& Vfin,
|
||||
const Standard_Integer Nbmin,
|
||||
const Standard_Real Eps,
|
||||
TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
Standard_Integer& theNbCalls)
|
||||
{
|
||||
theNbCalls++;
|
||||
if (theNbCalls >= MyMaxQuasiFleshe)
|
||||
{
|
||||
return;
|
||||
}
|
||||
Standard_Integer Ptslength = Points.Length();
|
||||
if (theNbCalls > 100 && Ptslength < 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
Standard_Real Udelta = Ufin - Udeb;
|
||||
gp_Pnt Pdelta;
|
||||
gp_Vec Vdelta;
|
||||
if (Nbmin > 2)
|
||||
{
|
||||
Udelta /= (Nbmin - 1);
|
||||
D1 (C, Udeb + Udelta, Pdelta, Vdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
Pdelta = Pfin;
|
||||
Vdelta = Vfin;
|
||||
}
|
||||
|
||||
Standard_Real Norme = gp_Vec (Pdeb, Pdelta).SquareMagnitude();
|
||||
Standard_Real theFleche = 0;
|
||||
Standard_Boolean flecheok = Standard_False;
|
||||
if (Norme > Eps)
|
||||
{
|
||||
// Evaluation de la fleche par interpolation . Voir IntWalk_IWalking_5.gxx
|
||||
Standard_Real N1 = Vdeb.SquareMagnitude();
|
||||
Standard_Real N2 = Vdelta.SquareMagnitude();
|
||||
if (N1 > Eps && N2 > Eps)
|
||||
{
|
||||
Standard_Real Normediff = (Vdeb.Normalized().XYZ() - Vdelta.Normalized().XYZ()).SquareModulus();
|
||||
if (Normediff > Eps)
|
||||
{
|
||||
theFleche = Normediff * Norme / 64.;
|
||||
flecheok = Standard_True;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!flecheok)
|
||||
{
|
||||
gp_Pnt Pmid ((Pdeb.XYZ() + Pdelta.XYZ()) * 0.5);
|
||||
gp_Pnt Pverif (Value(C, Udeb + Udelta * 0.5));
|
||||
theFleche = Pmid.SquareDistance (Pverif);
|
||||
}
|
||||
|
||||
if (theFleche < Deflection2)
|
||||
{
|
||||
Parameters.Append (Udeb + Udelta);
|
||||
Points.Append (Pdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuasiFleche (C, Deflection2, Udeb, Pdeb,
|
||||
Vdeb,
|
||||
Udeb + Udelta, Pdelta,
|
||||
Vdelta,
|
||||
3,
|
||||
Eps,
|
||||
Parameters, Points, theNbCalls);
|
||||
}
|
||||
|
||||
if (Nbmin > 2)
|
||||
{
|
||||
QuasiFleche (C, Deflection2, Udeb + Udelta, Pdelta,
|
||||
Vdelta,
|
||||
Ufin, Pfin,
|
||||
Vfin,
|
||||
Nbmin - (Points.Length() - Ptslength),
|
||||
Eps,
|
||||
Parameters, Points, theNbCalls);
|
||||
}
|
||||
theNbCalls--;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : QuasiFleche
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void QuasiFleche (const TheCurve& C,
|
||||
const Standard_Real Deflection2,
|
||||
const Standard_Real Udeb,
|
||||
const gp_Pnt& Pdeb,
|
||||
const Standard_Real Ufin,
|
||||
const gp_Pnt& Pfin,
|
||||
const Standard_Integer Nbmin,
|
||||
TColStd_SequenceOfReal& Parameters,
|
||||
TColgp_SequenceOfPnt& Points,
|
||||
Standard_Integer& theNbCalls)
|
||||
{
|
||||
theNbCalls++;
|
||||
if (theNbCalls >= MyMaxQuasiFleshe)
|
||||
{
|
||||
return;
|
||||
}
|
||||
Standard_Integer Ptslength = Points.Length();
|
||||
if (theNbCalls > 100 && Ptslength < 2)
|
||||
{
|
||||
return;
|
||||
}
|
||||
Standard_Real Udelta = Ufin - Udeb;
|
||||
gp_Pnt Pdelta;
|
||||
if (Nbmin > 2)
|
||||
{
|
||||
Udelta /= (Nbmin-1);
|
||||
Pdelta = Value (C, Udeb + Udelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
Pdelta = Pfin;
|
||||
}
|
||||
|
||||
gp_Pnt Pmid ((Pdeb.XYZ() + Pdelta.XYZ()) * 0.5);
|
||||
gp_Pnt Pverif (Value (C, Udeb + Udelta * 0.5));
|
||||
Standard_Real theFleche = Pmid.SquareDistance (Pverif);
|
||||
|
||||
if (theFleche < Deflection2)
|
||||
{
|
||||
Parameters.Append(Udeb + Udelta);
|
||||
Points.Append (Pdelta);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuasiFleche (C, Deflection2, Udeb, Pdeb,
|
||||
Udeb + Udelta * 0.5, Pverif,
|
||||
2,
|
||||
Parameters, Points, theNbCalls);
|
||||
|
||||
QuasiFleche (C, Deflection2, Udeb + Udelta * 0.5, Pverif,
|
||||
Udeb + Udelta, Pdelta,
|
||||
2,
|
||||
Parameters, Points, theNbCalls);
|
||||
}
|
||||
|
||||
if (Nbmin > 2)
|
||||
{
|
||||
QuasiFleche (C, Deflection2, Udeb + Udelta, Pdelta,
|
||||
Ufin, Pfin,
|
||||
Nbmin - (Points.Length() - Ptslength),
|
||||
Parameters, Points, theNbCalls);
|
||||
}
|
||||
theNbCalls--;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user