1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-16 10:08:36 +03:00

0032539: Modeling Algorithms - Parallelize BRepExtrema_DistShapeShape algorithm

This commit is contained in:
asuraven 2021-08-18 20:23:07 +03:00 committed by smoskvin
parent 7d5e26eb2e
commit 0f05f21194
6 changed files with 871 additions and 204 deletions

View File

@ -36,6 +36,7 @@
#include <BRep_Tool.hxx> #include <BRep_Tool.hxx>
#include <BRepClass3d_SolidClassifier.hxx> #include <BRepClass3d_SolidClassifier.hxx>
#include <NCollection_Vector.hxx> #include <NCollection_Vector.hxx>
#include <OSD_Parallel.hxx>
#include <StdFail_NotDone.hxx> #include <StdFail_NotDone.hxx>
#include <algorithm> #include <algorithm>
@ -56,13 +57,13 @@ namespace
} }
static void BoxCalculation(const TopTools_IndexedMapOfShape& Map, static void BoxCalculation(const TopTools_IndexedMapOfShape& Map,
Bnd_SeqOfBox& SBox) Bnd_Array1OfBox& SBox)
{ {
for (Standard_Integer i = 1; i <= Map.Extent(); i++) for (Standard_Integer i = 1; i <= Map.Extent(); i++)
{ {
Bnd_Box box; Bnd_Box box;
BRepBndLib::Add(Map(i), box); BRepBndLib::Add(Map(i), box);
SBox.Append(box); SBox[i] = box;
} }
} }
@ -105,160 +106,513 @@ namespace
} }
//======================================================================= //=======================================================================
//function : DistanceMapMap //struct : IndexBand
//purpose : //purpose :
//======================================================================= //=======================================================================
struct IndexBand
Standard_Boolean BRepExtrema_DistShapeShape::DistanceMapMap (const TopTools_IndexedMapOfShape& theMap1,
const TopTools_IndexedMapOfShape& theMap2,
const Bnd_SeqOfBox& theLBox1,
const Bnd_SeqOfBox& theLBox2,
const Message_ProgressRange& theRange)
{ {
NCollection_Vector<BRepExtrema_CheckPair> aPairList; IndexBand():
const Standard_Integer aCount1 = theMap1.Extent(); First(0),
const Standard_Integer aCount2 = theMap2.Extent(); Last(0)
Message_ProgressScope aTwinScope(theRange, NULL, 1.0);
Message_ProgressRange aBoxRange(aTwinScope.Next(0.3));
Message_ProgressScope aBoxScope(aBoxRange, NULL, aCount1);
for (Standard_Integer anIdx1 = 1; anIdx1 <= aCount1; ++anIdx1)
{ {
aBoxScope.Next();
if (!aBoxScope.More())
{
return Standard_False;
} }
IndexBand(Standard_Integer theFirtsIndex,
Standard_Integer theLastIndex):
First(theFirtsIndex),
Last(theLastIndex)
{
}
Standard_Integer First;
Standard_Integer Last;
};
//=======================================================================
//struct : ThreadSolution
//purpose :
//=======================================================================
struct ThreadSolution
{
ThreadSolution(Standard_Integer theTaskNum):
Shape1(0, theTaskNum-1),
Shape2(0, theTaskNum-1),
Dist(0, theTaskNum-1)
{
Dist.Init(DBL_MAX);
}
NCollection_Array1<BRepExtrema_SeqOfSolution> Shape1;
NCollection_Array1<BRepExtrema_SeqOfSolution> Shape2;
NCollection_Array1<Standard_Real> Dist;
};
//=======================================================================
//struct : VertexFunctor
//purpose :
//=======================================================================
struct VertexFunctor
{
VertexFunctor(NCollection_Array1<IndexBand>* theBandArray,
const Message_ProgressRange& theRange):
BandArray(theBandArray),
Solution(theBandArray->Size()),
Map1(NULL),
Map2(NULL),
Scope(theRange, "Vertices distances calculating", theBandArray->Size()),
Ranges(0, theBandArray->Size() - 1),
Eps(Precision::Confusion()),
StartDist(0.0)
{
for (Standard_Integer i = 0; i < theBandArray->Size(); ++i)
{
Ranges.SetValue(i, Scope.Next());
}
}
void operator() (const Standard_Integer theIndex) const
{
const Standard_Integer aCount2 = Map2->Extent();
const Standard_Integer aFirst = BandArray->Value(theIndex).First;
const Standard_Integer aLast = BandArray->Value(theIndex).Last;
Solution.Dist[theIndex] = StartDist;
Message_ProgressScope aScope(Ranges[theIndex], NULL, (double)aLast - aFirst);
for (Standard_Integer anIdx1 = aFirst; anIdx1 <= aLast; ++anIdx1)
{
if (!aScope.More())
{
break;
}
aScope.Next();
const TopoDS_Vertex& aVertex1 = TopoDS::Vertex(Map1->FindKey(anIdx1));
const gp_Pnt aPoint1 = BRep_Tool::Pnt(aVertex1);
for (Standard_Integer anIdx2 = 1; anIdx2 <= aCount2; ++anIdx2) for (Standard_Integer anIdx2 = 1; anIdx2 <= aCount2; ++anIdx2)
{ {
const Bnd_Box& aBox1 = theLBox1.Value (anIdx1); const TopoDS_Vertex& aVertex2 = TopoDS::Vertex(Map2->FindKey(anIdx2));
const Bnd_Box& aBox2 = theLBox2.Value (anIdx2); const gp_Pnt aPoint2 = BRep_Tool::Pnt(aVertex2);
if (aBox1.IsVoid() const Standard_Real aDist = aPoint1.Distance(aPoint2);
|| aBox2.IsVoid())
{ {
continue; if (aDist < Solution.Dist[theIndex] - Eps)
{
const BRepExtrema_SolutionElem Sol1(aDist, aPoint1, BRepExtrema_IsVertex, aVertex1);
const BRepExtrema_SolutionElem Sol2(aDist, aPoint2, BRepExtrema_IsVertex, aVertex2);
Solution.Shape1[theIndex].Clear();
Solution.Shape2[theIndex].Clear();
Solution.Shape1[theIndex].Append(Sol1);
Solution.Shape2[theIndex].Append(Sol2);
Solution.Dist[theIndex] = aDist;
}
else if (Abs(aDist - Solution.Dist[theIndex]) < Eps)
{
const BRepExtrema_SolutionElem Sol1(aDist, aPoint1, BRepExtrema_IsVertex, aVertex1);
const BRepExtrema_SolutionElem Sol2(aDist, aPoint2, BRepExtrema_IsVertex, aVertex2);
Solution.Shape1[theIndex].Append(Sol1);
Solution.Shape2[theIndex].Append(Sol2);
if (Solution.Dist[theIndex] > aDist)
{
Solution.Dist[theIndex] = aDist;
}
}
}
}
}
} }
const Standard_Real aDist = aBox1.Distance (aBox2); NCollection_Array1<IndexBand>* BandArray;
if (aDist < myDistRef - myEps || fabs (aDist - myDistRef) < myEps) mutable ThreadSolution Solution;
const TopTools_IndexedMapOfShape* Map1;
const TopTools_IndexedMapOfShape* Map2;
Message_ProgressScope Scope;
NCollection_Array1<Message_ProgressRange> Ranges;
Standard_Real Eps;
Standard_Real StartDist;
};
//=======================================================================
//function : DistanceVertVert
//purpose :
//=======================================================================
