mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
0029769: Uninitialized data with BSplCLib_Cache, BSplSLib_Cache
Implementation of classes BSplCLib_Cache and BSplSLib_Cache is revised: - Common functionality dealing with spans along one parametric direction is separated to new struct BSplCLib_CacheParams - Empty constructors are removed; copying is prohibited - Code reconsidering degree and other parameters on each call to BuildCache() is eliminated; curve parameters must be the same in constructor and all calls to BuildCache() - Extra call to BuildCache() from constructor is eliminated
This commit is contained in:
parent
3388cf17dc
commit
0a96e0bbc4
@ -31,159 +31,71 @@ static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArra
|
||||
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
|
||||
}
|
||||
|
||||
|
||||
BSplCLib_Cache::BSplCLib_Cache()
|
||||
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt2d& /* only used to distinguish from 3d variant */,
|
||||
const TColStd_Array1OfReal* theWeights)
|
||||
: myIsRational(theWeights != NULL),
|
||||
myParams (theDegree, thePeriodic, theFlatKnots)
|
||||
{
|
||||
myPolesWeights.Nullify();
|
||||
myIsRational = Standard_False;
|
||||
mySpanStart = 0.0;
|
||||
mySpanLength = 0.0;
|
||||
mySpanIndex = 0;
|
||||
myDegree = 0;
|
||||
myFlatKnots.Nullify();
|
||||
Standard_Integer aPWColNumber = (myIsRational ? 3 : 2);
|
||||
myPolesWeights = new TColStd_HArray2OfReal (1, theDegree + 1, 1, aPWColNumber);
|
||||
}
|
||||
|
||||
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt2d& thePoles2d,
|
||||
const TColgp_Array1OfPnt& /* only used to distinguish from 2d variant */,
|
||||
const TColStd_Array1OfReal* theWeights)
|
||||
: myIsRational(theWeights != NULL),
|
||||
myParams (theDegree, thePeriodic, theFlatKnots)
|
||||
{
|
||||
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
|
||||
BuildCache(aCacheParam, theDegree, thePeriodic,
|
||||
theFlatKnots, thePoles2d, theWeights);
|
||||
Standard_Integer aPWColNumber = (myIsRational ? 4 : 3);
|
||||
myPolesWeights = new TColStd_HArray2OfReal (1, theDegree + 1, 1, aPWColNumber);
|
||||
}
|
||||
|
||||
BSplCLib_Cache::BSplCLib_Cache(const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt& thePoles,
|
||||
const TColStd_Array1OfReal* theWeights)
|
||||
{
|
||||
Standard_Real aCacheParam = theFlatKnots.Value(theFlatKnots.Lower() + theDegree);
|
||||
BuildCache(aCacheParam, theDegree, thePeriodic,
|
||||
theFlatKnots, thePoles, theWeights);
|
||||
}
|
||||
|
||||
|
||||
Standard_Boolean BSplCLib_Cache::IsCacheValid(Standard_Real theParameter) const
|
||||
{
|
||||
Standard_Real aNewParam = theParameter;
|
||||
if (!myFlatKnots.IsNull())
|
||||
PeriodicNormalization(myFlatKnots->Array1(), aNewParam);
|
||||
|
||||
Standard_Real aDelta = aNewParam - mySpanStart;
|
||||
return ((aDelta >= 0.0 || mySpanIndex == mySpanIndexMin) &&
|
||||
(aDelta < mySpanLength || mySpanIndex == mySpanIndexMax));
|
||||
return myParams.IsCacheValid (theParameter);
|
||||
}
|
||||
|
||||
void BSplCLib_Cache::PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots,
|
||||
Standard_Real& theParameter) const
|
||||
{
|
||||
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - myDegree) -
|
||||
theFlatKnots.Value(myDegree + 1) ;
|
||||
if (theParameter < theFlatKnots.Value(myDegree + 1))
|
||||
{
|
||||
Standard_Real aScale = IntegerPart(
|
||||
(theFlatKnots.Value(myDegree + 1) - theParameter) / aPeriod);
|
||||
theParameter += aPeriod * (aScale + 1.0);
|
||||
}
|
||||
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - myDegree))
|
||||
{
|
||||
Standard_Real aScale = IntegerPart(
|
||||
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - myDegree)) / aPeriod);
|
||||
theParameter -= aPeriod * (aScale + 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
|
||||
const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt2d& thePoles2d,
|
||||
const TColStd_Array1OfReal* theWeights)
|
||||
{
|
||||
// Normalize theParameter for periodical B-splines
|
||||
Standard_Real aNewParam = theParameter;
|
||||
if (thePeriodic)
|
||||
{
|
||||
PeriodicNormalization(theFlatKnots, aNewParam);
|
||||
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
|
||||
myFlatKnots->ChangeArray1() = theFlatKnots;
|
||||
}
|
||||
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
|
||||
myFlatKnots.Nullify();
|
||||
|
||||
// Change the size of cached data if needed
|
||||
myIsRational = (theWeights != NULL);
|
||||
Standard_Integer aPWColNumber = myIsRational ? 3 : 2;
|
||||
if (theDegree > myDegree)
|
||||
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
|
||||
|
||||
myDegree = theDegree;
|
||||
mySpanIndex = 0;
|
||||
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
|
||||
aNewParam, thePeriodic, mySpanIndex, aNewParam);
|
||||
mySpanStart = theFlatKnots.Value(mySpanIndex);
|
||||
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
|
||||
mySpanIndexMin = thePeriodic ? 0 : myDegree + 1;
|
||||
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
|
||||
Standard_Real aNewParam = myParams.PeriodicNormalization (theParameter);
|
||||
myParams.LocateParameter (aNewParam, theFlatKnots);
|
||||
|
||||
// Calculate new cache data
|
||||
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
|
||||
mySpanIndex, theFlatKnots, thePoles2d, theWeights,
|
||||
myPolesWeights->ChangeArray2());
|
||||
BSplCLib::BuildCache (myParams.SpanStart, myParams.SpanLength, myParams.IsPeriodic,
|
||||
myParams.Degree, myParams.SpanIndex, theFlatKnots, thePoles2d,
|
||||
theWeights, myPolesWeights->ChangeArray2());
|
||||
}
|
||||
|
||||
void BSplCLib_Cache::BuildCache(const Standard_Real& theParameter,
|
||||
const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt& thePoles,
|
||||
const TColStd_Array1OfReal* theWeights)
|
||||
{
|
||||
// Create list of knots with repetitions and normalize theParameter for periodical B-splines
|
||||
Standard_Real aNewParam = theParameter;
|
||||
if (thePeriodic)
|
||||
{
|
||||
