mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-14 13:30:48 +03:00
0022312: Translation of french commentaries in OCCT files
This commit is contained in:
@@ -181,8 +181,8 @@ Standard_Integer BSplCLib::FlatIndex
|
||||
|
||||
//=======================================================================
|
||||
//function : LocateParameter
|
||||
//purpose : Traitement des noeuds avec multiplicites
|
||||
//pmn 28-01-97 -> calcule eventuel de la periode.
|
||||
//purpose : Processing of nodes with multiplicities
|
||||
//pmn 28-01-97 -> compute eventual of the period.
|
||||
//=======================================================================
|
||||
|
||||
void BSplCLib::LocateParameter
|
||||
@@ -207,9 +207,9 @@ void BSplCLib::LocateParameter
|
||||
|
||||
//=======================================================================
|
||||
//function : LocateParameter
|
||||
//purpose : Pour des noeuds plats
|
||||
// pmn 28-01-97 -> On a bel est bien besoin du degree pour calculer
|
||||
// la periode eventuelle
|
||||
//purpose : For plane nodes
|
||||
// pmn 28-01-97 -> There is a need of the degre to calculate
|
||||
// the eventual period
|
||||
//=======================================================================
|
||||
|
||||
void BSplCLib::LocateParameter
|
||||
@@ -236,9 +236,9 @@ void BSplCLib::LocateParameter
|
||||
|
||||
//=======================================================================
|
||||
//function : LocateParameter
|
||||
//purpose : Claculs effectifs
|
||||
// pmn 28-01-97 : Ajoute les bornes de la periode en argument d'entree, car il est
|
||||
// car il est imposible de les inventer a ce niveaux.
|
||||
//purpose : Effective computation
|
||||
// pmn 28-01-97 : Add limits of the period as input argument,
|
||||
// as it is imposible to produce them at this level.
|
||||
//=======================================================================
|
||||
|
||||
void BSplCLib::LocateParameter
|
||||
@@ -284,7 +284,7 @@ void BSplCLib::LocateParameter
|
||||
if ( KnotIndex < Knots.Upper()) {
|
||||
val = NewU - knots[KnotIndex + 1];
|
||||
if (val < 0) val = - val;
|
||||
// <= pour etre coherant avec les Segment ou Eps correspond a un bit d'erreur.
|
||||
// <= to be coherent with Segment where Eps corresponds to a bit of error.
|
||||
if (val <= Eps) KnotIndex++;
|
||||
}
|
||||
if (KnotIndex < First) KnotIndex = First;
|
||||
@@ -309,7 +309,7 @@ void BSplCLib::LocateParameter
|
||||
//=======================================================================
|
||||
//function : LocateParameter
|
||||
//purpose : the index is recomputed only if out of range
|
||||
//pmn 28-01-97 -> calcule eventuel de la periode.
|
||||
//pmn 28-01-97 -> eventual computation of the period.
|
||||
//=======================================================================
|
||||
|
||||
void BSplCLib::LocateParameter
|
||||
@@ -3456,26 +3456,26 @@ void BSplCLib::TangExtendToConstraint
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// 1. calcul du prolongement nD
|
||||
// 1. calculation of extension nD
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// matrice d'Hermite
|
||||
// Hermite matrix
|
||||
Standard_Integer Csize = Continuity + 2;
|
||||
math_Matrix MatCoefs(1,Csize, 1,Csize);
|
||||
if (After) {
|
||||
PLib::HermiteCoefficients(0, 1, // Les Bornes
|
||||
