mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
0022312: Translation of french commentaries in OCCT files
This commit is contained in:
@@ -207,7 +207,7 @@ void BSplSLib::RationalDerivative(const Standard_Integer UDeg,
|
||||
}
|
||||
}
|
||||
|
||||
// --------------- Calcul ----------------
|
||||
// --------------- Calculation ----------------
|
||||
|
||||
iiM1 = - M1;
|
||||
iiM3 = - M3;
|
||||
@@ -278,7 +278,7 @@ void BSplSLib::RationalDerivative(const Standard_Integer UDeg,
|
||||
//
|
||||
// PrepareEval :
|
||||
//
|
||||
// Pepare all data for computing points :
|
||||
// Prepare all data for computing points :
|
||||
// local arrays of knots
|
||||
// local array of poles (multiplied by the weights if rational)
|
||||
//
|
||||
@@ -2770,17 +2770,16 @@ void BSplSLib::MovePoint (const Standard_Real U,
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Resolution
|
||||
//purpose : this computes an estimate for the maximum of the
|
||||
// function : Resolution
|
||||
// purpose : this computes an estimate for the maximum of the
|
||||
// partial derivatives both in U and in V
|
||||
//
|
||||
//
|
||||
//le calcul est en tout point semblable a celui des courbes avec un
|
||||
//indice de plus pour les point de controles. Soient Si,j les
|
||||
//points de controle pour ls surface et Di,j les poids le cas
|
||||
//echeant. La preuve des majorants pour les derivees partielles
|
||||
//sera omise et on a pour Su le majorant suivant dans le cas poly-
|
||||
//nomial :
|
||||
// The calculation resembles at the calculation of curves with
|
||||
// additional index for the control point. Let Si,j be the
|
||||
// control points for ls surface and Di,j the weights.
|
||||
// The checking of upper bounds for the partial derivatives
|
||||
// will be omitted and Su is the next upper bound in the polynomial case :
|
||||
//
|
||||
//
|
||||
//
|
||||
@@ -2790,7 +2789,7 @@ void BSplSLib::MovePoint (const Standard_Real U,
|
||||
// i=1.m
|
||||
//
|
||||
//
|
||||
// et dans le cas rationel :
|
||||
// and in the rational case :
|
||||
//
|
||||
//
|
||||
//
|
||||
@@ -2806,7 +2805,7 @@ void BSplSLib::MovePoint (const Standard_Real U,
|
||||
//
|
||||
//
|
||||
//
|
||||
// avec Rj = {j-d, ...., j+d+d+1}.
|
||||
// with Rj = {j-d, ...., j+d+d+1}.
|
||||
//
|
||||
//
|
||||
//=======================================================================
|
||||
@@ -3090,7 +3089,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
Standard_Integer VLength = VParameters.Length();
|
||||
Standard_Real * poles_array;
|
||||
|
||||
// extraction des iso u
|
||||
// extraction of iso u
|
||||
dimension = 4*ULength;
|
||||
TColStd_Array2OfReal Points(1, VLength,
|
||||
1, dimension);
|
||||
@@ -3109,7 +3108,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
}
|
||||
}
|
||||
|
||||
// interpolation des iso u
|
||||
// interpolation of iso u
|
||||
poles_array = (Standard_Real *) &Points.ChangeValue(1,1) ;
|
||||
BSplCLib::Interpolate(VDegree,
|
||||
VFlatKnots,
|
||||
@@ -3120,7 +3119,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
InversionProblem) ;
|
||||
if (InversionProblem != 0) return;
|
||||
|
||||
// extraction des iso v
|
||||
// extraction of iso v
|
||||
|
||||
dimension = VLength*4;
|
||||
TColStd_Array2OfReal IsoPoles(1, ULength,
|
||||
@@ -3139,7 +3138,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
IsoPoles (ii,ll+3) = Points(jj, kk+3);
|
||||
}
|
||||
}
|
||||
// interpolation des iso v
|
||||
// interpolation of iso v
|
||||
BSplCLib::Interpolate(UDegree,
|
||||
UFlatKnots,
|
||||
UParameters,
|
||||
@@ -3148,7 +3147,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
poles_array[0],
|
||||
InversionProblem);
|
||||
|
||||
// recuperation des resultats
|
||||
// return results
|
||||
|
||||
for (ii=1; ii <= ULength; ii++) {
|
||||
|
||||
@@ -3179,7 +3178,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
Standard_Integer VLength = VParameters.Length();
|
||||
Standard_Real * poles_array;
|
||||
|
||||
// extraction des iso u
|
||||
// extraction of iso u
|
||||
dimension = 3*ULength;
|
||||
TColStd_Array2OfReal Points(1, VLength,
|
||||
1, dimension);
|
||||
@@ -3197,7 +3196,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
}
|
||||
}
|
||||
|
||||
// interpolation des iso u
|
||||
// interpolation of iso u
|
||||
poles_array = (Standard_Real *) &Points.ChangeValue(1,1) ;
|
||||
BSplCLib::Interpolate(VDegree,
|
||||
VFlatKnots,
|
||||
@@ -3208,7 +3207,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
InversionProblem) ;
|
||||
if (InversionProblem != 0) return;
|
||||
|
||||
// extraction des iso v
|
||||
// extraction of iso v
|
||||
|
||||
dimension = VLength*3;
|
||||
TColStd_Array2OfReal IsoPoles(1, ULength,
|
||||
@@ -3226,7 +3225,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
IsoPoles (ii,ll+2) = Points(jj, kk+2);
|
||||
}
|
||||
}
|
||||
// interpolation des iso v
|
||||
// interpolation of iso v
|
||||
BSplCLib::Interpolate(UDegree,
|
||||
UFlatKnots,
|
||||
UParameters,
|
||||
@@ -3235,7 +3234,7 @@ void BSplSLib::Interpolate(const Standard_Integer UDegree,
|
||||
poles_array[0],
|
||||
InversionProblem);
|
||||
|
||||
// recuperation des resultats
|
||||
// return results
|
||||
|
||||
for (ii=1; ii <= ULength; ii++) {
|
||||
|
||||
|
Reference in New Issue
Block a user