PeriodicNormalization(theFlatKnots, aNewParam);
|
||||
myFlatKnots = new TColStd_HArray1OfReal(1, theFlatKnots.Length());
|
||||
myFlatKnots->ChangeArray1() = theFlatKnots;
|
||||
}
|
||||
else if (!myFlatKnots.IsNull()) // Periodical curve became non-periodical
|
||||
myFlatKnots.Nullify();
|
||||
|
||||
// Change the size of cached data if needed
|
||||
myIsRational = (theWeights != NULL);
|
||||
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
|
||||
if (theDegree > myDegree)
|
||||
myPolesWeights = new TColStd_HArray2OfReal(1, theDegree + 1, 1, aPWColNumber);
|
||||
|
||||
myDegree = theDegree;
|
||||
mySpanIndex = 0;
|
||||
BSplCLib::LocateParameter(theDegree, theFlatKnots, BSplCLib::NoMults(),
|
||||
aNewParam, thePeriodic, mySpanIndex, aNewParam);
|
||||
mySpanStart = theFlatKnots.Value(mySpanIndex);
|
||||
mySpanLength = theFlatKnots.Value(mySpanIndex + 1) - mySpanStart;
|
||||
mySpanIndexMin = thePeriodic ? 0 : myDegree + 1;
|
||||
mySpanIndexMax = theFlatKnots.Length() - 1 - theDegree;
|
||||
Standard_Real aNewParam = myParams.PeriodicNormalization (theParameter);
|
||||
myParams.LocateParameter (aNewParam, theFlatKnots);
|
||||
|
||||
// Calculate new cache data
|
||||
BSplCLib::BuildCache(mySpanStart, mySpanLength, thePeriodic, theDegree,
|
||||
mySpanIndex, theFlatKnots, thePoles, theWeights,
|
||||
myPolesWeights->ChangeArray2());
|
||||
BSplCLib::BuildCache (myParams.SpanStart, myParams.SpanLength, myParams.IsPeriodic,
|
||||
myParams.Degree, myParams.SpanIndex, theFlatKnots, thePoles,
|
||||
theWeights, myPolesWeights->ChangeArray2());
|
||||
}
|
||||
|
||||
|
||||
void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
|
||||
const Standard_Integer& theDerivative,
|
||||
Standard_Real& theDerivArray) const
|
||||
{
|
||||
Standard_Real aNewParameter = theParameter;
|
||||
if (!myFlatKnots.IsNull()) // B-spline is periodical
|
||||
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
|
||||
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
|
||||
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
|
||||
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
|
||||
@ -199,23 +111,23 @@ void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
|
||||
// When the degree of curve is lesser than the requested derivative,
|
||||
// nullify array cells corresponding to greater derivatives
|
||||
Standard_Integer aDerivative = theDerivative;
|
||||
if (myDegree < theDerivative)
|
||||
if (myParams.Degree < theDerivative)
|
||||
{
|
||||
aDerivative = myDegree;
|
||||
for (Standard_Integer ind = myDegree * aDimension; ind < (theDerivative + 1) * aDimension; ind++)
|
||||
aDerivative = myParams.Degree;
|
||||
for (Standard_Integer ind = myParams.Degree * aDimension; ind < (theDerivative + 1) * aDimension; ind++)
|
||||
{
|
||||
aPntDeriv[ind] = 0.0;
|
||||
(&theDerivArray)[ind] = 0.0; // should be cleared separately, because aPntDeriv may look to another memory area
|
||||
}
|
||||
}
|
||||
|
||||
PLib::EvalPolynomial(aNewParameter, aDerivative, myDegree, aDimension,
|
||||
PLib::EvalPolynomial(aNewParameter, aDerivative, myParams.Degree, aDimension,
|
||||
aPolesArray[0], aPntDeriv[0]);
|
||||
// Unnormalize derivatives since those are computed normalized
|
||||
Standard_Real aFactor = 1.0;
|
||||
for (Standard_Integer deriv = 1; deriv <= aDerivative; deriv++)
|
||||
{
|
||||
aFactor /= mySpanLength;
|
||||
aFactor /= myParams.SpanLength;
|
||||
for (Standard_Integer ind = 0; ind < aDimension; ind++)
|
||||
aPntDeriv[aDimension * deriv + ind] *= aFactor;
|
||||
}
|
||||
@ -227,17 +139,15 @@ void BSplCLib_Cache::CalculateDerivative(const Standard_Real& theParameter,
|
||||
|
||||
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) const
|
||||
{
|
||||
Standard_Real aNewParameter = theParameter;
|
||||
if (!myFlatKnots.IsNull()) // B-spline is periodical
|
||||
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
|
||||
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
|
||||
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
|
||||
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Real aPoint[4];
|
||||
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
|
||||
|
||||
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
|
||||
aDimension, myDegree * aDimension,
|
||||
PLib::NoDerivativeEvalPolynomial(aNewParameter, myParams.Degree,
|
||||
aDimension, myParams.Degree * aDimension,
|
||||
aPolesArray[0], aPoint[0]);
|
||||
|
||||
thePoint.SetCoord(aPoint[0], aPoint[1]);
|
||||
@ -247,17 +157,15 @@ void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt2d& thePoint) c
|
||||
|
||||
void BSplCLib_Cache::D0(const Standard_Real& theParameter, gp_Pnt& thePoint) const
|
||||
{
|
||||
Standard_Real aNewParameter = theParameter;
|
||||
if (!myFlatKnots.IsNull()) // B-spline is periodical
|
||||
PeriodicNormalization(myFlatKnots->Array1(), aNewParameter);
|
||||
aNewParameter = (aNewParameter - mySpanStart) / mySpanLength;
|
||||
Standard_Real aNewParameter = myParams.PeriodicNormalization (theParameter);
|
||||
aNewParameter = (aNewParameter - myParams.SpanStart) / myParams.SpanLength;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Real aPoint[4];
|
||||
Standard_Integer aDimension = myPolesWeights->RowLength(); // number of columns
|
||||
|
||||
PLib::NoDerivativeEvalPolynomial(aNewParameter, myDegree,
|
||||
aDimension, myDegree * aDimension,
|
||||
PLib::NoDerivativeEvalPolynomial(aNewParameter, myParams.Degree,
|
||||
aDimension, myParams.Degree * aDimension,
|
||||
aPolesArray[0], aPoint[0]);
|
||||
|
||||
thePoint.SetCoord(aPoint[0], aPoint[1], aPoint[2]);
|
||||
|
@ -19,7 +19,6 @@
|
||||
#include <Standard_Type.hxx>
|
||||
#include <Standard_Transient.hxx>
|
||||
|
||||
|
||||
#include <gp_Pnt2d.hxx>
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Vec2d.hxx>
|
||||
@ -31,6 +30,8 @@
|
||||
#include <TColgp_Array1OfPnt.hxx>
|
||||
#include <TColgp_Array1OfPnt2d.hxx>
|
||||
|
||||
#include <BSplCLib_CacheParams.hxx>
|
||||
|
||||
//! \brief A cache class for Bezier and B-spline curves.