Continuity, 0, // Les Ordres de contraintes
|
||||
PLib::HermiteCoefficients(0, 1, // Limits
|
||||
Continuity, 0, // Orders of constraints
|
||||
MatCoefs);
|
||||
}
|
||||
else {
|
||||
PLib::HermiteCoefficients(0, 1, // Les Bornes
|
||||
0, Continuity, // Les Ordres de contraintes
|
||||
PLib::HermiteCoefficients(0, 1, // Limits
|
||||
0, Continuity, // Orders of constraints
|
||||
MatCoefs);
|
||||
}
|
||||
|
||||
|
||||
// positionnement au noeud de raccord
|
||||
// position at the node of connection
|
||||
Standard_Real Tbord ;
|
||||
if (After) {
|
||||
Tbord = FlatKnots(FlatKnots.Upper()-CDegree);
|
||||
@@ -3491,7 +3491,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
BSplCLib::Eval(Tbord,periodic_flag,derivative_request,extrap_mode[0],
|
||||
CDegree,FlatKnots,CDimension,Poles,*Eadr);
|
||||
|
||||
// norme de la tangente au noeud de raccord
|
||||
// norm of the tangent at the node of connection
|
||||
math_Vector Tgte(1,CDimension);
|
||||
|
||||
for (ipos=1;ipos<=CDimension;ipos++) {
|
||||
@@ -3500,7 +3500,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
Standard_Real L1=Tgte.Norm();
|
||||
|
||||
|
||||
// matrice de contraintes
|
||||
// matrix of constraints
|
||||
math_Matrix Contraintes(1,Csize,1,CDimension);
|
||||
if (After) {
|
||||
|
||||
@@ -3523,7 +3523,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
}
|
||||
|
||||
// calcul des coefficients du prolongement
|
||||
// calculate the coefficients of extension
|
||||
Standard_Integer ii, jj, kk;
|
||||
TColStd_Array1OfReal ExtraCoeffs(1,Csize*CDimension);
|
||||
ExtraCoeffs.Init(0.);
|
||||
@@ -3538,14 +3538,14 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
}
|
||||
|
||||
// calcul des poles du prolongement
|
||||
// calculate the poles of extension
|
||||
TColStd_Array1OfReal ExtrapPoles(1,Csize*CDimension);
|
||||
Standard_Real * EPadr = &ExtrapPoles(1) ;
|
||||
PLib::CoefficientsPoles(CDimension,
|
||||
ExtraCoeffs, PLib::NoWeights(),
|
||||
ExtrapPoles, PLib::NoWeights());
|
||||
|
||||
// calcul des noeuds du prolongement avec leurs multiplicites
|
||||
// calculate the nodes of extension with multiplicities
|
||||
TColStd_Array1OfReal ExtrapNoeuds(1,2);
|
||||
ExtrapNoeuds(1) = 0.;
|
||||
ExtrapNoeuds(2) = 1.;
|
||||
@@ -3553,11 +3553,11 @@ void BSplCLib::TangExtendToConstraint
|
||||
ExtrapMults(1) = Csize;
|
||||
ExtrapMults(2) = Csize;
|
||||
|
||||
// noeuds plats du prolongement
|
||||
// flat nodes of extension
|
||||
TColStd_Array1OfReal FK2(1, Csize*2);
|
||||
BSplCLib::KnotSequence(ExtrapNoeuds,ExtrapMults,FK2);
|
||||
|
||||
// norme de la tangente au point de raccord
|
||||
// norm of the tangent at the connection point
|
||||
if (After) {
|
||||
BSplCLib::Eval(0.,periodic_flag,1,extrap_mode[0],
|
||||
Csize-1,FK2,CDimension,*EPadr,*Eadr);
|
||||
@@ -3572,7 +3572,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
Standard_Real L2 = Tgte.Norm();
|
||||
|
||||
// harmonisation des degres
|
||||
// harmonisation of degrees
|
||||
TColStd_Array1OfReal NewP2(1, (CDegree+1)*CDimension);
|
||||
TColStd_Array1OfReal NewK2(1, 2);
|
||||
TColStd_Array1OfInteger NewM2(1, 2);
|
||||
@@ -3587,7 +3587,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
NewM2 = ExtrapMults;
|
||||
}
|
||||
|
||||
// noeuds plats du prolongement apres harmonisation des degres
|
||||
// flat nodes of extension after harmonization of degrees