Standard_Boolean BRepExtrema_DistShapeShape::DistanceVertVert(const TopTools_IndexedMapOfShape& theMap1,
const TopTools_IndexedMapOfShape& theMap2,
const Message_ProgressRange& theRange)
{
const Standard_Integer aCount1 = theMap1.Extent();
const Standard_Integer aMinTaskSize = aCount1 < 10 ? aCount1 : 10;
const Handle(OSD_ThreadPool)& aThreadPool = OSD_ThreadPool::DefaultPool();
const Standard_Integer aNbThreads = aThreadPool->NbThreads();
Standard_Integer aNbTasks = aNbThreads;
Standard_Integer aTaskSize = (Standard_Integer) Ceiling((double) aCount1 / aNbTasks);
if (aTaskSize < aMinTaskSize)
{ {
aPairList.Append (BRepExtrema_CheckPair (anIdx1, anIdx2, aDist)); aTaskSize = aMinTaskSize;
aNbTasks = (Standard_Integer) Ceiling((double) aCount1 / aTaskSize);
} }
}
} Standard_Integer aFirstIndex(1);
std::stable_sort(aPairList.begin(), aPairList.end(), BRepExtrema_CheckPair_Comparator); NCollection_Array1<IndexBand> aBandArray(0, aNbTasks - 1);
Message_ProgressRange aDistRange(aTwinScope.Next(0.7)); Message_ProgressScope aDistScope(theRange, NULL, 1);
Message_ProgressScope aDistScope(aDistRange, NULL, aPairList.Size());
for (NCollection_Vector<BRepExtrema_CheckPair>::Iterator aPairIter (aPairList); for (Standard_Integer anI = 0; anI < aBandArray.Size(); ++anI)
aPairIter.More(); aPairIter.Next())
{ {
aDistScope.Next(); if (aCount1 < aFirstIndex + aTaskSize - 1)
{
aTaskSize = aCount1 - aFirstIndex + 1;
}
aBandArray.SetValue(anI, IndexBand(aFirstIndex, aFirstIndex + aTaskSize - 1));
aFirstIndex += aTaskSize;
}
VertexFunctor aFunctor(&aBandArray, aDistScope.Next());
aFunctor.Map1 = &theMap1;
aFunctor.Map2 = &theMap2;
aFunctor.StartDist = myDistRef;
aFunctor.Eps = myEps;
OSD_Parallel::For(0, aNbTasks, aFunctor, !myIsMultiThread);
if (!aDistScope.More()) if (!aDistScope.More())
{ {
return Standard_False; return Standard_False;
} }
const BRepExtrema_CheckPair& aPair = aPairIter.Value(); for (Standard_Integer anI = 0; anI < aFunctor.Solution.Dist.Size(); ++anI)
if (aPair.Distance > myDistRef + myEps)
{ {
break; // early search termination Standard_Real aDist = aFunctor.Solution.Dist[anI];
} if (aDist < myDistRef - myEps)
const Bnd_Box& aBox1 = theLBox1.Value (aPair.Index1);
const Bnd_Box& aBox2 = theLBox2.Value (aPair.Index2);
const TopoDS_Shape& aShape1 = theMap1 (aPair.Index1);
const TopoDS_Shape& aShape2 = theMap2 (aPair.Index2);
BRepExtrema_DistanceSS aDistTool (aShape1, aShape2, aBox1, aBox2, myDistRef, myEps);
if (aDistTool.IsDone())
{
if (aDistTool.DistValue() < myDistRef - myEps)
{ {
mySolutionsShape1.Clear(); mySolutionsShape1.Clear();
mySolutionsShape2.Clear(); mySolutionsShape2.Clear();
mySolutionsShape1.Append(aFunctor.Solution.Shape1[anI]);
BRepExtrema_SeqOfSolution aSeq1 = aDistTool.Seq1Value(); mySolutionsShape2.Append(aFunctor.Solution.Shape2[anI]);
BRepExtrema_SeqOfSolution aSeq2 = aDistTool.Seq2Value(); myDistRef = aDist;
mySolutionsShape1.Append (aSeq1);
mySolutionsShape2.Append (aSeq2);
myDistRef = aDistTool.DistValue();
} }
else if (fabs (aDistTool.DistValue() - myDistRef) < myEps) else if (Abs(aDist - myDistRef) < myEps)
{ {
BRepExtrema_SeqOfSolution aSeq1 = aDistTool.Seq1Value(); mySolutionsShape1.Append(aFunctor.Solution.Shape1[anI]);
BRepExtrema_SeqOfSolution aSeq2 = aDistTool.Seq2Value(); mySolutionsShape2.Append(aFunctor.Solution.Shape2[anI]);
myDistRef = aDist;
mySolutionsShape1.Append (aSeq1);
mySolutionsShape2.Append (aSeq2);
if (myDistRef > aDistTool.DistValue())
{
myDistRef = aDistTool.DistValue();
}
}
} }
} }
return Standard_True; return Standard_True;
} }
//======================================================================= //=======================================================================
//function : DistanceVertVert //struct : DistanceFunctor
//purpose :
//=======================================================================
struct DistanceFunctor
{
DistanceFunctor(NCollection_Array1<NCollection_Array1<BRepExtrema_CheckPair> >* theArrayOfArrays,
const Message_ProgressRange& theRange):
ArrayOfArrays(theArrayOfArrays),
Solution(ArrayOfArrays->Size()),
Map1(NULL),
Map2(NULL),
LBox1(NULL),
LBox2(NULL),
Scope(theRange, "Shapes distances calculating", theArrayOfArrays->Size()),
Ranges(0, theArrayOfArrays->Size() - 1),
Eps(Precision::Confusion()),
StartDist(0.0)
{
for (Standard_Integer i = 0; i < theArrayOfArrays->Size(); ++i)
{
Ranges.SetValue(i, Scope.Next());
}
}
void operator() (const Standard_Integer theIndex) const
{
Message_ProgressScope aScope(Ranges[theIndex], NULL, ArrayOfArrays->Value(theIndex).Size());
Solution.Dist[theIndex] = StartDist;
for (Standard_Integer i = 0; i < ArrayOfArrays->Value(theIndex).Size(); i++)
{
if (!aScope.More())
{
return;
}
aScope.Next();
const BRepExtrema_CheckPair& aPair = ArrayOfArrays->Value(theIndex).Value(i);
if (aPair.Distance > Solution.Dist[theIndex] + Eps)
{
break; // early search termination
}
const Bnd_Box& aBox1 = LBox1->Value(aPair.Index1);
const Bnd_Box& aBox2 = LBox2->Value(aPair.Index2);
const TopoDS_Shape& aShape1 = Map1->FindKey(aPair.Index1);
const TopoDS_Shape& aShape2 = Map2->FindKey(aPair.Index2);
BRepExtrema_DistanceSS aDistTool(aShape1, aShape2, aBox1, aBox2, Solution.Dist[theIndex], Eps);
const Standard_Real aDist = aDistTool.DistValue();
if (aDistTool.IsDone())
{
if (aDist < Solution.Dist[theIndex] - Eps)
{
Solution.Shape1[theIndex].Clear();
Solution.Shape2[theIndex].Clear();
BRepExtrema_SeqOfSolution aSeq1 = aDistTool.Seq1Value();
BRepExtrema_SeqOfSolution aSeq2 = aDistTool.Seq2Value();
Solution.Shape1[theIndex].Append(aSeq1);
Solution.Shape2[theIndex].Append(aSeq2);
Solution.Dist[theIndex] = aDistTool.DistValue();
}
else if (Abs(aDist - Solution.Dist[theIndex]) < Eps)
{
BRepExtrema_SeqOfSolution aSeq1 = aDistTool.Seq1Value();
BRepExtrema_SeqOfSolution aSeq2 = aDistTool.Seq2Value();
Solution.Shape1[theIndex].Append(aSeq1);
Solution.Shape2[theIndex].Append(aSeq2);
if (Solution.Dist[theIndex] > aDist)
{
Solution.Dist[theIndex] = aDist;
}
}
}
}
}
NCollection_Array1<NCollection_Array1<BRepExtrema_CheckPair> >* ArrayOfArrays;
mutable ThreadSolution Solution;
const TopTools_IndexedMapOfShape* Map1;
const TopTools_IndexedMapOfShape* Map2;