|
||||
//!
|
||||
//! Defines all data, that can be cached on a span of a curve.
|
||||
@ -38,11 +39,10 @@
|
||||
class BSplCLib_Cache : public Standard_Transient
|
||||
{
|
||||
public:
|
||||
//! Default constructor
|
||||
Standard_EXPORT BSplCLib_Cache();
|
||||
//! Constructor for caching of 2D curves
|
||||
|
||||
//! Constructor, prepares data structures for caching values on a 2d curve.
|
||||
//! \param theDegree degree of the curve
|
||||
//! \param thePeriodic identify the curve is periodic
|
||||
//! \param thePeriodic identify whether the curve is periodic
|
||||
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
|
||||
//! \param thePoles2d array of poles of 2D curve
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
@ -51,9 +51,10 @@ public:
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt2d& thePoles2d,
|
||||
const TColStd_Array1OfReal* theWeights = NULL);
|
||||
//! Constructor for caching of 3D curves
|
||||
|
||||
//! Constructor, prepares data structures for caching values on a 3d curve.
|
||||
//! \param theDegree degree of the curve
|
||||
//! \param thePeriodic identify the curve is periodic
|
||||
//! \param thePeriodic identify whether the curve is periodic
|
||||
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
|
||||
//! \param thePoles array of poles of 3D curve
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
@ -69,27 +70,20 @@ public:
|
||||
|
||||
//! Recomputes the cache data for 2D curves. Does not verify validity of the cache
|
||||
//! \param theParameter the value on the knot's axis to identify the span
|
||||
//! \param theDegree degree of the curve
|
||||
//! \param thePeriodic identify the curve is periodic
|
||||
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
|
||||
//! \param thePoles2d array of poles of 2D curve
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
|
||||
const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt2d& thePoles2d,
|
||||
const TColStd_Array1OfReal* theWeights = NULL);
|
||||
const TColStd_Array1OfReal* theWeights);
|
||||
|
||||
//! Recomputes the cache data for 3D curves. Does not verify validity of the cache
|
||||
//! \param theParameter the value on the knot's axis to identify the span
|
||||
//! \param theDegree degree of the curve
|
||||
//! \param thePeriodic identify the curve is periodic
|
||||
//! \param theFlatKnots knots of Bezier/B-spline curve (with repetitions)
|
||||
//! \param thePoles array of poles of 3D curve
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
Standard_EXPORT void BuildCache(const Standard_Real& theParameter,
|
||||
const Standard_Integer& theDegree,
|
||||
const Standard_Boolean& thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
const TColgp_Array1OfPnt& thePoles,
|
||||
const TColStd_Array1OfReal* theWeights = NULL);
|
||||
@ -142,10 +136,6 @@ public:
|
||||
DEFINE_STANDARD_RTTIEXT(BSplCLib_Cache,Standard_Transient)
|
||||
|
||||
protected:
|
||||
//! Normalizes the parameter for periodical curves
|
||||
//! \param theFlatKnots knots with repetitions
|
||||
//! \param theParameter the value to be normalized into the knots array
|
||||
void PeriodicNormalization(const TColStd_Array1OfReal& theFlatKnots, Standard_Real& theParameter) const;
|
||||
|
||||
//! Fills array of derivatives in the selected point of the curve
|
||||
//! \param[in] theParameter parameter of the calculation
|
||||
@ -156,21 +146,18 @@ protected:
|
||||
const Standard_Integer& theDerivative,
|
||||
Standard_Real& theDerivArray) const;
|
||||
|
||||
// copying is prohibited
|
||||
BSplCLib_Cache (const BSplCLib_Cache&);
|
||||
void operator = (const BSplCLib_Cache&);
|
||||
|
||||
private:
|
||||
Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
|
||||
Standard_Boolean myIsRational; //!< identifies the rationality of Bezier/B-spline curve
|
||||
BSplCLib_CacheParams myParams; //!< cache parameters
|
||||
Handle(TColStd_HArray2OfReal) myPolesWeights; //!< array of poles and weights of calculated cache
|
||||
// the array has following structure:
|
||||
// x1 y1 [z1] [w1]
|
||||
// x2 y2 [z2] [w2] etc
|
||||
// for 2D-curves there is no z conponent, for non-rational curves there is no weight
|
||||
|
||||
Standard_Boolean myIsRational; ///< identifies the rationality of Bezier/B-spline curve
|
||||
Standard_Real mySpanStart; ///< parameter for the first point of the span
|
||||
Standard_Real mySpanLength; ///< length of the span
|
||||
Standard_Integer mySpanIndex; ///< index of the span on Bezier/B-spline curve
|
||||
Standard_Integer mySpanIndexMin; ///< minimal index of span on Bezier/B-spline curve
|
||||
Standard_Integer mySpanIndexMax; ///< maximal number of spans on Bezier/B-spline curve
|
||||
Standard_Integer myDegree; ///< degree of Bezier/B-spline
|
||||
Handle(TColStd_HArray1OfReal) myFlatKnots; ///< knots of Bezier/B-spline (used for periodic normalization of parameters, exists only for periodical splines)
|
||||
};
|
||||
|
||||
DEFINE_STANDARD_HANDLE(BSplCLib_Cache, Standard_Transient)
|
||||
|
106
src/BSplCLib/BSplCLib_CacheParams.hxx
Normal file
106
src/BSplCLib/BSplCLib_CacheParams.hxx
Normal file
@ -0,0 +1,106 @@
|
||||
// Copyright (c) 2018 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _BSplCLib_CacheParams_Headerfile
|
||||
#define _BSplCLib_CacheParams_Headerfile
|
||||
|
||||
#include <Standard_Real.hxx>
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
|
||||
#include <BSplCLib.hxx>
|
||||
|
||||
//! Simple structure containing parameters describing parameterization
|
||||
//! of a B-spline curve or a surface in one direction (U or V),
|
||||
//! and data of the current span for its caching
|
||||
struct BSplCLib_CacheParams
|
||||
{
|
||||
const Standard_Integer Degree; ///< degree of Bezier/B-spline
|
||||
const Standard_Boolean IsPeriodic; ///< true of the B-spline is periodic
|
||||
const Standard_Real FirstParameter; ///< first valid parameter
|
||||
const Standard_Real LastParameter; ///< last valid parameter
|
||||
|
||||
const Standard_Integer SpanIndexMin; ///< minimal index of span
|
||||
const Standard_Integer SpanIndexMax; ///< maximal index of span
|
||||
|
||||
Standard_Real SpanStart; ///< parameter for the frst point of the span
|
||||
Standard_Real SpanLength; ///< length of the span
|
||||
Standard_Integer SpanIndex; ///< index of the span
|
||||
|
||||
//! Constructor, prepares data structures for caching.