|
||||
TColStd_Array1OfReal NewFK2(1, (CDegree+1)*2);
|
||||
BSplCLib::KnotSequence(NewK2,NewM2,NewFK2);
|
||||
|
||||
@@ -3598,7 +3598,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// ratio de reparametrisation
|
||||
// ratio of reparametrization
|
||||
Standard_Real Ratio=1, Delta;
|
||||
if ( (L1 > Precision::Confusion()) && (L2 > Precision::Confusion()) ) {
|
||||
Ratio = L2 / L1;
|
||||
@@ -3606,21 +3606,21 @@ void BSplCLib::TangExtendToConstraint
|
||||
if ( (Ratio < 1.e-5) || (Ratio > 1.e5) ) Ratio = 1;
|
||||
|
||||
if (After) {
|
||||
// on ne bouge pas la premiere BSpline
|
||||
// do not touch the first BSpline
|
||||
Delta = Ratio*NewFK2(NewFK2.Lower()) - FlatKnots(FlatKnots.Upper());
|
||||
}
|
||||
else {
|
||||
// on ne bouge pas la seconde BSpline
|
||||
// do not touch the second BSpline
|
||||
Delta = Ratio*NewFK2(NewFK2.Upper()) - FlatKnots(FlatKnots.Lower());
|
||||
}
|
||||
|
||||
// resultat de la concatenation
|
||||
// result of the concatenation
|
||||
Standard_Integer NbP1 = NumPoles, NbP2 = CDegree+1;
|
||||
Standard_Integer NbK1 = FlatKnots.Length(), NbK2 = 2*(CDegree+1);
|
||||
TColStd_Array1OfReal NewPoles (1, (NbP1+ NbP2-1)*CDimension);
|
||||
TColStd_Array1OfReal NewFlats (1, NbK1+NbK2-CDegree-2);
|
||||
|
||||
// les poles
|
||||
// poles
|
||||
Standard_Integer indNP, indP, indEP;
|
||||
if (After) {
|
||||
|
||||
@@ -3649,26 +3649,26 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
}
|
||||
|
||||
// les noeuds plats
|
||||
// flat nodes
|
||||
if (After) {
|
||||
// on commence avec les noeuds de la surface initiale
|
||||
// start with the nodes of the initial surface
|
||||
|
||||
for (ii=1; ii<NbK1; ii++) {
|
||||
NewFlats(ii) = FlatKnots(FlatKnots.Lower()+ii-1);
|
||||
}
|
||||
// on continue avec les noeuds du prolongement reparametres
|
||||
// continue with the reparameterized nodes of the extension
|
||||
|
||||
for (ii=1; ii<=NbK2-CDegree-1; ii++) {
|
||||
NewFlats(NbK1+ii-1) = Ratio*NewFK2(NewFK2.Lower()+ii+CDegree) - Delta;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// on commence avec les noeuds du prolongement reparametres
|
||||
// start with the reparameterized nodes of the extension
|
||||
|
||||
for (ii=1; ii<NbK2-CDegree; ii++) {
|
||||
NewFlats(ii) = Ratio*NewFK2(NewFK2.Lower()+ii-1) - Delta;
|
||||
}
|
||||
// on continue avec les noeuds de la surface initiale
|
||||
// continue with the nodes of the initial surface
|
||||
|
||||
for (ii=2; ii<=NbK1; ii++) {
|
||||
NewFlats(NbK2+ii-CDegree-2) = FlatKnots(FlatKnots.Lower()+ii-1);
|
||||
@@ -3678,18 +3678,18 @@ void BSplCLib::TangExtendToConstraint
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// 3. reduction de la multiplicite au noeud de raccord
|
||||
// 3. reduction of multiplicite at the node of connection
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// nombre de noeuds distincts
|
||||
// number of separate nodes
|
||||
Standard_Integer KLength = 1;
|
||||
|
||||
for (ii=2; ii<=NbK1+NbK2-CDegree-2;ii++) {
|
||||
if (NewFlats(ii) != NewFlats(ii-1)) KLength++;
|
||||
}
|
||||
|
||||
// noeuds plats --> noeuds + multiplicites
|
||||
// flat nodes --> nodes + multiplicities
|
||||
TColStd_Array1OfReal NewKnots (1, KLength);
|
||||
TColStd_Array1OfInteger NewMults (1, KLength);
|
||||
NewMults.Init(1);
|
||||
@@ -3704,7 +3704,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