const Bnd_Array1OfBox* LBox1;
const Bnd_Array1OfBox* LBox2;
Message_ProgressScope Scope;
NCollection_Array1<Message_ProgressRange> Ranges;
Standard_Real Eps;
Standard_Real StartDist;
};
//=======================================================================
//struct : DistancePairFunctor
//purpose :
//=======================================================================
struct DistancePairFunctor
{
DistancePairFunctor(NCollection_Array1<IndexBand>* theBandArray,
const Message_ProgressRange& theRange):
BandArray(theBandArray),
PairList(0, theBandArray->Size() - 1),
LBox1(NULL),
LBox2(NULL),
Scope(theRange, "Boxes distances calculating", theBandArray->Size()),
Ranges(0, theBandArray->Size() - 1),
DistRef(0),
Eps(Precision::Confusion())
{
for (Standard_Integer i = 0; i < theBandArray->Size(); ++i)
{
Ranges.SetValue(i, Scope.Next());
}
}
void operator() (const Standard_Integer theIndex) const
{
const Standard_Integer aFirst = BandArray->Value(theIndex).First;
const Standard_Integer aLast = BandArray->Value(theIndex).Last;
Message_ProgressScope aScope(Ranges[theIndex], NULL, (double) aLast - aFirst);
for (Standard_Integer anIdx1 = aFirst; anIdx1 <= aLast; ++anIdx1)
{
if (!aScope.More())
{
break;
}
aScope.Next();
for (Standard_Integer anIdx2 = 1; anIdx2 <= LBox2->Size(); ++anIdx2)
{
const Bnd_Box& aBox1 = LBox1->Value(anIdx1);
const Bnd_Box& aBox2 = LBox2->Value(anIdx2);
if (aBox1.IsVoid() || aBox2.IsVoid())
{
continue;
}
const Standard_Real aDist = aBox1.Distance(aBox2);
if (aDist - DistRef < Eps)
{
PairList[theIndex].Append(BRepExtrema_CheckPair(anIdx1, anIdx2, aDist));
}
}
}
}
Standard_Integer ListSize()
{
Standard_Integer aSize(0);
for (Standard_Integer anI = PairList.Lower(); anI <= PairList.Upper(); ++anI)
{
aSize += PairList[anI].Size();
}
return aSize;
}
NCollection_Array1<IndexBand>* BandArray;
mutable NCollection_Array1<NCollection_Vector<BRepExtrema_CheckPair> > PairList;
const Bnd_Array1OfBox* LBox1;
const Bnd_Array1OfBox* LBox2;
Message_ProgressScope Scope;
NCollection_Array1<Message_ProgressRange> Ranges;
Standard_Real DistRef;
Standard_Real Eps;
};
//=======================================================================
//function : DistanceMapMap
//purpose : //purpose :
//======================================================================= //=======================================================================
Standard_Boolean BRepExtrema_DistShapeShape::DistanceVertVert(const TopTools_IndexedMapOfShape& theMap1, Standard_Boolean BRepExtrema_DistShapeShape::DistanceMapMap (const TopTools_IndexedMapOfShape& theMap1,
const TopTools_IndexedMapOfShape& theMap2, const TopTools_IndexedMapOfShape& theMap2,
const Bnd_Array1OfBox& theLBox1,
const Bnd_Array1OfBox& theLBox2,
const Message_ProgressRange& theRange) const Message_ProgressRange& theRange)
{ {
const Standard_Integer aCount1 = theMap1.Extent(); const Standard_Integer aCount1 = theMap1.Extent();
const Standard_Integer aCount2 = theMap2.Extent(); const Standard_Integer aCount2 = theMap2.Extent();
Message_ProgressScope aScope(theRange, NULL, aCount1); if (aCount1 == 0 || aCount2 == 0)
for (Standard_Integer anIdx1 = 1; anIdx1 <= aCount1; ++anIdx1)
{ {
aScope.Next(); return Standard_True;
if (!aScope.More()) }
Message_ProgressScope aTwinScope(theRange, NULL, 1.0);
const Handle(OSD_ThreadPool)& aThreadPool = OSD_ThreadPool::DefaultPool();
const Standard_Integer aNbThreads = aThreadPool->NbThreads();
const Standard_Integer aMinPairTaskSize = aCount1 < 10 ? aCount1 : 10;
Standard_Integer aNbPairTasks = aNbThreads;
Standard_Integer aPairTaskSize = (Standard_Integer) Ceiling((double) aCount1 / aNbPairTasks);
if (aPairTaskSize < aMinPairTaskSize)
{
aPairTaskSize = aMinPairTaskSize;
aNbPairTasks = (Standard_Integer) Ceiling((double) aCount1 / aPairTaskSize);
}
Standard_Integer aFirstIndex(1);
NCollection_Array1<IndexBand> aBandArray(0, aNbPairTasks - 1);
for (Standard_Integer anI = 0; anI < aBandArray.Size(); ++anI)
{
if (aCount1 < aFirstIndex + aPairTaskSize - 1)
{
aPairTaskSize = aCount1 - aFirstIndex + 1;
}
aBandArray.SetValue(anI, IndexBand(aFirstIndex, aFirstIndex + aPairTaskSize - 1));
aFirstIndex += aPairTaskSize;
}
aTwinScope.Next(0.15);
DistancePairFunctor aPairFunctor(&aBandArray, aTwinScope.Next(0.15));
aPairFunctor.LBox1 = &theLBox1;
aPairFunctor.LBox2 = &theLBox2;
aPairFunctor.DistRef = myDistRef;
aPairFunctor.Eps = myEps;
OSD_Parallel::For(0, aNbPairTasks, aPairFunctor, !myIsMultiThread);
if (!aTwinScope.More())
{ {
return Standard_False; return Standard_False;
} }
const TopoDS_Vertex& aVertex1 = TopoDS::Vertex(theMap1.FindKey(anIdx1)); Standard_Integer aListSize = aPairFunctor.ListSize();
const gp_Pnt aPoint1 = BRep_Tool::Pnt(aVertex1); if(aListSize == 0)
for (Standard_Integer anIdx2 = 1; anIdx2 <= aCount2; ++anIdx2)
{ {
const TopoDS_Vertex& aVertex2 = TopoDS::Vertex(theMap2.FindKey(anIdx2)); return Standard_True;
const gp_Pnt aPoint2 = BRep_Tool::Pnt(aVertex2); }
NCollection_Array1<BRepExtrema_CheckPair> aPairList(0, aListSize-1);
Standard_Integer aListIndex(0);
for (Standard_Integer anI = 0; anI < aPairFunctor.PairList.Size(); ++anI)
{
for (Standard_Integer aJ = 0; aJ < aPairFunctor.PairList[anI].Size(); ++aJ)
{
aPairList[aListIndex] = aPairFunctor.PairList[anI][aJ];
++aListIndex;
}
}
const Standard_Real aDist = aPoint1.Distance(aPoint2); std::stable_sort(aPairList.begin(), aPairList.end(), BRepExtrema_CheckPair_Comparator);
const Standard_Integer aMapSize = aPairList.Size();
Standard_Integer aNbTasks = aMapSize < aNbThreads ? aMapSize : aNbThreads;
Standard_Integer aTaskSize = (Standard_Integer) Ceiling((double) aMapSize / aNbTasks);
NCollection_Array1<NCollection_Array1<BRepExtrema_CheckPair> > anArrayOfArray(0, aNbTasks - 1);
// Since aPairList is sorted in ascending order of distances between Bnd_Boxes,
// BRepExtrema_CheckPair are distributed to tasks one by one from smallest to largest,
// and not ranges, as for DistancePairFunctor.
// Since aMapSize may not be divisible entirely by the number of tasks,
// some tasks should receive one BRepExtrema_CheckPair less than the rest.