|
||||
//! \param theDegree degree of the B-spline (or Bezier)
|
||||
//! \param thePeriodic identify whether the B-spline is periodic
|
||||
//! \param theFlatKnots knots of Bezier / B-spline parameterization
|
||||
BSplCLib_CacheParams (Standard_Integer theDegree, Standard_Boolean thePeriodic,
|
||||
const TColStd_Array1OfReal& theFlatKnots)
|
||||
: Degree(theDegree),
|
||||
IsPeriodic(thePeriodic),
|
||||
FirstParameter(theFlatKnots.Value(theFlatKnots.Lower() + theDegree)),
|
||||
LastParameter(theFlatKnots.Value(theFlatKnots.Upper() - theDegree)),
|
||||
SpanIndexMin(theFlatKnots.Lower() + theDegree),
|
||||
SpanIndexMax(theFlatKnots.Upper() - theDegree - 1),
|
||||
SpanStart(0.),
|
||||
SpanLength(0.),
|
||||
SpanIndex(0)
|
||||
{}
|
||||
|
||||
//! Normalizes the parameter for periodic B-splines
|
||||
//! \param theParameter the value to be normalized into the knots array
|
||||
Standard_Real PeriodicNormalization (Standard_Real theParameter) const
|
||||
{
|
||||
if (IsPeriodic)
|
||||
{
|
||||
if (theParameter < FirstParameter)
|
||||
{
|
||||
Standard_Real aPeriod = LastParameter - FirstParameter;
|
||||
Standard_Real aScale = IntegerPart ((FirstParameter - theParameter) / aPeriod);
|
||||
return theParameter + aPeriod * (aScale + 1.0);
|
||||
}
|
||||
if (theParameter > LastParameter)
|
||||
{
|
||||
Standard_Real aPeriod = LastParameter - FirstParameter;
|
||||
Standard_Real aScale = IntegerPart ((theParameter - LastParameter) / aPeriod);
|
||||
return theParameter - aPeriod * (aScale + 1.0);
|
||||
}
|
||||
}
|
||||
return theParameter;
|
||||
}
|
||||
|
||||
//! Verifies validity of the cache using flat parameter of the point
|
||||
//! \param theParameter parameter of the point placed in the span
|
||||
Standard_Boolean IsCacheValid (Standard_Real theParameter) const
|
||||
{
|
||||
Standard_Real aNewParam = PeriodicNormalization (theParameter);
|
||||
Standard_Real aDelta = aNewParam - SpanStart;
|
||||
return ((aDelta >= 0.0 || SpanIndex == SpanIndexMin) &&
|
||||
(aDelta < SpanLength || SpanIndex == SpanIndexMax));
|
||||
}
|
||||
|
||||
//! Computes span for the specified parameter
|
||||
//! \param theParameter parameter of the point placed in the span
|
||||
//! \param theFlatKnots knots of Bezier / B-spline parameterization
|
||||
void LocateParameter (Standard_Real& theParameter, const TColStd_Array1OfReal& theFlatKnots)
|
||||
{
|
||||
SpanIndex = 0;
|
||||
BSplCLib::LocateParameter (Degree, theFlatKnots, BSplCLib::NoMults(),
|
||||
theParameter, IsPeriodic, SpanIndex, theParameter);
|
||||
SpanStart = theFlatKnots.Value(SpanIndex);
|
||||
SpanLength = theFlatKnots.Value(SpanIndex + 1) - SpanStart;
|
||||
}
|
||||
|
||||
private:
|
||||
// copying is prohibited
|
||||
BSplCLib_CacheParams (const BSplCLib_CacheParams&);
|
||||
void operator = (const BSplCLib_CacheParams&);
|
||||
};
|
||||
|
||||
#endif
|
@ -7,6 +7,7 @@ BSplCLib_3.cxx
|
||||
BSplCLib_BzSyntaxes.cxx
|
||||
BSplCLib_Cache.cxx
|
||||
BSplCLib_Cache.hxx
|
||||
BSplCLib_CacheParams.hxx
|
||||
BSplCLib_CurveComputation.gxx
|
||||
BSplCLib_EvaluatorFunction.hxx
|
||||
BSplCLib_KnotDistribution.hxx
|
||||
|
@ -31,154 +31,60 @@ static Standard_Real* ConvertArray(const Handle(TColStd_HArray2OfReal)& theHArra
|
||||
return (Standard_Real*) &(anArray(anArray.LowerRow(), anArray.LowerCol()));
|
||||
}
|
||||
|
||||
|
||||
BSplSLib_Cache::BSplSLib_Cache()
|
||||
{
|
||||
myPolesWeights.Nullify();
|
||||
myIsRational = Standard_False;
|
||||
mySpanStart[0] = mySpanStart[1] = 0.0;
|
||||
mySpanLength[0] = mySpanLength[1] = 0.0;
|
||||
mySpanIndex[0] = mySpanIndex[1] = 0;
|
||||
myDegree[0] = myDegree[1] = 0;
|
||||
myFlatKnots[0].Nullify();
|
||||
myFlatKnots[1].Nullify();
|
||||
}
|
||||
|
||||
BSplSLib_Cache::BSplSLib_Cache(const Standard_Integer& theDegreeU,
|
||||
const Standard_Boolean& thePeriodicU,
|
||||
const TColStd_Array1OfReal& theFlatKnotsU,
|
||||
const Standard_Integer& theDegreeV,
|
||||
const Standard_Boolean& thePeriodicV,
|
||||
const TColStd_Array1OfReal& theFlatKnotsV,
|
||||
const TColgp_Array2OfPnt& thePoles,
|
||||
const TColStd_Array2OfReal* theWeights)
|
||||
: myIsRational(theWeights != NULL),
|
||||
myParamsU (theDegreeU, thePeriodicU, theFlatKnotsU),
|
||||
myParamsV (theDegreeV, thePeriodicV, theFlatKnotsV)
|
||||
{
|
||||
Standard_Real aU = theFlatKnotsU.Value(theFlatKnotsU.Lower() + theDegreeU);
|
||||
Standard_Real aV = theFlatKnotsV.Value(theFlatKnotsV.Lower() + theDegreeV);
|
||||
|
||||
BuildCache(aU, aV,
|
||||
theDegreeU, thePeriodicU, theFlatKnotsU,
|
||||
theDegreeV, thePeriodicV, theFlatKnotsV,
|
||||
thePoles, theWeights);
|
||||
Standard_Integer aMinDegree = Min (theDegreeU, theDegreeV);
|
||||
Standard_Integer aMaxDegree = Max (theDegreeU, theDegreeV);
|
||||
Standard_Integer aPWColNumber = (myIsRational ? 4 : 3);
|
||||
myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1));