}
|
||||
|
||||
// reduction de la multiplicite au second ou a l'avant-dernier noeud
|
||||
// reduction of multiplicity at the second or the last but one node
|
||||
Standard_Integer Index = 2, M = CDegree;
|
||||
if (After) Index = KLength-1;
|
||||
TColStd_Array1OfReal ResultPoles (1, (NbP1+ NbP2-1)*CDimension);
|
||||
@@ -3721,16 +3721,16 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
|
||||
if (M == CDegree) {
|
||||
// le nombre de poles de la concatenation
|
||||
// number of poles of the concatenation
|
||||
NbPolesResult = NbP1 + NbP2 - 1;
|
||||
// les poles de la concatenation
|
||||
// the poles of the concatenation
|
||||
Standard_Integer PLength = NbPolesResult*CDimension;
|
||||
|
||||
for (jj=1; jj<=PLength; jj++) {
|
||||
PRadr[jj-1] = NewPoles(jj);
|
||||
}
|
||||
|
||||
// les noeuds plats de la concatenation
|
||||
// flat nodes of the concatenation
|
||||
Standard_Integer ideb = 0;
|
||||
|
||||
for (jj=0; jj<NewKnots.Length(); jj++) {
|
||||
@@ -3743,16 +3743,16 @@ void BSplCLib::TangExtendToConstraint
|
||||
}
|
||||
|
||||
else {
|
||||
// le nombre de poles du resultat
|
||||
// number of poles of the result
|
||||
NbPolesResult = NbP1 + NbP2 - 1 - CDegree + M;
|
||||
// les poles du resultat
|
||||
// the poles of the result
|
||||
Standard_Integer PLength = NbPolesResult*CDimension;
|
||||
|
||||
for (jj=0; jj<PLength; jj++) {
|
||||
PRadr[jj] = ResultPoles(jj+1);
|
||||
}
|
||||
|
||||
// les noeuds plats du resultat
|
||||
// flat nodes of the result
|
||||
Standard_Integer ideb = 0;
|
||||
|
||||
for (jj=0; jj<ResultKnots.Length(); jj++) {
|
||||
@@ -3769,19 +3769,19 @@ void BSplCLib::TangExtendToConstraint
|
||||
//function : Resolution
|
||||
//purpose :
|
||||
// d
|
||||
// Soit C(t) = SUM Ci Bi(t) une courbe Bspline de degre d
|
||||
// Let C(t) = SUM Ci Bi(t) a Bspline curve of degree d
|
||||
// i = 1,n
|
||||
// dont les noeuds sont tj pour j = 1,n+d+1
|
||||
// with nodes tj for j = 1,n+d+1
|
||||
//
|
||||
//
|
||||
// ' C1 - Ci-1 d-1
|
||||
// Alors C (t) = SUM d * --------- Bi (t)
|
||||
// Then C (t) = SUM d * --------- Bi (t)
|
||||
// i = 2,n ti+d - ti
|
||||
//
|
||||
// d-1
|
||||
// pour la base de BSpline Bi (t) de degre d-1.
|
||||
// for the base of BSpline Bi (t) of degree d-1.
|
||||
//
|
||||
// Par suite un majorant de la norme de la derivee de C est :
|
||||
// Consequently the upper bound of the norm of the derivative from C is :
|
||||
//
|
||||
//
|
||||
// | Ci - Ci-1 |
|
||||
@@ -3789,7 +3789,7 @@ void BSplCLib::TangExtendToConstraint
|
||||
// i = 2,n | ti+d - ti |
|
||||
//
|
||||
// N(t)
|
||||
// Dans le cas rationel on pose C(t) = -----
|
||||
// In the rational case set C(t) = -----
|
||||
// D(t)
|
||||
//
|
||||
//
|
||||
@@ -3821,9 +3821,9 @@ void BSplCLib::TangExtendToConstraint
|
||||
// Betaj(t) = --------
|
||||
// D(t)
|
||||
//
|
||||
// les Betaj(t) forment une partition >= 0 de l'unite dont le support
|
||||
// est tj, tj+d+1. Par suite si Rj = {j-d, ...., j+d+d+1}
|
||||
// obtient un majorant de la derivee de C en prenant :
|
||||
// Betaj(t) form a partition >= 0 of the entity with support
|
||||
// tj, tj+d+1. Consequently if Rj = {j-d, ...., j+d+d+1}
|
||||
// obtain an upper bound of the derivative of C by taking :
|
||||
//
|
||||
//
|
||||
//
|
||||
|
Reference in New Issue
Block a user