// aLastRowLimit defines the task number from which to start tasks containing
// fewer BRepExtrema_CheckPair
Standard_Integer aLastRowLimit = ((aMapSize % aNbTasks) == 0) ? aNbTasks : (aMapSize % aNbTasks);
for (Standard_Integer anI = 0; anI < aTaskSize; ++anI)
{
for (Standard_Integer aJ = 0; aJ < aNbTasks; ++aJ)
{
if (anI == 0)
{
Standard_Integer aVectorSize = aTaskSize;
if (aJ >= aLastRowLimit)
{
aVectorSize--;
}
anArrayOfArray[aJ].Resize(0, aVectorSize - 1, Standard_False);
}
if (anI < anArrayOfArray[aJ].Size())
{
anArrayOfArray[aJ][anI] = aPairList(anI*aNbTasks + aJ);
}
else
{
break;
}
}
}
DistanceFunctor aFunctor(&anArrayOfArray, aTwinScope.Next(0.85));
aFunctor.Map1 = &theMap1;
aFunctor.Map2 = &theMap2;
aFunctor.LBox1 = &theLBox1;
aFunctor.LBox2 = &theLBox2;
aFunctor.Eps = myEps;
aFunctor.StartDist = myDistRef;
OSD_Parallel::For(0, aNbTasks, aFunctor, !myIsMultiThread);
if (!aTwinScope.More())
{
return Standard_False;
}
for (Standard_Integer anI = 0; anI < aFunctor.Solution.Dist.Size(); ++anI)
{
Standard_Real aDist = aFunctor.Solution.Dist[anI];
if (aDist < myDistRef - myEps) if (aDist < myDistRef - myEps)
{ {
mySolutionsShape1.Clear(); mySolutionsShape1.Clear();
mySolutionsShape2.Clear(); mySolutionsShape2.Clear();
mySolutionsShape1.Append(aFunctor.Solution.Shape1[anI]);
const BRepExtrema_SolutionElem Sol1(aDist, aPoint1, BRepExtrema_IsVertex, aVertex1); mySolutionsShape2.Append(aFunctor.Solution.Shape2[anI]);
const BRepExtrema_SolutionElem Sol2(aDist, aPoint2, BRepExtrema_IsVertex, aVertex2);
mySolutionsShape1.Append(Sol1);
mySolutionsShape2.Append(Sol2);
myDistRef = aDist; myDistRef = aDist;
} }
else if (fabs(aDist - myDistRef) < myEps) else if (Abs(aDist - myDistRef) < myEps)
{ {
const BRepExtrema_SolutionElem Sol1(aDist, aPoint1, BRepExtrema_IsVertex, aVertex1); mySolutionsShape1.Append(aFunctor.Solution.Shape1[anI]);
const BRepExtrema_SolutionElem Sol2(aDist, aPoint2, BRepExtrema_IsVertex, aVertex2); mySolutionsShape2.Append(aFunctor.Solution.Shape2[anI]);
mySolutionsShape1.Append(Sol1);
mySolutionsShape2.Append(Sol2);
if (myDistRef > aDist) if (myDistRef > aDist)
{ {
myDistRef = aDist; myDistRef = aDist;
} }
} }
} }
}
return Standard_True; return Standard_True;
} }
@ -275,9 +629,9 @@ BRepExtrema_DistShapeShape::BRepExtrema_DistShapeShape()
myIsInitS1 (Standard_False), myIsInitS1 (Standard_False),
myIsInitS2 (Standard_False), myIsInitS2 (Standard_False),
myFlag (Extrema_ExtFlag_MINMAX), myFlag (Extrema_ExtFlag_MINMAX),
myAlgo (Extrema_ExtAlgo_Grad) myAlgo (Extrema_ExtAlgo_Grad),
myIsMultiThread(Standard_False)
{ {
//
} }
//======================================================================= //=======================================================================
@ -296,7 +650,8 @@ BRepExtrema_DistShapeShape::BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape
myIsInitS1 (Standard_False), myIsInitS1 (Standard_False),
myIsInitS2 (Standard_False), myIsInitS2 (Standard_False),
myFlag (F), myFlag (F),
myAlgo (A) myAlgo (A),
myIsMultiThread(Standard_False)
{ {
LoadS1(Shape1); LoadS1(Shape1);
LoadS2(Shape2); LoadS2(Shape2);
@ -321,7 +676,8 @@ BRepExtrema_DistShapeShape::BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape
myIsInitS1 (Standard_False), myIsInitS1 (Standard_False),
myIsInitS2 (Standard_False), myIsInitS2 (Standard_False),
myFlag (F), myFlag (F),
myAlgo (A) myAlgo (A),
myIsMultiThread(Standard_False)
{ {
LoadS1(Shape1); LoadS1(Shape1);
LoadS2(Shape2); LoadS2(Shape2);
@ -352,38 +708,134 @@ void BRepExtrema_DistShapeShape::LoadS2 (const TopoDS_Shape& Shape2)
Decomposition (Shape2, myMapV2, myMapE2, myMapF2); Decomposition (Shape2, myMapV2, myMapE2, myMapF2);
} }
//=======================================================================
//struct : TreatmentFunctor
//purpose :
//=======================================================================
struct TreatmentFunctor
{
TreatmentFunctor(NCollection_Array1<NCollection_Array1<TopoDS_Shape> >* theArrayOfArrays,
const Message_ProgressRange& theRange):
ArrayOfArrays(theArrayOfArrays),
SolutionsShape1(NULL),
SolutionsShape2(NULL),
Scope(theRange, "Search for the inner solid", theArrayOfArrays->Size()),
Ranges(0, theArrayOfArrays->Size() - 1),
DistRef(0),
InnerSol(NULL),
IsDone(NULL),
Mutex(NULL)
{
for (Standard_Integer i = 0; i < theArrayOfArrays->Size(); ++i)
{
Ranges.SetValue(i, Scope.Next());
}
}
void operator() (const Standard_Integer theIndex) const
{
const Standard_Real aTolerance = 0.001;
Message_ProgressScope aScope(Ranges[theIndex], NULL, ArrayOfArrays->Value(theIndex).Size());
BRepClass3d_SolidClassifier aClassifier(Shape);
for (Standard_Integer i = 0; i < ArrayOfArrays->Value(theIndex).Size(); i++)
{
if (!aScope.More())
{
break;
}
aScope.Next();
if (*IsDone)
{
break;
}
const TopoDS_Vertex& aVertex = TopoDS::Vertex(ArrayOfArrays->Value(theIndex).Value(i));
const gp_Pnt aPnt = BRep_Tool::Pnt(aVertex);
aClassifier.Perform(aPnt, aTolerance);
if (aClassifier.State() == TopAbs_IN)
{
Standard_Mutex::Sentry aLock(Mutex.get());
*InnerSol = Standard_True;
*DistRef = 0.;
*IsDone = Standard_True;
BRepExtrema_SolutionElem aSolElem(0, aPnt, BRepExtrema_IsVertex, aVertex);
SolutionsShape1->Append(aSolElem);
SolutionsShape2->Append(aSolElem);
break;
}
}
}
NCollection_Array1<NCollection_Array1<TopoDS_Shape> >* ArrayOfArrays;
BRepExtrema_SeqOfSolution* SolutionsShape1;
BRepExtrema_SeqOfSolution* SolutionsShape2;
TopoDS_Shape Shape;
Message_ProgressScope Scope;
NCollection_Array1<Message_ProgressRange> Ranges;
Standard_Real* DistRef;
volatile Standard_Boolean* InnerSol;
volatile Standard_Boolean* IsDone;
Handle(Standard_HMutex) Mutex;
};
//======================================================================= //=======================================================================
//function : SolidTreatment //function : SolidTreatment
//purpose : //purpose :
//======================================================================= //=======================================================================
Standard_Boolean BRepExtrema_DistShapeShape::SolidTreatment(const TopoDS_Shape& theShape, Standard_Boolean BRepExtrema_DistShapeShape::SolidTreatment(const TopoDS_Shape& theShape,