|
||||
}
|
||||
|
||||
|
||||
Standard_Boolean BSplSLib_Cache::IsCacheValid(Standard_Real theParameterU,
|
||||
Standard_Real theParameterV) const
|
||||
{
|
||||
Standard_Real aNewU = theParameterU;
|
||||
Standard_Real aNewV = theParameterV;
|
||||
if (!myFlatKnots[0].IsNull())
|
||||
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
||||
if (!myFlatKnots[1].IsNull())
|
||||
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
||||
|
||||
Standard_Real aDelta0 = aNewU - mySpanStart[0];
|
||||
Standard_Real aDelta1 = aNewV - mySpanStart[1];
|
||||
return ((aDelta0 >= -mySpanLength[0] || mySpanIndex[0] == mySpanIndexMin[0]) &&
|
||||
(aDelta0 < mySpanLength[0] || mySpanIndex[0] == mySpanIndexMax[0]) &&
|
||||
(aDelta1 >= -mySpanLength[1] || mySpanIndex[1] == mySpanIndexMin[1]) &&
|
||||
(aDelta1 < mySpanLength[1] || mySpanIndex[1] == mySpanIndexMax[1]));
|
||||
return myParamsU.IsCacheValid (theParameterU) &&
|
||||
myParamsV.IsCacheValid (theParameterV);
|
||||
}
|
||||
|
||||
void BSplSLib_Cache::PeriodicNormalization(const Standard_Integer& theDegree,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
Standard_Real& theParameter) const
|
||||
{
|
||||
Standard_Real aPeriod = theFlatKnots.Value(theFlatKnots.Upper() - theDegree) -
|
||||
theFlatKnots.Value(theDegree + 1) ;
|
||||
if (theParameter < theFlatKnots.Value(theDegree + 1))
|
||||
{
|
||||
Standard_Real aScale = IntegerPart(
|
||||
(theFlatKnots.Value(theDegree + 1) - theParameter) / aPeriod);
|
||||
theParameter += aPeriod * (aScale + 1.0);
|
||||
}
|
||||
if (theParameter > theFlatKnots.Value(theFlatKnots.Upper() - theDegree))
|
||||
{
|
||||
Standard_Real aScale = IntegerPart(
|
||||
(theParameter - theFlatKnots.Value(theFlatKnots.Upper() - theDegree)) / aPeriod);
|
||||
theParameter -= aPeriod * (aScale + 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void BSplSLib_Cache::BuildCache(const Standard_Real& theParameterU,
|
||||
const Standard_Real& theParameterV,
|
||||
const Standard_Integer& theDegreeU,
|
||||
const Standard_Boolean& thePeriodicU,
|
||||
const TColStd_Array1OfReal& theFlatKnotsU,
|
||||
const Standard_Integer& theDegreeV,
|
||||
const Standard_Boolean& thePeriodicV,
|
||||
const TColStd_Array1OfReal& theFlatKnotsV,
|
||||
const TColgp_Array2OfPnt& thePoles,
|
||||
const TColStd_Array2OfReal* theWeights)
|
||||
{
|
||||
// Normalize the parameters for periodical B-splines
|
||||
Standard_Real aNewParamU = theParameterU;
|
||||
if (thePeriodicU)
|
||||
{
|
||||
PeriodicNormalization(theDegreeU, theFlatKnotsU, aNewParamU);
|
||||
myFlatKnots[0] = new TColStd_HArray1OfReal(1, theFlatKnotsU.Length());
|
||||
myFlatKnots[0]->ChangeArray1() = theFlatKnotsU;
|
||||
}
|
||||
else if (!myFlatKnots[0].IsNull()) // Periodical curve became non-periodical
|
||||
myFlatKnots[0].Nullify();
|
||||
Standard_Real aNewParamU = myParamsU.PeriodicNormalization (theParameterU);
|
||||
Standard_Real aNewParamV = myParamsV.PeriodicNormalization (theParameterV);
|
||||
|
||||
Standard_Real aNewParamV = theParameterV;
|
||||
if (thePeriodicV)
|
||||
{
|
||||
PeriodicNormalization(theDegreeV, theFlatKnotsV, aNewParamV);
|
||||
myFlatKnots[1] = new TColStd_HArray1OfReal(1, theFlatKnotsV.Length());
|
||||
myFlatKnots[1]->ChangeArray1() = theFlatKnotsV;
|
||||
}
|
||||
else if (!myFlatKnots[1].IsNull()) // Periodical curve became non-periodical
|
||||
myFlatKnots[1].Nullify();
|
||||
myParamsU.LocateParameter (aNewParamU, theFlatKnotsU);
|
||||
myParamsV.LocateParameter (aNewParamV, theFlatKnotsV);
|
||||
|
||||
Standard_Integer aMinDegree = Min(theDegreeU, theDegreeV);
|
||||
Standard_Integer aMaxDegree = Max(theDegreeU, theDegreeV);
|
||||
|
||||
// Change the size of cached data if needed
|
||||
myIsRational = (theWeights != NULL);
|
||||
Standard_Integer aPWColNumber = myIsRational ? 4 : 3;
|
||||
if (theDegreeU > myDegree[0] || theDegreeV > myDegree[1])
|
||||
myPolesWeights = new TColStd_HArray2OfReal(1, aMaxDegree + 1, 1, aPWColNumber * (aMinDegree + 1));
|
||||
|
||||
myDegree[0] = theDegreeU;
|
||||
myDegree[1] = theDegreeV;
|
||||
mySpanIndex[0] = mySpanIndex[1] = 0;
|
||||
BSplCLib::LocateParameter(theDegreeU, theFlatKnotsU, BSplCLib::NoMults(), aNewParamU,
|
||||
thePeriodicU, mySpanIndex[0], aNewParamU);
|
||||
BSplCLib::LocateParameter(theDegreeV, theFlatKnotsV, BSplCLib::NoMults(), aNewParamV,
|
||||
thePeriodicV, mySpanIndex[1], aNewParamV);
|
||||
|
||||
// Protection against Out of Range exception.
|
||||
if (mySpanIndex[0] >= theFlatKnotsU.Length()) {
|
||||
mySpanIndex[0] = theFlatKnotsU.Length() - 1;
|
||||
}
|
||||
|
||||
mySpanLength[0] = (theFlatKnotsU.Value(mySpanIndex[0] + 1) - theFlatKnotsU.Value(mySpanIndex[0])) * 0.5;
|
||||
mySpanStart[0] = theFlatKnotsU.Value(mySpanIndex[0]) + mySpanLength[0];
|
||||
|
||||
// Protection against Out of Range exception.
