1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-14 13:30:48 +03:00

0022312: Translation of french commentaries in OCCT files

This commit is contained in:
YSN
2011-10-27 07:50:55 +00:00
committed by bugmaster
parent b2342827fa
commit 0d9695538c
214 changed files with 8746 additions and 10449 deletions

View File

@@ -87,7 +87,7 @@ void Bisector_BisecPC::Perform(const Handle(Geom2d_Curve)& Cu,
sign = Side;
isConvex = Bisector::IsConvex(curve,sign);
//--------------------------------------------
// Calcul intervalle de definition.
// Calculate interval of definition.
//--------------------------------------------
ComputeIntervals();
if (isEmpty) return;
@@ -285,8 +285,8 @@ Standard_Boolean Bisector_BisecPC::IsClosed() const
{
if (curve->IsClosed()) {
//-----------------------------------------------------------------------
// La bisectrice est fermee si la curve est fermee et que la bissectrice
// a un seul domaine de continuite egale a celui de la courbe.
// The bisectrice is closed if the curve is closed and the bissectrice
// has only one domain of continuity equal to the one of the curve.
// -----------------------------------------------------------------------
if (startIntervals.First() == curve->FirstParameter() &&
endIntervals .First() == curve->LastParameter () )
@@ -339,14 +339,14 @@ void Bisector_BisecPC::Extension(const Standard_Real U,
//=============================================================================
//function : Values
// purpose : A chaque point de la courbe est associe un point sur la
// bissectrice. l equation de la bissectrice est:
// purpose : To each point of the curve is associated a point on the
// bissectrice. The equation of the bissectrice is:
// || PP(u)||**2
// F(u) = P(u) - 1/2* -------------- * N(u)
// (N(u)|PP(u))
//
// N(u) normale a la courbe en u.
// ( | ) designe le produit scalaire.
// N(u) normal to the curve by u.
// ( | ) designation of the scalar product.
//=============================================================================
void Bisector_BisecPC::Values(const Standard_Real U,
const Standard_Integer N,
@@ -387,9 +387,9 @@ void Bisector_BisecPC::Values(const Standard_Real U,
}
else {return; }
if (N == 0) return; // Fin Calcul Point;
if (N == 0) return; // End Calculation Point;
gp_Vec2d Nu ( - Tuu.Y() , Tuu.X()); // derivee de la normale en U.
gp_Vec2d Nu ( - Tuu.Y() , Tuu.X()); // derivative of the normal by U.
Standard_Real NuPPC = Nu .Dot(PPC);
Standard_Real TuPPC = Tu .Dot(PPC);
Standard_Real NorPPCE2 = NorPPC*NorPPC;
@@ -398,7 +398,7 @@ void Bisector_BisecPC::Values(const Standard_Real U,
//--------------------------
V1 = Tu - A1*Nu - A2*Nor;
//--------------------------
if (N == 1) return; //Fin calcul D1.
if (N == 1) return; // End calculation D1.
gp_Vec2d Nuu ( - T3u.Y() , T3u.X());
@@ -442,13 +442,13 @@ static Standard_Real Curvature (const Handle(Geom2d_Curve)& C,
//=============================================================================
//function : Distance
//purpose : distance au carre du point de parametre U a la courbe et au point:
//purpose : distance at the square of the point of parameter U to the curve and at point:
//
// 2 ||PP(u)||**4 2
// d = 1/4* ------------------- ||Nor||
// (Nor(u)/PP(u))**2
//
// ou Nor est la normale a la courbe en U.
// where Nor is the normal to the curve by U.
//=============================================================================
Standard_Real Bisector_BisecPC::Distance (const Standard_Real U) const
{
@@ -468,9 +468,9 @@ Standard_Real Bisector_BisecPC::Distance (const Standard_Real U) const
if (point.IsEqual(PC,Precision::Confusion())) {
if (isConvex) { return 0.;}
//----------------------------------------------------
// le point est sur une courbe concave.
// Le point voulu n est pas le point commun.
// ceci pour evite la discontinuite de la bisectrice.
// the point is on a concave curve.
// The required point is not the common point.
// This can avoid the discontinuity of the bisectrice.
//----------------------------------------------------
else { return Precision::Infinite();}
}
@@ -482,7 +482,7 @@ Standard_Real Bisector_BisecPC::Distance (const Standard_Real U) const
Standard_Real A = 0.5*SquareMagPPC/Prosca;
Standard_Real Dist = A*A*NorNor;
//----------------------------------------
// Test Courbure si la courbe est concave.
// Test Curvature if the curve is concave.
//----------------------------------------
// if (!isConvex){
// Standard_Real K = Curvature(curve,UOnCurve,Precision::Confusion());
@@ -687,20 +687,19 @@ void Bisector_BisecPC::ComputeIntervals ()
endIntervals .Append(UEnd);
//------------------------------------------------------------------------
// Decalage eventuel du parametre sur la courbe par rapport a celui sur
// la curve. Le decalage est effectue si la curve est periodique. et
// que le point de parametre initial est interieure a un interval de cont
// inuite.
// Eventual offset of the parameter on the curve correspondingly to the one
// on the curve. The offset can be done if the curve is periodical and the
// point of initial parameter is less then the interval of continuity.
//------------------------------------------------------------------------
if (curve->IsPeriodic()) {
if (startIntervals.Length() > 1) { // Plusieurs intervals.
if (endIntervals .Last() == curve->LastParameter() &&
startIntervals.First() == curve->FirstParameter() ) {
//---------------------------------------------------------------
// la bissectrice est definie a l origine.
// => Fusion du premier et du dernier interval.
// => le 0 sur la bisectrice devient le debut du premier interval
// => decalage de parametre sur toutes les bornes des intervals.
// the bissectrice is defined at the origin.
// => Fusion of the first and the last interval.
// => 0 on the bisectrice becomes the start of the first interval
// => offset of parameter on all limits of intervals.
//---------------------------------------------------------------
startIntervals.Remove(1);
endIntervals .Remove(endIntervals.Length());