const TopTools_IndexedMapOfShape& theMap, const TopTools_IndexedMapOfShape& theVertexMap,
const Message_ProgressRange& theRange) const Message_ProgressRange& theRange)
{ {
BRepClass3d_SolidClassifier aClassifier(theShape); const Standard_Integer aMapSize = theVertexMap.Extent();
const Standard_Real aTolerance = 0.001; const Standard_Integer aMinTaskSize = 3;
Message_ProgressScope aScope(theRange, NULL, theMap.Extent()); const Handle(OSD_ThreadPool)& aThreadPool = OSD_ThreadPool::DefaultPool();
for (Standard_Integer i = 1; i < theMap.Extent(); ++i) const Standard_Integer aNbThreads = aThreadPool->NbThreads();
Standard_Integer aNbTasks = aNbThreads * 10;
Standard_Integer aTaskSize = (Standard_Integer) Ceiling((double) aMapSize / aNbTasks);
if (aTaskSize < aMinTaskSize)
{ {
aScope.Next(); aTaskSize = aMinTaskSize;
aNbTasks = (Standard_Integer) Ceiling((double) aMapSize / aTaskSize);
}
NCollection_Array1< NCollection_Array1<TopoDS_Shape> > anArrayOfArray(0, aNbTasks - 1);
for (Standard_Integer anI = 1; anI <= aMapSize; ++anI)
{
Standard_Integer aVectIndex = (anI - 1) / aTaskSize;
Standard_Integer aShapeIndex = (anI - 1) % aTaskSize;
if (aShapeIndex == 0)
{
Standard_Integer aVectorSize = aTaskSize;
Standard_Integer aTailSize = aMapSize - aVectIndex * aTaskSize;
if (aTailSize < aTaskSize)
{
aVectorSize = aTailSize;
}
anArrayOfArray[aVectIndex].Resize(0, aVectorSize - 1, Standard_False);
}
anArrayOfArray[aVectIndex][aShapeIndex] = theVertexMap(anI);
}
Message_ProgressScope aScope(theRange, "Solid treatment", aNbTasks);
TreatmentFunctor aFunctor(&anArrayOfArray, aScope.Next());
aFunctor.SolutionsShape1 = &mySolutionsShape1;
aFunctor.SolutionsShape2 = &mySolutionsShape2;
aFunctor.Shape = theShape;
aFunctor.DistRef = &myDistRef;
aFunctor.InnerSol = &myInnerSol;
aFunctor.IsDone = &myIsDone;
if (myIsMultiThread)
{
aFunctor.Mutex.reset(new Standard_HMutex());
}
OSD_Parallel::For(0, aNbTasks, aFunctor, !myIsMultiThread);
if (!aScope.More()) if (!aScope.More())
{ {
return Standard_False; return Standard_False;
} }
const TopoDS_Vertex& aVertex = TopoDS::Vertex(theMap(i));
const gp_Pnt& aPnt = BRep_Tool::Pnt(aVertex);
aClassifier.Perform(aPnt, aTolerance);
if (aClassifier.State() == TopAbs_IN)
{
myInnerSol = Standard_True;
myDistRef = 0.;
myIsDone = Standard_True;
BRepExtrema_SolutionElem Sol(0, aPnt, BRepExtrema_IsVertex, aVertex);
mySolutionsShape1.Append(Sol);
mySolutionsShape2.Append(Sol);
break;
}
}
return Standard_True; return Standard_True;
} }
@ -394,12 +846,12 @@ Standard_Boolean BRepExtrema_DistShapeShape::SolidTreatment(const TopoDS_Shape&
Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange& theRange) Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange& theRange)
{ {
myIsDone=Standard_False; myIsDone = Standard_False;
myInnerSol=Standard_False; myInnerSol = Standard_False;
mySolutionsShape1.Clear(); mySolutionsShape1.Clear();
mySolutionsShape2.Clear(); mySolutionsShape2.Clear();
if ( myShape1.IsNull() || myShape2.IsNull() ) if (myShape1.IsNull() || myShape2.IsNull())
return Standard_False; return Standard_False;
// Treatment of solids // Treatment of solids
@ -408,8 +860,8 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
Standard_Boolean anIsSolid2 = (myShape2.ShapeType() == TopAbs_SOLID) || Standard_Boolean anIsSolid2 = (myShape2.ShapeType() == TopAbs_SOLID) ||
(myShape2.ShapeType() == TopAbs_COMPSOLID); (myShape2.ShapeType() == TopAbs_COMPSOLID);
Standard_Integer aRootStepsNum = 9; // By num of DistanceMapMap calls Standard_Integer aRootStepsNum = 9; // By num of DistanceMapMap calls
aRootStepsNum = anIsSolid1 ? aRootStepsNum+1 : aRootStepsNum; aRootStepsNum = anIsSolid1 ? aRootStepsNum + 1 : aRootStepsNum;
aRootStepsNum = anIsSolid2 ? aRootStepsNum+1 : aRootStepsNum; aRootStepsNum = anIsSolid2 ? aRootStepsNum + 1 : aRootStepsNum;
Message_ProgressScope aRootScope(theRange, "calculating distance", aRootStepsNum); Message_ProgressScope aRootScope(theRange, "calculating distance", aRootStepsNum);
if (anIsSolid1) if (anIsSolid1)
@ -422,7 +874,7 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
if (anIsSolid2 && (!myInnerSol)) if (anIsSolid2 && (!myInnerSol))
{ {
if(!SolidTreatment(myShape2, myMapV1, aRootScope.Next())) if (!SolidTreatment(myShape2, myMapV1, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
@ -432,9 +884,18 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
{ {
if (!myIsInitS1) // rebuild cached data for 1st shape if (!myIsInitS1) // rebuild cached data for 1st shape
{ {
myBV1.Clear(); if (!myMapV1.IsEmpty())
myBE1.Clear(); {
myBF1.Clear(); myBV1.Resize(1, myMapV1.Extent(), Standard_False);
}
if (!myMapE1.IsEmpty())
{
myBE1.Resize(1, myMapE1.Extent(), Standard_False);
}
if (!myMapF1.IsEmpty())
{
myBF1.Resize(1, myMapF1.Extent(), Standard_False);
}
BoxCalculation (myMapV1, myBV1); BoxCalculation (myMapV1, myBV1);
BoxCalculation (myMapE1, myBE1); BoxCalculation (myMapE1, myBE1);
@ -445,9 +906,18 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
if (!myIsInitS2) // rebuild cached data for 2nd shape if (!myIsInitS2) // rebuild cached data for 2nd shape
{ {
myBV2.Clear(); if (!myMapV2.IsEmpty())
myBE2.Clear(); {
myBF2.Clear(); myBV2.Resize(1, myMapV2.Extent(), Standard_False);
}
if (!myMapE2.IsEmpty())
{
myBE2.Resize(1, myMapE2.Extent(), Standard_False);
}
if (!myMapF2.IsEmpty())
{
myBF2.Resize(1, myMapF2.Extent(), Standard_False);
}
BoxCalculation (myMapV2, myBV2); BoxCalculation (myMapV2, myBV2);
BoxCalculation (myMapE2, myBE2); BoxCalculation (myMapE2, myBE2);
@ -458,49 +928,49 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
if (myMapV1.Extent() && myMapV2.Extent()) if (myMapV1.Extent() && myMapV2.Extent())
{ {
TopoDS_Vertex V1 = TopoDS::Vertex(myMapV1(1)); const TopoDS_Vertex& V1 = TopoDS::Vertex(myMapV1(1));
TopoDS_Vertex V2 = TopoDS::Vertex(myMapV2(1)); const TopoDS_Vertex& V2 = TopoDS::Vertex(myMapV2(1));
myDistRef = DistanceInitiale(V1, V2); myDistRef = DistanceInitiale(V1, V2);
} }
else else
myDistRef= 1.e30; //szv:!!! myDistRef = 1.e30; //szv:!!!