|
||||
if (mySpanIndex[1] >= theFlatKnotsV.Length()) {
|
||||
mySpanIndex[1] = theFlatKnotsV.Length() - 1;
|
||||
}
|
||||
|
||||
mySpanLength[1] = (theFlatKnotsV.Value(mySpanIndex[1] + 1) - theFlatKnotsV.Value(mySpanIndex[1])) * 0.5;
|
||||
mySpanStart[1] = theFlatKnotsV.Value(mySpanIndex[1]) + mySpanLength[1];
|
||||
mySpanIndexMin[0] = thePeriodicU ? 0 : theDegreeU + 1;
|
||||
mySpanIndexMax[0] = theFlatKnotsU.Length() - 1 - theDegreeU;
|
||||
mySpanIndexMin[1] = thePeriodicV ? 0 : theDegreeV + 1;
|
||||
mySpanIndexMax[1] = theFlatKnotsV.Length() - 1 - theDegreeV;
|
||||
// BSplSLib uses different convention for span parameters than BSplCLib
|
||||
// (Start is in the middle of the span and length is half-span),
|
||||
// thus we need to amend them here
|
||||
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
|
||||
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
|
||||
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
|
||||
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
|
||||
|
||||
// Calculate new cache data
|
||||
BSplSLib::BuildCache(mySpanStart[0], mySpanStart[1],
|
||||
mySpanLength[0], mySpanLength[1],
|
||||
thePeriodicU, thePeriodicV,
|
||||
theDegreeU, theDegreeV,
|
||||
mySpanIndex[0], mySpanIndex[1],
|
||||
theFlatKnotsU, theFlatKnotsV,
|
||||
thePoles, theWeights, myPolesWeights->ChangeArray2());
|
||||
BSplSLib::BuildCache (aSpanStartU, aSpanStartV,
|
||||
aSpanLengthU, aSpanLengthV,
|
||||
myParamsU.IsPeriodic, myParamsV.IsPeriodic,
|
||||
myParamsU.Degree, myParamsV.Degree,
|
||||
myParamsU.SpanIndex, myParamsV.SpanIndex,
|
||||
theFlatKnotsU, theFlatKnotsV,
|
||||
thePoles, theWeights, myPolesWeights->ChangeArray2());
|
||||
}
|
||||
|
||||
|
||||
@ -186,24 +92,29 @@ void BSplSLib_Cache::D0(const Standard_Real& theU,
|
||||
const Standard_Real& theV,
|
||||
gp_Pnt& thePoint) const
|
||||
{
|
||||
Standard_Real aNewU = theU;
|
||||
Standard_Real aNewV = theV;
|
||||
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
||||
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
||||
aNewU = (aNewU - mySpanStart[0]) / mySpanLength[0];
|
||||
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
||||
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
||||
aNewV = (aNewV - mySpanStart[1]) / mySpanLength[1];
|
||||
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
|
||||
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
|
||||
|
||||
// BSplSLib uses different convention for span parameters than BSplCLib
|
||||
// (Start is in the middle of the span and length is half-span),
|
||||
// thus we need to amend them here
|
||||
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
|
||||
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
|
||||
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
|
||||
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
|
||||
|
||||
aNewU = (aNewU - aSpanStartU) / aSpanLengthU;
|
||||
aNewV = (aNewV - aSpanStartV) / aSpanLengthV;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Real aPoint[4];
|
||||
|
||||
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
||||
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
||||
Max(myDegree[0], myDegree[1])};
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
|
||||
Max(myParamsU.Degree, myParamsV.Degree)};
|
||||
Standard_Real aParameters[2];
|
||||
if (myDegree[0] > myDegree[1])
|
||||
if (myParamsU.Degree > myParamsV.Degree)
|
||||
{
|
||||
aParameters[0] = aNewV;
|
||||
aParameters[1] = aNewU;
|
||||
@ -238,16 +149,21 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
|
||||
gp_Vec& theTangentU,
|
||||
gp_Vec& theTangentV) const
|
||||
{
|
||||
Standard_Real aNewU = theU;
|
||||
Standard_Real aNewV = theV;
|
||||
Standard_Real anInvU = 1.0 / mySpanLength[0];
|
||||
Standard_Real anInvV = 1.0 / mySpanLength[1];
|
||||
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
||||
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
||||
aNewU = (aNewU - mySpanStart[0]) * anInvU;
|
||||
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
||||
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
||||
aNewV = (aNewV - mySpanStart[1]) * anInvV;
|
||||
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
|
||||
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
|
||||
|
||||
// BSplSLib uses different convention for span parameters than BSplCLib
|
||||
// (Start is in the middle of the span and length is half-span),
|
||||
// thus we need to amend them here
|
||||
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
|
||||
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
|
||||
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
|
||||
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
|
||||
|
||||
Standard_Real anInvU = 1.0 / aSpanLengthU;
|
||||
Standard_Real anInvV = 1.0 / aSpanLengthV;
|
||||
aNewU = (aNewU - aSpanStartU) * anInvU;
|
||||
aNewV = (aNewV - aSpanStartV) * anInvV;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Real aPntDeriv[16]; // result storage (point and derivative coordinates)
|
||||
@ -255,11 +171,11 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
|
||||
|
||||
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
||||
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
||||
Max(myDegree[0], myDegree[1])};
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
|
||||
Max(myParamsU.Degree, myParamsV.Degree)};
|
||||
|
||||
Standard_Real aParameters[2];
|
||||
if (myDegree[0] > myDegree[1])
|
||||
if (myParamsU.Degree > myParamsV.Degree)
|
||||
{
|
||||
aParameters[0] = aNewV;
|
||||
aParameters[1] = aNewU;
|
||||
@ -293,7 +209,7 @@ void BSplSLib_Cache::D1(const Standard_Real& theU,
|
||||
}
|
||||
|
||||
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
|
||||
if (myDegree[0] > myDegree[1])
|
||||
if (myParamsU.Degree > myParamsV.Degree)
|
||||
{
|
||||
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
||||
Standard_Integer aShift = aDimension<<1;
|
||||
@ -319,16 +235,21 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
|
||||
gp_Vec& theCurvatureV,
|
||||
gp_Vec& theCurvatureUV) const
|
||||
{
|
||||
Standard_Real aNewU = theU;
|
||||
Standard_Real aNewV = theV;
|
||||
Standard_Real anInvU = 1.0 / mySpanLength[0];
|
||||
Standard_Real anInvV = 1.0 / mySpanLength[1];
|
||||
if (!myFlatKnots[0].IsNull()) // B-spline is U-periodical
|
||||
PeriodicNormalization(myDegree[0], myFlatKnots[0]->Array1(), aNewU);
|
||||
aNewU = (aNewU - mySpanStart[0]) * anInvU;
|
||||
if (!myFlatKnots[1].IsNull()) // B-spline is V-periodical
|
||||
PeriodicNormalization(myDegree[1], myFlatKnots[1]->Array1(), aNewV);
|
||||
aNewV = (aNewV - mySpanStart[1]) * anInvV;
|
||||
Standard_Real aNewU = myParamsU.PeriodicNormalization (theU);
|
||||
Standard_Real aNewV = myParamsV.PeriodicNormalization (theV);
|
||||
|
||||
// BSplSLib uses different convention for span parameters than BSplCLib
|
||||
// (Start is in the middle of the span and length is half-span),
|
||||
// thus we need to amend them here
|
||||
Standard_Real aSpanLengthU = 0.5 * myParamsU.SpanLength;
|
||||
Standard_Real aSpanStartU = myParamsU.SpanStart + aSpanLengthU;
|
||||
Standard_Real aSpanLengthV = 0.5 * myParamsV.SpanLength;
|
||||
Standard_Real aSpanStartV = myParamsV.SpanStart + aSpanLengthV;
|
||||
|
||||
Standard_Real anInvU = 1.0 / aSpanLengthU;
|
||||
Standard_Real anInvV = 1.0 / aSpanLengthV;
|
||||
aNewU = (aNewU - aSpanStartU) * anInvU;
|
||||
aNewV = (aNewV - aSpanStartV) * anInvV;
|
||||
|
||||
Standard_Real* aPolesArray = ConvertArray(myPolesWeights);
|
||||
Standard_Real aPntDeriv[36]; // result storage (point and derivative coordinates)
|
||||
@ -336,11 +257,11 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
|
||||
|
||||
Standard_Integer aDimension = myIsRational ? 4 : 3;
|
||||
Standard_Integer aCacheCols = myPolesWeights->RowLength();
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myDegree[0], myDegree[1]),
|
||||
Max(myDegree[0], myDegree[1])};
|
||||
Standard_Integer aMinMaxDegree[2] = {Min(myParamsU.Degree, myParamsV.Degree),
|
||||
Max(myParamsU.Degree, myParamsV.Degree)};
|
||||
|
||||
Standard_Real aParameters[2];
|
||||
if (myDegree[0] > myDegree[1])
|
||||
if (myParamsU.Degree > myParamsV.Degree)
|
||||
{
|
||||
aParameters[0] = aNewV;
|
||||
aParameters[1] = aNewU;
|
||||
@ -390,7 +311,7 @@ void BSplSLib_Cache::D2(const Standard_Real& theU,
|
||||
}
|
||||
|
||||
thePoint.SetCoord(aResult[0], aResult[1], aResult[2]);
|
||||
if (myDegree[0] > myDegree[1])
|
||||
if (myParamsU.Degree > myParamsV.Degree)
|
||||
{
|
||||
theTangentV.SetCoord(aResult[aDimension], aResult[aDimension + 1], aResult[aDimension + 2]);
|
||||
Standard_Integer aShift = aDimension<<1;
|
||||
|
@ -29,6 +29,8 @@
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <TColStd_Array2OfReal.hxx>
|
||||
|
||||
#include <BSplCLib_CacheParams.hxx>
|
||||
|
||||
//! \brief A cache class for Bezier and B-spline surfaces.
|
||||
//!
|
||||
//! Defines all data, that can be cached on a span of the surface.
|
||||
@ -36,8 +38,7 @@
|
||||
class BSplSLib_Cache : public Standard_Transient
|
||||
{
|
||||
public:
|
||||
//! Default constructor
|
||||
Standard_EXPORT BSplSLib_Cache();
|
||||
|
||||
//! Constructor for caching of the span for the surface
|
||||
//! \param theDegreeU degree along the first parameter (U) of the surface
|
||||
//! \param thePeriodicU identify the surface is periodical along U axis
|
||||
@ -45,7 +46,6 @@ public:
|
||||
//! \param theDegreeV degree alogn the second parameter (V) of the surface
|
||||
//! \param thePeriodicV identify the surface is periodical along V axis
|
||||
//! \param theFlatKnotsV knots of the surface (with repetition) along V axis
|
||||
//! \param thePoles array of poles of the surface
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
Standard_EXPORT BSplSLib_Cache(const Standard_Integer& theDegreeU,
|
||||
const Standard_Boolean& thePeriodicU,
|
||||
@ -53,7 +53,6 @@ public:
|
||||
const Standard_Integer& theDegreeV,
|
||||
const Standard_Boolean& thePeriodicV,
|
||||
const TColStd_Array1OfReal& theFlatKnotsV,
|
||||
const TColgp_Array2OfPnt& thePoles,
|
||||
const TColStd_Array2OfReal* theWeights = NULL);
|
||||
|
||||
//! Verifies validity of the cache using parameters of the point
|
||||
@ -75,11 +74,7 @@ public:
|
||||
//! \param theWeights array of weights of corresponding poles
|
||||
Standard_EXPORT void BuildCache(const Standard_Real& theParameterU,
|
||||
const Standard_Real& theParameterV,
|
||||
const Standard_Integer& theDegreeU,
|
||||
const Standard_Boolean& thePeriodicU,
|
||||
const TColStd_Array1OfReal& theFlatKnotsU,
|
||||
const Standard_Integer& theDegreeV,
|
||||
const Standard_Boolean& thePeriodicV,
|
||||
const TColStd_Array1OfReal& theFlatKnotsV,
|
||||
const TColgp_Array2OfPnt& thePoles,
|
||||
const TColStd_Array2OfReal* theWeights = NULL);
|
||||
@ -123,32 +118,20 @@ public:
|
||||
|
||||
DEFINE_STANDARD_RTTIEXT(BSplSLib_Cache,Standard_Transient)
|
||||
|
||||
protected:
|
||||
//! Normalizes the parameter for periodical surfaces
|
||||
//! \param[in] theDegree degree along selected direction
|
||||
//! \param[in] theFlatKnots knots with repetitions along selected direction
|
||||
//! \param[in,out] theParameter the value to be normalized into the knots array
|
||||
void PeriodicNormalization(const Standard_Integer& theDegree,
|
||||
const TColStd_Array1OfReal& theFlatKnots,
|
||||
Standard_Real& theParameter) const;
|
||||
private:
|
||||
// copying is prohibited
|
||||
BSplSLib_Cache (const BSplSLib_Cache&);
|
||||
void operator = (const BSplSLib_Cache&);
|
||||
|
||||
private:
|
||||
Handle(TColStd_HArray2OfReal) myPolesWeights; ///< array of poles and weights of calculated cache
|
||||
Standard_Boolean myIsRational; //!< identifies the rationality of Bezier/B-spline surface
|
||||
BSplCLib_CacheParams myParamsU, myParamsV; //!< cach parameters by U and V directions
|
||||
Handle(TColStd_HArray2OfReal) myPolesWeights; //!< array of poles and weights of calculated cache
|
||||
// the array has following structure:
|
||||
// x11 y11 z11 [w11] x12 y12 z12 [w12] ...