if(!DistanceVertVert(myMapV1, myMapV2, aRootScope.Next())) if (!DistanceVertVert(myMapV1, myMapV2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapV1, myMapE2, myBV1, myBE2, aRootScope.Next())) if (!DistanceMapMap(myMapV1, myMapE2, myBV1, myBE2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapE1, myMapV2, myBE1, myBV2, aRootScope.Next())) if (!DistanceMapMap(myMapE1, myMapV2, myBE1, myBV2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapV1, myMapF2, myBV1, myBF2, aRootScope.Next())) if (!DistanceMapMap(myMapV1, myMapF2, myBV1, myBF2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapF1, myMapV2, myBF1, myBV2, aRootScope.Next())) if (!DistanceMapMap(myMapF1, myMapV2, myBF1, myBV2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapE1, myMapE2, myBE1, myBE2, aRootScope.Next())) if (!DistanceMapMap(myMapE1, myMapE2, myBE1, myBE2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapE1, myMapF2, myBE1, myBF2, aRootScope.Next())) if (!DistanceMapMap(myMapE1, myMapF2, myBE1, myBF2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if(!DistanceMapMap (myMapF1, myMapE2, myBF1, myBE2, aRootScope.Next())) if (!DistanceMapMap(myMapF1, myMapE2, myBF1, myBE2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
if (fabs (myDistRef) > myEps) if (Abs(myDistRef) > myEps)
{ {
if(!DistanceMapMap (myMapF1, myMapF2, myBF1, myBF2, aRootScope.Next())) if (!DistanceMapMap(myMapF1, myMapF2, myBF1, myBF2, aRootScope.Next()))
{ {
return Standard_False; return Standard_False;
} }
@ -515,7 +985,7 @@ Standard_Boolean BRepExtrema_DistShapeShape::Perform(const Message_ProgressRange
mySolutionsShape2.Remove(i); mySolutionsShape2.Remove(i);
} }
// Modified by Sergey KHROMOV - Tue Mar 6 11:55:04 2001 End // Modified by Sergey KHROMOV - Tue Mar 6 11:55:04 2001 End
myIsDone = ( mySolutionsShape1.Length() > 0 ); myIsDone = (mySolutionsShape1.Length() > 0);
} }
return myIsDone; return myIsDone;

View File

@ -14,7 +14,7 @@
#ifndef _BRepExtrema_DistShapeShape_HeaderFile #ifndef _BRepExtrema_DistShapeShape_HeaderFile
#define _BRepExtrema_DistShapeShape_HeaderFile #define _BRepExtrema_DistShapeShape_HeaderFile
#include <Bnd_SeqOfBox.hxx> #include <Bnd_Array1OfBox.hxx>
#include <BRepExtrema_SeqOfSolution.hxx> #include <BRepExtrema_SeqOfSolution.hxx>
#include <BRepExtrema_SolutionElem.hxx> #include <BRepExtrema_SolutionElem.hxx>
#include <BRepExtrema_SupportType.hxx> #include <BRepExtrema_SupportType.hxx>
@ -28,24 +28,37 @@
#include <Standard_DefineAlloc.hxx> #include <Standard_DefineAlloc.hxx>
#include <TopTools_IndexedMapOfShape.hxx> #include <TopTools_IndexedMapOfShape.hxx>
//! This class provides tools to compute minimum distance <br> //! This class provides tools to compute minimum distance
//! between two Shapes (Compound,CompSolid, Solid, Shell, Face, Wire, Edge, Vertex). <br> //! between two Shapes (Compound,CompSolid, Solid, Shell, Face, Wire, Edge, Vertex).
class BRepExtrema_DistShapeShape class BRepExtrema_DistShapeShape
{ {
public: public:
DEFINE_STANDARD_ALLOC DEFINE_STANDARD_ALLOC
//! create empty tool <br> //! create empty tool
Standard_EXPORT BRepExtrema_DistShapeShape(); Standard_EXPORT BRepExtrema_DistShapeShape();
//! computation of the minimum distance (value and pair of points) using default deflection <br>
//! Default value is Precision::Confusion(). <br> //! create tool and computation of the minimum distance (value and pair of points)
//! using default deflection in single thread mode. <br>
//! Default deflection value is Precision::Confusion(). <br>
//! @param Shape1 - the first shape for distance computation
//! @param Shape2 - the second shape for distance computation
//! @param F and @param A are not used in computation and are obsolete.
//! @param theRange - the progress indicator of algorithm
Standard_EXPORT BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape1, Standard_EXPORT BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape1,
const TopoDS_Shape& Shape2, const TopoDS_Shape& Shape2,
const Extrema_ExtFlag F = Extrema_ExtFlag_MINMAX, const Extrema_ExtFlag F = Extrema_ExtFlag_MINMAX,
const Extrema_ExtAlgo A = Extrema_ExtAlgo_Grad, const Extrema_ExtAlgo A = Extrema_ExtAlgo_Grad,
const Message_ProgressRange& theRange = Message_ProgressRange()); const Message_ProgressRange& theRange = Message_ProgressRange());
//! create tool and load both shapes into it <br> //! create tool and computation of the minimum distance
//! (value and pair of points) in single thread mode. <br>
//! Default deflection value is Precision::Confusion(). <br>
//! @param Shape1 - the first shape for distance computation
//! @param Shape2 - the second shape for distance computation
//! @param theDeflection - the presition of distance computation
//! @param F and @param A are not used in computation and are obsolete.
//! @param theRange - the progress indicator of algorithm
Standard_EXPORT BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape1, Standard_EXPORT BRepExtrema_DistShapeShape(const TopoDS_Shape& Shape1,
const TopoDS_Shape& Shape2, const TopoDS_Shape& Shape2,
const Standard_Real theDeflection, const Standard_Real theDeflection,
@ -53,49 +66,60 @@ class BRepExtrema_DistShapeShape
const Extrema_ExtAlgo A = Extrema_ExtAlgo_Grad, const Extrema_ExtAlgo A = Extrema_ExtAlgo_Grad,
const Message_ProgressRange& theRange = Message_ProgressRange()); const Message_ProgressRange& theRange = Message_ProgressRange());
//! Sets deflection to computation of the minimum distance <br>
void SetDeflection(const Standard_Real theDeflection) void SetDeflection(const Standard_Real theDeflection)
{ {
myEps = theDeflection; myEps = theDeflection;
} }
//! load first shape into extrema <br> //! load first shape into extrema <br>
Standard_EXPORT void LoadS1(const TopoDS_Shape& Shape1); Standard_EXPORT void LoadS1(const TopoDS_Shape& Shape1);
//! load second shape into extrema <br> //! load second shape into extrema <br>
Standard_EXPORT void LoadS2(const TopoDS_Shape& Shape1); Standard_EXPORT void LoadS2(const TopoDS_Shape& Shape1);
//! computation of the minimum distance (value and <br> //! computation of the minimum distance (value and <br>
//! couple of points). Parameter theDeflection is used <br> //! couple of points). Parameter theDeflection is used <br>
//! to specify a maximum deviation of extreme distances <br> //! to specify a maximum deviation of extreme distances <br>
//! from the minimum one. <br> //! from the minimum one. <br>
//! Returns IsDone status. <br> //! Returns IsDone status. <br>
//! theProgress - progress indicator of algorithm //! theRange - the progress indicator of algorithm
Standard_EXPORT Standard_Boolean Perform(const Message_ProgressRange& theRange = Message_ProgressRange()); Standard_EXPORT Standard_Boolean Perform(const Message_ProgressRange& theRange = Message_ProgressRange());
//! True if the minimum distance is found. <br> //! True if the minimum distance is found. <br>
Standard_Boolean IsDone() const Standard_Boolean IsDone() const
{ {
return myIsDone; return myIsDone;
} }
//! Returns the number of solutions satisfying the minimum distance. <br> //! Returns the number of solutions satisfying the minimum distance. <br>
Standard_Integer NbSolution() const Standard_Integer NbSolution() const
{ {
return mySolutionsShape1.Length(); return mySolutionsShape1.Length();
} }
//! Returns the value of the minimum distance. <br> //! Returns the value of the minimum distance. <br>
Standard_EXPORT Standard_Real Value() const; Standard_EXPORT Standard_Real Value() const;
//! True if one of the shapes is a solid and the other shape <br> //! True if one of the shapes is a solid and the other shape <br>
//! is completely or partially inside the solid. <br> //! is completely or partially inside the solid. <br>
Standard_Boolean InnerSolution() const Standard_Boolean InnerSolution() const
{ {
return myInnerSol; return myInnerSol;
} }
//! Returns the Point corresponding to the <N>th solution on the first Shape <br> //! Returns the Point corresponding to the <N>th solution on the first Shape <br>
const gp_Pnt & PointOnShape1(const Standard_Integer N) const const gp_Pnt & PointOnShape1(const Standard_Integer N) const
{ {
return mySolutionsShape1.Value(N).Point(); return mySolutionsShape1.Value(N).Point();
} }
//! Returns the Point corresponding to the <N>th solution on the second Shape <br> //! Returns the Point corresponding to the <N>th solution on the second Shape <br>
const gp_Pnt & PointOnShape2(const Standard_Integer N) const const gp_Pnt & PointOnShape2(const Standard_Integer N) const
{ {
return mySolutionsShape2.Value(N).Point(); return mySolutionsShape2.Value(N).Point();
} }
//! gives the type of the support where the Nth solution on the first shape is situated: <br> //! gives the type of the support where the Nth solution on the first shape is situated: <br>
//! IsVertex => the Nth solution on the first shape is a Vertex <br> //! IsVertex => the Nth solution on the first shape is a Vertex <br>
//! IsOnEdge => the Nth soluion on the first shape is on a Edge <br> //! IsOnEdge => the Nth soluion on the first shape is on a Edge <br>
@ -105,6 +129,7 @@ class BRepExtrema_DistShapeShape
{ {
return mySolutionsShape1.Value(N).SupportKind(); return mySolutionsShape1.Value(N).SupportKind();
} }
//! gives the type of the support where the Nth solution on the second shape is situated: <br> //! gives the type of the support where the Nth solution on the second shape is situated: <br>
//! IsVertex => the Nth solution on the second shape is a Vertex <br> //! IsVertex => the Nth solution on the second shape is a Vertex <br>
//! IsOnEdge => the Nth soluion on the secondt shape is on a Edge <br> //! IsOnEdge => the Nth soluion on the secondt shape is on a Edge <br>
@ -114,44 +139,68 @@ class BRepExtrema_DistShapeShape
{ {
return mySolutionsShape2.Value(N).SupportKind(); return mySolutionsShape2.Value(N).SupportKind();
} }
//! gives the support where the Nth solution on the first shape is situated. <br> //! gives the support where the Nth solution on the first shape is situated. <br>
//! This support can be a Vertex, an Edge or a Face. <br> //! This support can be a Vertex, an Edge or a Face. <br>
Standard_EXPORT TopoDS_Shape SupportOnShape1(const Standard_Integer N) const; Standard_EXPORT TopoDS_Shape SupportOnShape1(const Standard_Integer N) const;
//! gives the support where the Nth solution on the second shape is situated. <br> //! gives the support where the Nth solution on the second shape is situated. <br>
//! This support can be a Vertex, an Edge or a Face. <br> //! This support can be a Vertex, an Edge or a Face. <br>
Standard_EXPORT TopoDS_Shape SupportOnShape2(const Standard_Integer N) const; Standard_EXPORT TopoDS_Shape SupportOnShape2(const Standard_Integer N) const;
//! gives the corresponding parameter t if the Nth solution <br> //! gives the corresponding parameter t if the Nth solution <br>
//! is situated on an Edge of the first shape <br> //! is situated on an Edge of the first shape <br>
Standard_EXPORT void ParOnEdgeS1(const Standard_Integer N,Standard_Real& t) const; Standard_EXPORT void ParOnEdgeS1(const Standard_Integer N,Standard_Real& t) const;
//! gives the corresponding parameter t if the Nth solution <br> //! gives the corresponding parameter t if the Nth solution <br>
//! is situated on an Edge of the first shape <br> //! is situated on an Edge of the first shape <br>
Standard_EXPORT void ParOnEdgeS2(const Standard_Integer N,Standard_Real& t) const; Standard_EXPORT void ParOnEdgeS2(const Standard_Integer N,Standard_Real& t) const;
//! gives the corresponding parameters (U,V) if the Nth solution <br> //! gives the corresponding parameters (U,V) if the Nth solution <br>
//! is situated on an face of the first shape <br> //! is situated on an face of the first shape <br>
Standard_EXPORT void ParOnFaceS1(const Standard_Integer N,Standard_Real& u,Standard_Real& v) const; Standard_EXPORT void ParOnFaceS1(const Standard_Integer N,Standard_Real& u,Standard_Real& v) const;
//! gives the corresponding parameters (U,V) if the Nth solution <br> //! gives the corresponding parameters (U,V) if the Nth solution <br>
//! is situated on an Face of the second shape <br> //! is situated on an Face of the second shape <br>
Standard_EXPORT void ParOnFaceS2(const Standard_Integer N,Standard_Real& u,Standard_Real& v) const; Standard_EXPORT void ParOnFaceS2(const Standard_Integer N,Standard_Real& u,Standard_Real& v) const;
//! Prints on the stream o information on the current state of the object. <br> //! Prints on the stream o information on the current state of the object. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const; Standard_EXPORT void Dump(Standard_OStream& o) const;
//! Sets unused parameter
//! Obsolete
void SetFlag(const Extrema_ExtFlag F) void SetFlag(const Extrema_ExtFlag F)
{ {
myFlag = F; myFlag = F;
} }
//! Sets unused parameter
//! Obsolete
void SetAlgo(const Extrema_ExtAlgo A) void SetAlgo(const Extrema_ExtAlgo A)
{ {
myAlgo = A; myAlgo = A;
} }
//! If isMultiThread == Standard_True then computation will be performed in parallel.
void SetMultiThread(Standard_Boolean theIsMultiThread)
{
myIsMultiThread = theIsMultiThread;
}
//! Returns Standard_True then computation will be performed in parallel
//! Default value is Standard_False
Standard_Boolean IsMultiThread() const
{
return myIsMultiThread;
}
private: private:
//! computes the minimum distance between two maps of shapes (Face,Edge,Vertex) <br> //! computes the minimum distance between two maps of shapes (Face,Edge,Vertex) <br>
Standard_Boolean DistanceMapMap(const TopTools_IndexedMapOfShape& Map1, Standard_Boolean DistanceMapMap(const TopTools_IndexedMapOfShape& Map1,
const TopTools_IndexedMapOfShape& Map2, const TopTools_IndexedMapOfShape& Map2,
const Bnd_SeqOfBox& LBox1, const Bnd_Array1OfBox& LBox1,
const Bnd_SeqOfBox& LBox2, const Bnd_Array1OfBox& LBox2,
const Message_ProgressRange& theRange); const Message_ProgressRange& theRange);
//! computes the minimum distance between two maps of vertices <br> //! computes the minimum distance between two maps of vertices <br>
@ -183,12 +232,13 @@ private:
Standard_Boolean myIsInitS2; Standard_Boolean myIsInitS2;
Extrema_ExtFlag myFlag; Extrema_ExtFlag myFlag;
Extrema_ExtAlgo myAlgo; Extrema_ExtAlgo myAlgo;
Bnd_SeqOfBox myBV1; Bnd_Array1OfBox myBV1;