|
||||
// x21 y21 z21 [w21] x22 y22 z22 [w22] etc
|
||||
// for non-rational surfaces there is no weight;
|
||||
// size of array: (max(myDegree)+1) * A*(min(myDegree)+1), where A = 4 or 3
|
||||
|
||||
Standard_Boolean myIsRational; ///< identifies the rationality of Bezier/B-spline surface
|
||||
Standard_Real mySpanStart[2]; ///< parameters (u, v) for the frst point of the span
|
||||
Standard_Real mySpanLength[2]; ///< lengths of the span along corresponding parameter
|
||||
Standard_Integer mySpanIndex[2]; ///< indexes of the span on Bezier/B-spline surface
|
||||
Standard_Integer mySpanIndexMin[2]; ///< minimal indexes of span
|
||||
Standard_Integer mySpanIndexMax[2]; ///< maximal indexes of span
|
||||
Standard_Integer myDegree[2]; ///< degrees of Bezier/B-spline for each parameter
|
||||
Handle(TColStd_HArray1OfReal) myFlatKnots[2]; ///< arrays of knots of Bezier/B-spline
|
||||
// (used for periodic normalization of parameters, Null for non-periodical splines)
|
||||
};
|
||||
|
||||
DEFINE_STANDARD_HANDLE(BSplSLib_Cache, Standard_Transient)
|
||||
|
@ -556,20 +556,18 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
|
||||
Standard_Integer aDeg = aBezier->Degree();
|
||||
TColStd_Array1OfReal aFlatKnots(BSplCLib::FlatBezierKnots(aDeg), 1, 2 * (aDeg + 1));
|
||||
if (myCurveCache.IsNull())
|
||||
myCurveCache = new BSplCLib_Cache(aDeg, aBezier->IsPeriodic(), aFlatKnots,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
myCurveCache->BuildCache(theParameter, aDeg, aBezier->IsPeriodic(), aFlatKnots,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
myCurveCache = new BSplCLib_Cache (aDeg, aBezier->IsPeriodic(), aFlatKnots,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
myCurveCache->BuildCache (theParameter, aFlatKnots, aBezier->Poles(), aBezier->Weights());
|
||||
}
|
||||
else if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
{
|
||||
// Create cache for B-spline
|
||||
if (myCurveCache.IsNull())
|
||||
myCurveCache = new BSplCLib_Cache(myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
|
||||
myCurveCache = new BSplCLib_Cache (myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
|
||||
myBSplineCurve->KnotSequence(), myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
myCurveCache->BuildCache(theParameter, myBSplineCurve->Degree(),
|
||||
myBSplineCurve->IsPeriodic(), myBSplineCurve->KnotSequence(),
|
||||
myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
myCurveCache->BuildCache (theParameter, myBSplineCurve->KnotSequence(),
|
||||
myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -539,8 +539,7 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
|
||||
if (myCurveCache.IsNull())
|
||||
myCurveCache = new BSplCLib_Cache(aDeg, aBezier->IsPeriodic(), aFlatKnots,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
myCurveCache->BuildCache(theParameter, aDeg, aBezier->IsPeriodic(), aFlatKnots,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
myCurveCache->BuildCache (theParameter, aFlatKnots, aBezier->Poles(), aBezier->Weights());
|
||||
}
|
||||
else if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
{
|
||||
@ -548,9 +547,8 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
|
||||
if (myCurveCache.IsNull())
|
||||
myCurveCache = new BSplCLib_Cache(myBSplineCurve->Degree(), myBSplineCurve->IsPeriodic(),
|
||||
myBSplineCurve->KnotSequence(), myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
myCurveCache->BuildCache(theParameter, myBSplineCurve->Degree(),
|
||||
myBSplineCurve->IsPeriodic(), myBSplineCurve->KnotSequence(),
|
||||
myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
myCurveCache->BuildCache (theParameter, myBSplineCurve->KnotSequence(),
|
||||
myBSplineCurve->Poles(), myBSplineCurve->Weights());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -670,12 +670,9 @@ void GeomAdaptor_Surface::RebuildCache(const Standard_Real theU,
|
||||
if (mySurfaceCache.IsNull())
|
||||
mySurfaceCache = new BSplSLib_Cache(
|
||||
aDegU, aBezier->IsUPeriodic(), aFlatKnotsU,
|
||||
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
mySurfaceCache->BuildCache(theU, theV,
|
||||
aDegU, aBezier->IsUPeriodic(), aFlatKnotsU,
|
||||
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
aDegV, aBezier->IsVPeriodic(), aFlatKnotsV, aBezier->Weights());
|
||||
mySurfaceCache->BuildCache (theU, theV, aFlatKnotsU, aFlatKnotsV,
|
||||
aBezier->Poles(), aBezier->Weights());
|
||||
}
|
||||
else if (mySurfaceType == GeomAbs_BSplineSurface)
|
||||
{
|
||||
@ -684,11 +681,9 @@ void GeomAdaptor_Surface::RebuildCache(const Standard_Real theU,
|
||||
mySurfaceCache = new BSplSLib_Cache(
|
||||
myBSplineSurface->UDegree(), myBSplineSurface->IsUPeriodic(), myBSplineSurface->UKnotSequence(),
|
||||
myBSplineSurface->VDegree(), myBSplineSurface->IsVPeriodic(), myBSplineSurface->VKnotSequence(),
|
||||
myBSplineSurface->Poles(), myBSplineSurface->Weights());
|
||||
mySurfaceCache->BuildCache(theU, theV,
|
||||
myBSplineSurface->UDegree(), myBSplineSurface->IsUPeriodic(), myBSplineSurface->UKnotSequence(),
|
||||
myBSplineSurface->VDegree(), myBSplineSurface->IsVPeriodic(), myBSplineSurface->VKnotSequence(),
|
||||
myBSplineSurface->Poles(), myBSplineSurface->Weights());
|
||||
myBSplineSurface->Weights());
|
||||
mySurfaceCache->BuildCache (theU, theV, myBSplineSurface->UKnotSequence(), myBSplineSurface->VKnotSequence(),
|
||||
myBSplineSurface->Poles(), myBSplineSurface->Weights());
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user