Bnd_SeqOfBox myBV2; Bnd_Array1OfBox myBV2;
Bnd_SeqOfBox myBE1; Bnd_Array1OfBox myBE1;
Bnd_SeqOfBox myBE2; Bnd_Array1OfBox myBE2;
Bnd_SeqOfBox myBF1; Bnd_Array1OfBox myBF1;
Bnd_SeqOfBox myBF2; Bnd_Array1OfBox myBF2;
Standard_Boolean myIsMultiThread;
}; };
#endif #endif

View File

@ -64,11 +64,13 @@
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
static Standard_Boolean TRI_SOLUTION (const BRepExtrema_SeqOfSolution& SeqSol, const gp_Pnt& Pt) static Standard_Boolean TRI_SOLUTION (const BRepExtrema_SeqOfSolution& SeqSol, const gp_Pnt& Pt)
{ {
const Standard_Integer Nbsol = SeqSol.Length(); for (BRepExtrema_SeqOfSolution::iterator anIt = SeqSol.begin(); anIt != SeqSol.end(); anIt++)
for (Standard_Integer i = 1; i <= Nbsol; i++)
{ {
const Standard_Real dst = SeqSol.Value(i).Point().Distance(Pt); const Standard_Real dst = anIt->Point().Distance(Pt);
if (dst <= Precision::Confusion()) return Standard_False; if (dst <= Precision::Confusion())
{
return Standard_False;
}
} }
return Standard_True; return Standard_True;
} }
@ -83,14 +85,15 @@ static void MIN_SOLUTION (const BRepExtrema_SeqOfSolution& SeqSol1,
BRepExtrema_SeqOfSolution& seqSol1, BRepExtrema_SeqOfSolution& seqSol1,
BRepExtrema_SeqOfSolution& seqSol2) BRepExtrema_SeqOfSolution& seqSol2)
{ {
const Standard_Integer nbSol = SeqSol1.Length(); for (BRepExtrema_SeqOfSolution::iterator anIt1 = SeqSol1.begin(), anIt2 = SeqSol2.begin();
for (Standard_Integer i = 1; i <= nbSol; i++) anIt1 != SeqSol1.end();
anIt1++, anIt2++)
{ {
const Standard_Real dst1 = SeqSol1.Value(i).Dist(); const Standard_Real dst1 = anIt1->Dist();
if (fabs(dst1 - DstRef) < Eps) if (fabs(dst1 - DstRef) < Eps)
{ {
seqSol1.Append(SeqSol1.Value(i)); seqSol1.Append(*anIt1);
seqSol2.Append(SeqSol2.Value(i)); seqSol2.Append(*anIt2);
} }
} }
} }

View File

@ -64,19 +64,45 @@ static Standard_Integer distance (Draw_Interpretor& di,
static Standard_Integer distmini(Draw_Interpretor& di, Standard_Integer n, const char** a) static Standard_Integer distmini(Draw_Interpretor& di, Standard_Integer n, const char** a)
{ {
if (n != 4 && n != 5 ) if (n < 4 || n > 6)
{
return 1; return 1;
}
const char *ns1 = (a[2]), *ns2 = (a[3]), *ns0 = (a[1]); const char *ns1 = (a[2]), *ns2 = (a[3]), *ns0 = (a[1]);
TopoDS_Shape S1(DBRep::Get(ns1)), S2(DBRep::Get(ns2)); TopoDS_Shape S1(DBRep::Get(ns1)), S2(DBRep::Get(ns2));
Standard_Real aDeflection = Precision::Confusion(); Standard_Real aDeflection = Precision::Confusion();
if (n == 5) Standard_Integer anIndex = 4;
if (n >= 5 && a[4][0] != '-')
{
aDeflection = Draw::Atof(a[4]); aDeflection = Draw::Atof(a[4]);
anIndex++;
}
Standard_Boolean isMultiThread = Standard_False;
for (Standard_Integer anI = anIndex; anI < n; anI++)
{
TCollection_AsciiString anArg(a[anI]);
anArg.LowerCase();
if (anArg == "-parallel")
{
isMultiThread = Standard_True;
}
else
{
di << "Syntax error at '" << anArg << "'";
return 1;
}
}
Handle(Draw_ProgressIndicator) aProgress = new Draw_ProgressIndicator(di, 1); Handle(Draw_ProgressIndicator) aProgress = new Draw_ProgressIndicator(di, 1);
BRepExtrema_DistShapeShape dst(S1 ,S2, aDeflection, Extrema_ExtFlag_MINMAX, BRepExtrema_DistShapeShape dst;
Extrema_ExtAlgo_Grad, aProgress->Start()); dst.LoadS1(S1);
dst.LoadS2(S2);
dst.SetDeflection(aDeflection);
dst.SetMultiThread(isMultiThread);
dst.Perform(aProgress->Start());
if (dst.IsDone()) if (dst.IsDone())
{ {
@ -412,7 +438,10 @@ void BRepTest::ExtremaCommands (Draw_Interpretor& theCommands)
aGroup); aGroup);
theCommands.Add ("distmini", theCommands.Add ("distmini",
"distmini name Shape1 Shape2 [deflection]", "distmini name Shape1 Shape2 [deflection] [-parallel]",
"\n\t\t: Searches minimal distance between two shapes."
"\n\t\t: The option is:"
"\n\t\t: -parallel : calculate distance in multithreaded mode"
__FILE__, __FILE__,
distmini, distmini,
aGroup); aGroup);

View File

@ -0,0 +1,61 @@
puts "=========="
puts "0032539: Modeling Algorithms - Parallelize BRepExtrema_DistShapeShape algorithm"
puts "=========="
puts ""
# prepare
pload XDE OCAF
XOpen [locate_data_file bug32539_1.xbf] XB
XGetShape s1 XB 0:1:1:2
XGetShape s2 XB 0:1:1:4
Close XB
btranslate s1 0 0 60
brotate s2 0 0 0 0 0 1 90
# multi-thread
dchrono p reset; dchrono p start;
set pres [distmini res s1 s2 -parallel]
dchrono p stop;
regexp {Elapsed time: +([-0-9.+eE]+) Hours +([-0-9.+eE]+) Minutes +([-0-9.+eE]+) Seconds} [dchrono p show] full p_Hours p_Minutes p_Seconds
set p_Time [expr ${p_Hours}*60.*60. + ${p_Minutes}*60. + ${p_Seconds} ]
puts "multithreaded time: $p_Time"
set pdist [dval res_val]
vclear
vclose ALL
vinit v1/v1
vdisplay -dispMode 1 s1 s2 res res2 res3 res4
vfit
checkview -screenshot -3d -path ${imagedir}/${test_image}_multi.png
#single-thread
dchrono s reset; dchrono s start;
set cres [distmini res s1 s2]
dchrono s stop;
regexp {Elapsed time: +([-0-9.+eE]+) Hours +([-0-9.+eE]+) Minutes +([-0-9.+eE]+) Seconds} [dchrono s show] full s_Hours s_Minutes s_Seconds
set s_Time [expr ${s_Hours}*60.*60. + ${s_Minutes}*60. + ${s_Seconds} ]
puts "single-threaded time: $s_Time"
set sdist [dval res_val]
vclear
vclose ALL
vinit v2/v2
vdisplay -dispMode 1 s1 s2 res res2 res3 res4
vfit
checkview -screenshot -3d -path ${imagedir}/${test_image}_single.png
# compare
set ratio [expr ${s_Time}/${p_Time} ]
puts "acceleration in multi-threaded work: $ratio"
if {[string compare $cres $pres] != 0} {
puts "Error: different result between single-thread and multi-thread mode"
}
if {[expr abs(${sdist} - ${pdist})] > 1E-13} {
puts "Error: different distance between single-thread and multi-thread mode"
}

View File

@ -0,0 +1,54 @@
puts "=========="
puts "0032539: Modeling Algorithms - Parallelize BRepExtrema_DistShapeShape algorithm"
puts "=========="
puts ""
# prepare
restore [locate_data_file 5000-12.brep] s1
restore [locate_data_file BPLSEITLI.brep] s2
# multi-thread
dchrono p reset; dchrono p start;
set pres [distmini res s1 s2 -parallel]
dchrono p stop;
regexp {Elapsed time: +([-0-9.+eE]+) Hours +([-0-9.+eE]+) Minutes +([-0-9.+eE]+) Seconds} [dchrono p show] full p_Hours p_Minutes p_Seconds
set p_Time [expr ${p_Hours}*60.*60. + ${p_Minutes}*60. + ${p_Seconds} ]
puts "multithreaded time: $p_Time"
set pdist [dval res_val]
vclear
vclose ALL
vinit v1/v1
vdisplay -dispMode 1 s1 s2 res
vzoom 2
checkview -screenshot -3d -path ${imagedir}/${test_image}_multi.png
#single-thread
dchrono s reset; dchrono s start;
set cres [distmini res s1 s2]
dchrono s stop;
regexp {Elapsed time: +([-0-9.+eE]+) Hours +([-0-9.+eE]+) Minutes +([-0-9.+eE]+) Seconds} [dchrono s show] full s_Hours s_Minutes s_Seconds
set s_Time [expr ${s_Hours}*60.*60. + ${s_Minutes}*60. + ${s_Seconds} ]
puts "single-threaded time: $s_Time"
set sdist [dval res_val]
vclear
vclose ALL
vinit v2/v2
vdisplay -dispMode 1 s1 s2 res
vzoom 2
checkview -screenshot -3d -path ${imagedir}/${test_image}_single.png
# compare
set ratio [expr ${s_Time}/${p_Time} ]
puts "acceleration in multi-threaded work: $ratio"
if {[string compare $cres $pres] != 0} {
puts "Error: different result between single-thread and multi-thread mode"
}
if {[expr abs(${sdist} - ${pdist})] > 1E-13} {
puts "Error: different distance between single-thread and multi-thread mode"
}